
technologies

Article

Hardware Implementation of a Softmax-Like
Function for Deep Learning †

Ioannis Kouretas * and Vassilis Paliouras

Electrical and Computer Engineering Department, University of Patras, 26 504 Patras, Greece;
paliuras@ece.upatras.gr
* Correspondence: kouretas@ece.upatras.gr
† This paper is an extended version of our paper published in Proceedings of the 8th International Conference

on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019.

Received: 28 April 2020; Accepted: 25 August 2020; Published: 28 August 2020
����������
�������

Abstract: In this paper a simplified hardware implementation of a CNN softmax-like layer is
proposed. Initially the softmax activation function is analyzed in terms of required numerical
accuracy and certain optimizations are proposed. A proposed adaptable hardware architecture is
evaluated in terms of the introduced error due to the proposed softmax-like function. The proposed
architecture can be adopted to the accuracy required by the application by retaining or eliminating
certain terms of the approximation thus allowing to explore accuracy for complexity trade-offs.
Furthermore, the proposed circuits are synthesized in a 90 nm 1.0 V CMOS standard-cell library using
Synopsys Design Compiler. Comparisons reveal that significant reduction is achieved in area× delay
and power× delay products for certain cases, respectively, over prior art. Area and power savings
are achieved with respect to performance and accuracy.

Keywords: softmax; convolutional neural networks; VLSI; deep learning

1. Introduction

Deep neural networks (DNN) have emerged as a means to tackle complex problems such as image
classification and speech recognition. The success of DNNs is attributed to the big data availability,
the easy access to enormous computational power and the introduction of novel algorithms that have
substantially improved the effectiveness of the training and inference [1]. A DNN is defined as a
neural network (NN) which contains more than one hidden layer. In the literature, a graph is used
to represent a DNN, with a set of nodes in each layer, as shown in Figure 1. The nodes at each layer
are connected to the nodes of the subsequent layer. Each node performs processing including the
computation of an activation function [2]. The extremely large number of nodes at each layer impels
the training procedure to require extensive computational resources.

A class of DNNs are the convolutional neural networks (CNNs) [2]. CNNs offer high accuracy in
computer-vision problems such as face recognition and video processing [3] and have been adopted
in many modern applications. A typical CNN consists of several layers, each one of which can be
convolutional, pooling, or normalization with the last one to be a non-linear activation function.
A common choice for normalization layers is usually the softmax function as shown in Figure 1.
To cope with increased computational load, several FPGA accelerators have been proposed and have
demonstrated that convolutional layers exhibit the largest hardware complexity in a CNN [4–15].
In addition to CNNs, hardware accelerators for RNNs and LSTMs have also been investigated [16–18].
In order to implement a CNN in hardware, the softmax layer should also be implemented with low
complexity. Furthermore, the hidden layers of a DNN can use the softmax function when the model is
designed to choose one among several different options for some internal variable [2]. In particular,

Technologies 2020, 8, 46; doi:10.3390/technologies8030046 www.mdpi.com/journal/technologies

http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0002-1414-7500
http://dx.doi.org/10.3390/technologies8030046
http://www.mdpi.com/journal/technologies
https://www.mdpi.com/2227-7080/8/3/46?type=check_update&version=2

Technologies 2020, 8, 46 2 of 20

neural turing machines (NTM) [19] and differentiable neural computer (DNC) [20] use softmax layers
within the neural network. Moreover, softmax is incorporated in attention mechanisms, an application
of which is machine translation [21]. Furthermore, both hardware [22–28] and memory-optimized
software [29,30] implementations of the softmax function have been proposed. This paper, extending
previous work published in MOCAST2019 [31], proposes a simplified architecture for a softmax-like
function, the hardware implementation of which is based on a proposed approximation which exploits
the statistical structure of the vectors processed by the softmax layers in various CNNs. Compared
to the previous work [31], this paper uses a large set of known CNNs, and performs extensive and
fair experiments to study the impact of the applied optimizations in terms of the achieved accuracy.
Moreover the architecture in [31] is further elaborated and generalized by taking into account the
requirements of the targeted application. Finally, the proposed architecture is compared with various
softmax hardware implementations. In order for the softmax-like function to be implemented efficiently
in hardware, the approximation requirements are relaxed.

The remainder of the paper is organized as follows. Section 2 revisits the softmax activation
function. Section 3 describes the proposed algorithm and Section 4 offers a quantitative analysis of the
proposed architecture. Section 5 discusses the hardware complexity of the proposed scheme based on
synthesis results. Finally, conclusions are summarized in Section 6.

Version August 12, 2020 submitted to Technologies 2 of 24

x1

x2

x3

x4

Input
layer

Hidden
layer 0

Hidden
layer 1

Hidden
layer 2

y1

y2

y3

y4

softmax
layer

Figure 1. A typical Deep Learning Network

network. Moreover, softmax is incorporated in attention mechanisms, an application of which is34

machine translation [21]. Furthermore, both hardware [22–28] and memory-optimized software [29,30]35

implementations of the softmax function have been proposed. This paper, extending previous work36

published in MOCAST2019 [31], proposes a simplified architecture for a softmax-like function, the37

hardware implementation of which is based on a proposed approximation which exploits the statistical38

structure of the vectors processed by the softmax layers in various CNNs. Compared to the previous39

work [31], this paper uses a large set of known CNNs, and performs extensive and fair experiments40

to study the impact of the applied optimizations in terms of the achieved accuracy. Moreover the41

architecture in [31] is further elaborated and generalized by taking into account the requirements of the42

targeted application. Finally, the proposed architecture is compared with various softmax hardware43

implementations. In order for the softmax-like function to be implemented efficiently in hardware, the44

approximation requirements are relaxed.45

The remainder of the paper is organized as follows. Section 2 revisits the softmax activation46

function. Section 3 describes the proposed algorithm and Section 4 offers a quantitative analysis of the47

proposed architecture. Section 5 discusses the hardware complexity of the proposed scheme based on48

synthesis results. Finally conclusions are summarized in Section 6.49

2. Softmax Layer Review50

CNNs consist of a number of stages each of which contains several layers. The final layer is
usually fully-connected using ReLU as an activation function and drives a softmax layer before the
final output of the CNN. The classification performed by the CNNs is accomplished at the final layer
of the network. In particular, for a CNN which consists of i + 1 layers, the softmax function is used to
transform the real values generated by the ith CNN layer to possibilities, according to

f j(z) =
ezj

n
∑

k=1
ezk

, (1)

where z is an arbitrary vector with real values zj, j = 1, . . . , n, generated at the ith layer of the CNN51

and n is the size of the vector. The (i + 1)st layer is called the softmax layer. By applying the logarithm52

function to both sides of (1), it follows that53

Figure 1. A typical deep learning network.

2. Softmax Layer Review

CNNs consist of a number of stages each of which contains several layers. The final layer is
usually fully-connected using ReLU as an activation function and drives a softmax layer before the
final output of the CNN. The classification performed by the CNNs is accomplished at the final layer
of the network. In particular, for a CNN which consists of i + 1 layers, the softmax function is used to
transform the real values generated by the ith CNN layer to possibilities, according to

f j(z) =
ezj

n
∑

k=1
ezk

, (1)

where z is an arbitrary vector with real values zj, j = 1, . . . , n, generated at the ith layer of the CNN
and n is the size of the vector. The (i + 1)st layer is called the softmax layer. By applying the logarithm
function to both sides of (1), it follows that

Technologies 2020, 8, 46 3 of 20

log(f j(z)) = log




ezj

n
∑

k=1
ezk


 (2)

= log(ezj)− log

(
n

∑
k=1

ezk

)
(3)

= zj − log

(
n

∑
k=1

ezk

)
. (4)

In (4), the term log

(
n

∑
k=1

ezk

)
is computed as

log

(
n

∑
k=1

ezk

)
= log

(n

∑
k=1

em

em ezk
)

(5)

= log
(

em
n

∑
k=1

1
em ezk

)
(6)

= log em + log
(n

∑
k=1

e−mezk
)

(7)

= m + log
(n

∑
k=1

ezk−m
)

, (8)

where m = max
k

(zk). From (4) and (8) it follows that

log(f j(z)) = zj −
(

m + log
(n

∑
k=1

ezk−m
))

(9)

= zj −
(

m + log
(n

∑
k=1

ezk−m − 1 + 1
))

(10)

= zj − (m + log(Q + 1)) , (11)

where

Q =
n

∑
k=1

ezk−m − 1 =
n

∑
k=1

zk 6=max

ezk−m + 1− 1 =
n

∑
k=1

zk 6=max

ezk−m. (12)

Due to the definition of m, it holds that

zj ≤ m⇒ zj −m ≤ 0⇒ ezj−m ≤ 1⇒ (13)
n

∑
k=1

ezk−m ≤ n⇒
n

∑
k=1

zk 6=max

ezk−m + 1 ≤ n⇒ (14)

Q + 1 ≤ n⇒ Q
n− 1

≤ 1⇒ Q
′ ≤ 1, (15)

where Q
′
=

Q
n− 1

. Expressing Q in terms of Q
′
, (11) becomes

log(f j(z)) = zj −m− log
(
(n− 1)Q

′
+ 1
)

. (16)

Technologies 2020, 8, 46 4 of 20

The next section presents the proposed simplifications for (16) and the derivative architecture for the
softmax-like hardware implementation.

3. Proposed Softmax Architecture

Equation (15) involves the distance of the maximum component from the remainder of the
components of a vector. As Q

′ ≈ 0, the differences in zis increase and zj � m. On the contrary,

as Q
′ → 1 the differences in zis are eliminated. Based on this observation, a simplifying approximation

can be obtained, as follows. The third term in the right hand side of (16), log
(
(n− 1)Q

′
+ 1
)

, can be
roughly approximated by 0. Hence, (16) is approximated by

log(f̂ j(z)) ' zj −m. (17)

Furthermore, this simplification substantially reduces hardware complexity as described below.
From (17), it follows that

f̂ j(z) = e
zj−max

k
(zk). (18)

Theorem 1. Let argmax
z

(f j(z)) = q and argmax
z

(f̂ j(z)) = r be the decisions obtained by (1) and (18),

respectively. Then q = r.

Proof. Due to the softmax definition, it holds that

max f j(z) = max




ezq

n
∑

k=1
ezk


⇒ (19)

zq = max
k

(zk). (20)

For the case of the proposed function (18), it holds that

max f̂ j(z) = max
(

e
zr−max

k
(zk)
)
⇒ (21)

zr = max
k

(zk). (22)

From (20) and (22), it is derived that zq = zr. Hence, argmax
z

(fq(z)) = argmax
z

(fr(z))⇒ q = r

Corollary 1. It holds that
f̂ j(z)
f j(z)

=
n

∑
k=1

ezk−m.

Proof. Proof is trivial and is omitted.

Theorem 1 states that the proposed softmax-like function and the actual softmax function always
derive the same decisions. The proposed softmax-like approximation is based on the idea that the
softmax function is used during training to target an output y by using maximum-log likelihood [2].
Hence, if the correct answer has already the maximum input value to the softmax function then
log
(
(n− 1)Q

′
+ 1
)
' 0 will roughly alter the output decision due to the exponent function used in

term Q
′
. In general, ∑

j
f̂ j(z) > 1, since the sequence f̂ j(z) cannot be denoted as a probability density

function. For models where the normalization function is required to be a pdf, a modified approach
can be followed, as detailed below.

Technologies 2020, 8, 46 5 of 20

According to the second approach, from (11) and (12) it follows:

log(f̂ j(z)) = zj −m− log(
n

∑
k=1

zk 6=max

ezk−m + 1) (23)

= zj −m− log(
p

∑
k=1

mk 6=max

emk−m +
n

∑
k=p+1

mk 6=max

emk−m + 1) (24)

= zj −m− log(
p

∑
k=1

emk−m +
n

∑
k=p+1

emk−m) (25)

= zj −m− log(Q1 + Q2), (26)

with Q1 =
p

∑
k=1

emk−m, where M1 = {m1, . . . , mp} = {mk : k = 1, . . . , p} are chosen to be the top p

maximum values of z. For the quantity Q2, it holds Q2 =
n

∑
k=p+1

emk−m, with M2 = {mp+1, . . . , mn} =

{mk : k = p + 1, . . . , n} being the remainder values of the vector z, i.e., M1 ∪M2 = {z1, . . . , zn}.
A second approximation is performed as

log(Q1) = log(
p

∑
k=1

emk−m − 1 + 1) ≈
p

∑
k=1

emk−m − 1. (27)

Q2 ≈ 0. (28)

From (26)–(28), it derives that

log(f̂ j(z, p)) ≈ zj −m−
p

∑
k=1

emk−m + 1 (29)

f̂ j(z, p) = e

zj−m−
p
∑

k=1
emk−m+1

. (30)

Equation (30) uses parameter p which defines the number of additional terms used. By properly
selecting p, then it holds that ∑

j
f̂ j(z, p) ' 1 and (30) approximates pdf better than (18). This is derived

from the fact that in a real life CNN, the p maximum values are those that contribute to the computation
of the softmax since all the remainder values are close to zero.

Lemma 1. It holds f̂ j(z, p) = f̂ j(z) when p = 1.

Proof. By definition, it holds that when p = 1 then m1 = m, since the p = 1 maximum value m1 is
identified as the maximum m. Hence, by substituting p = 1 in (30), it derives that

Technologies 2020, 8, 46 6 of 20

f̂ j(z, 1) = e

zj−m−
1
∑

k=1
emk−m+1

⇒
f̂ j(z, 1) = ezj−m−em−m+1 ⇒
f̂ j(z, 1) = ezj−m ⇒

f̂ j(z, 1)
(18)
= f̂ j(z)

From a hardware perspective, (18) and (30) can be performed by the same circuit which
implements the exponential function. The contributions of the paper are as follows. Firstly, the quantity
log
(
(n− 1)Q

′
+ 1
)

is eliminated from (16), implying that the target application requires decision
making. Secondly, further mathematical manipulations are proposed to be applied to (30), in order to
approximate the outputs as pdf i.e., probabilities that sum to one. Thirdly, the circuit for the evaluation
of ex is simplified, since

zj ≤ m⇒ (31)

zj −m ≤ 0⇒ (32)

ezj−m ≤ 1. (33)

and

zj ≤ m⇒ (34)

zj −m−
p

∑
k=1

emk−m + 1 < 0⇒ (35)

e

zj−m−
p
∑

k=1
emk−m+1

< 1. (36)

Figure 2 depicts the various building blocks of the proposed architecture. More specifically,
the proposed architecture is comprised of the block which computes the maximum m, i.e., m = max(zk)

k
.

The particular computation is performed by a tree which generates the maximum by comparing
the elements by two, as shown in Figure 3. The depicted tree structure generates m = max(zk)

k
,

k = 0, 1, . . . , 7. Notation zij denotes the maximum of zi and zj, while zijkl denotes the maximum of
zij and zkl . The same architecture is used to compute the top p maximum values of zis. For example,
Z01, Z21, Z45 and Z67 are the top four maximum values and m = max(zk)

k
is the maximum.

Subsequently, m is subtracted from all the component values zk as dictated by (17). The subtraction
is performed through adders, denoted as

⊕
in Figure 2, using two’s complement representation

for the input negative values −m. The obtained differences, also represented in two’s complement,
are used as inputs to a LUT, which performs the proposed simplified ex operation of (18), to compute
the final vector f̂ j(z) as shown in Figure 2a. Additional p terms are added and subsequently each
output f̂ j(z) through (30) generates the final value for the softmax-like layer output as shown in
Figure 2b. For the hardware implementation of the ex function, an LUT is adopted the input of which is
x = zj −m. The LUT size increases on the larger range of ex. Our proposed hardware implementation
is simpler than other exponential implementations which propose CORDIC transformations [32],
use floating-point representation [33], or LUTs [34]. In (33), the ex values are restricted to the range (0, 1]
and the derived LUT size significantly diminishes and leads to simplified hardware implementation.

Technologies 2020, 8, 46 7 of 20

Furthermore, no conversion from the logarithmic to the linear domain is required, since f j(z) represents
the final classification layer.

The next section quantitatively investigates the validity and usefulness of employing f j(z),
in terms of the approximation error.

Version August 12, 2020 submitted to Technologies 7 of 24

z max(zk)
k ++

+

...

+

simplified
ex LUT f̂2(z)

simplified
ex LUT f̂n(z)

simplified
ex LUT f̂1(z)(17)

(17)

(17)

−m (18)

(18)

(18)

z1

z2

zn

(a) Proposed softmax-like architecture with p = 1. Each output
f̂ j(z) through (18), generates the final value for the softmax-like layer
output.

z max(zk)
k +

+

...

+

simplified
ex LUT

simplified
ex LUT

+ simplified
ex LUT

f̂ j(z, p)

(17)
−m

(30)

zj

m1

mp

(b) Proposed softmax-like architecture. The notation ◦ denotes negation. Additional p terms
are added and subsequently each output f̂ j(z) through (30), generates the final value for the
softmax-like layer output.

Figure 2. Proposed softmax-like layer architecture. The circuit max(zk)
k

, k = 0, 1, . . . , n computes the

maximum value m of the input vector z = [z1 · · · zn]
T . Next m is subtracted by each zk, as described

in (17).

max(zk)
k

z0123

z01

z0 z1

z23

z2 z3

z4567

z45

z4 z5

z67

z6 z7

Figure 3. Tree structure for the computation of max(zk)
k

, k = 0, 1, . . . , 7. Notation zij denotes the

maximum of zi and zj while zijkl denotes the maximum of zij and zkl .

(a)

Version August 12, 2020 submitted to Technologies 7 of 24

z max(zk)
k ++

+

...

+

simplified
ex LUT f̂2(z)

simplified
ex LUT f̂n(z)

simplified
ex LUT f̂1(z)(17)

(17)

(17)

−m (18)

(18)

(18)

z1

z2

zn

(a) Proposed softmax-like architecture with p = 1. Each output
f̂ j(z) through (18), generates the final value for the softmax-like layer
output.

z max(zk)
k +

+

...

+

simplified
ex LUT

simplified
ex LUT

+ simplified
ex LUT

f̂ j(z, p)

(17)
−m

(30)

zj

m1

mp

(b) Proposed softmax-like architecture. The notation ◦ denotes negation. Additional p terms
are added and subsequently each output f̂ j(z) through (30), generates the final value for the
softmax-like layer output.

Figure 2. Proposed softmax-like layer architecture. The circuit max(zk)
k

, k = 0, 1, . . . , n computes the

maximum value m of the input vector z = [z1 · · · zn]
T . Next m is subtracted by each zk, as described

in (17).

max(zk)
k

z0123

z01

z0 z1

z23

z2 z3

z4567

z45

z4 z5

z67

z6 z7

Figure 3. Tree structure for the computation of max(zk)
k

, k = 0, 1, . . . , 7. Notation zij denotes the

maximum of zi and zj while zijkl denotes the maximum of zij and zkl .

(b)

Figure 2. Proposed softmax-like layer architecture. The circuit max(zk)
k

, k = 0, 1, . . . , n computes the

maximum value m of the input vector z = [z1 × zn]
T . Next m is subtracted by each zk, as described

in (17). (a) Proposed softmax-like architecture with p = 1. Each output f̂ j(z) through (18) generates
the final value for the softmax-like layer output. (b) Proposed softmax-like architecture. The notation
◦ denotes negation. Additional p terms are added and subsequently each output f̂ j(z) through (30)
generates the final value for the softmax-like layer output.

Version August 12, 2020 submitted to Technologies 7 of 24

z max(zk)
k ++

+

...

+

simplified
ex LUT f̂2(z)

simplified
ex LUT f̂n(z)

simplified
ex LUT f̂1(z)(17)

(17)

(17)

−m (18)

(18)

(18)

z1

z2

zn

(a) Proposed softmax-like architecture with p = 1. Each output
f̂ j(z) through (18), generates the final value for the softmax-like layer
output.

z max(zk)
k +

+

...

+

simplified
ex LUT

simplified
ex LUT

+ simplified
ex LUT

f̂ j(z, p)

(17)
−m

(30)

zj

m1

mp

(b) Proposed softmax-like architecture. The notation ◦ denotes negation. Additional p terms
are added and subsequently each output f̂ j(z) through (30), generates the final value for the
softmax-like layer output.

Figure 2. Proposed softmax-like layer architecture. The circuit max(zk)
k

, k = 0, 1, . . . , n computes the

maximum value m of the input vector z = [z1 · · · zn]
T . Next m is subtracted by each zk, as described

in (17).

max(zk)
k

z0123

z01

z0 z1

z23

z2 z3

z4567

z45

z4 z5

z67

z6 z7

Figure 3. Tree structure for the computation of max(zk)
k

, k = 0, 1, . . . , 7. Notation zij denotes the

maximum of zi and zj while zijkl denotes the maximum of zij and zkl .

Figure 3. Tree structure for the computation of max(zk)
k

, k = 0, 1, . . . , 7. Notation zij denotes the

maximum of zi and zj while zijkl denotes the maximum of zij and zkl .

Technologies 2020, 8, 46 8 of 20

4. Quantitative Analysis of Introduced Error

This section quantitatively verifies the applicability of the approximation introduced in Section 2,
for certain applications, by means of a series of Examples.

In order to quantify the error introduced by the proposed architecture, the mean square error
(MSE) is evaluated as

MSE =
1
n ∑

(
f j(z)− f̂ j(z)

)2
, (37)

where f̂ j(z) and f j(z) are the expected and the actually evaluated softmax output, respectively.
As an illustrative example, denoted as Example 1, Figure 4 depicts the histograms of component

values in test vectors used as inputs to the proposed architecture, selected to have specific properties
detailed below. The corresponding parameters are evaluated by using the proposed architecture for the
case of a 10-bit fixed-point representation, where 5 bits are used for the integer and 5 bits are allocated
to the fractional part. More specifically, the vector in Figure 4a contains n = 30 values, for which it
holds that zj = 5, j = 1, . . . , 11, zj = 4.99, j = 12, . . . , 22 and zj = 5, j = 23, . . . , 30. For this case the
softmax values obtained by (1) are

f j (z) =





0.0343, j = 1, . . . , 11
0.0314, j = 12, . . . , 22
0.0347, j = 23, . . . , 30.

(38)

From a CNN perspective, the softmax layer output generates similar values, where possibilities are all
around 3%, and hence classification or decision cannot be made with high confidence. By using (18),
the modified softmax values are

f̂ j (z) =





0.9844, j = 1, . . . , 11
0.8906, j = 12, . . . , 22
1, j = 23, . . . , 30.

(39)

The statistical structure of the vector is characterized by the quantity Q
′
= 0.9946 of (15). The estimated

MSE = 0.8502 dictates that the particular vector is not suitable as an alternative to softmax input
in terms of CNN performance, i.e., the obtained classification is performed with low confidence.
Hence although the proposed approximation in (18) demonstrates large differences when compared to
(1), neither is applicable in CNN terms.

Consider the following Example 2. The component values for vector z in Example 2 are

zj =





3, j = 1
6, j = 2
4, j = 3
2, j = 4
< 1, j = 5, . . . , 30,

(40)

the histogram of which is shown in Figure 4b. In this case, the statistical structure of the vector
demonstrates Q

′
= 0.0449 and MSE = 0.0018. The feature of vector z in Example 2 is that it contains

three large different component values close to each other, namely z1 = 3, z2 = 6, z3 = 4, z4 = 2 and all
other components are smaller than 1. The softmax output in (1) for the values in the particular z are

f j (z) =





0.0382, j = 1
0.7675, j = 2
0.1039, j = 3
0.0141, j = 4
< 0.005, j = 5, . . . , 30.

(41)

Technologies 2020, 8, 46 9 of 20

By using the proposed approximation (18), the obtained modified softmax values are

f̂ j (z) =





0.0469, j = 1
1, j = 2
0.1250, j = 3
0.0156, j = 4
0, j = 5, . . . , 30.

(42)

Equations (41) and (42) show that the proposed architecture chooses component z2 with value 1
while the actual probability is 0.7675. This means that the introduced error of MSE = 0.0018 can be
negligible depending on the application, dictated by Q

′
= 0.0449� 1.

In the following, tests using vectors obtained from real CNN applications are considered.
More specifically, in an example shown in Figure 5, the vectors are obtained from image and digit
classification applications. In particular, Figure 5a,b depict the values used as input to the final softmax
layer, generated during a single inference for a VGG-16 imagenet image classification network for
1000 classes and a custom net for MNIST digit classification for 10 classes. Quantity Q

′
can be used

to determine whether the proposed architecture is appropriate for application on vector z before
evaluating the MSE. It is noted that MSE for the example of Figure 5a and MSE for the example of
Figure 5b are of the orders of 10−13 and 10−5, respectively which renders them as negligible.

Version August 12, 2020 submitted to Technologies 9 of 24

4.9 4.92 4.94 4.96 4.98 5

0

5

10

15

20

zj

nu
m

be
r

of
js

(a) Q
′
= 0.9946, MSE = 0.8502.

0 1 2 3 4 5 6

0

5

10

15

20

zj

nu
m

be
r

of
js

(b) Q
′
= 0.0449, MSE = 0.0018.

Figure 4. Values obtained from Examples 1 and 2.

−5 0 5 10 15

0

100

200

300

zj

nu
m

be
r

of
js

(a) Q
′

= 0.001,
MSE = 1.5205e− 05.

−15 −10 −5 0 5 10

0

1

2

3

zj

nu
m

be
r

of
js

(b) Q
′

= 0.1111,
MSE = 6.0841e− 13.

Figure 5. Values obtained from imagenet image classification for 1000 classes and a custom net for
MNIST digit classification for 10 classes.

By using the proposed approximation (18), the obtained modified softmax values are

f̂ j (z) =





0.0469, j = 1
1, j = 2
0.1250, j = 3
0.0156, j = 4
0, j = 5, . . . , 30.

(42)

Eqs. (41) and (42) show that the proposed architecture chooses component z2 with value 1 while124

the actual probability is 0.7675. This means that the introduced error of MSE = 0.0018, can be negligible,125

depending on the application, dictated by Q
′
= 0.0449� 1.126

In the following, tests using vectors obtained from real CNN applications are considered. More127

specifically, in an example shown in Fig. 5, the vectors are obtained from image and digit classification128

applications. In particular Figs. 5a and 5b depict the values used as input to the final softmax layer,129

generated during a single inference for a VGG-16 imagenet image classification network for 1000 classes130

and a custom net for MNIST digit classification for 10 classes. Quantity Q
′

can be used to determine131

whether the proposed architecture is appropriate for application on vector z before evaluating the132

MSE. It is noted that MSE for the example of Fig. 5a and MSE for the example of Fig. 5b are of the133

orders of 10−13 and 10−5, respectively which renders them as negligible.134

(a) (b)

Figure 4. Values obtained from Examples 1 and 2. (a) Q
′

= 0.9946, MSE = 0.8502. (b) Q
′

= 0.0449,
MSE = 0.0018.

Version August 12, 2020 submitted to Technologies 9 of 24

4.9 4.92 4.94 4.96 4.98 5

0

5

10

15

20

zj

nu
m

be
r

of
js

(a) Q
′
= 0.9946, MSE = 0.8502.

0 1 2 3 4 5 6

0

5

10

15

20

zj

nu
m

be
r

of
js

(b) Q
′
= 0.0449, MSE = 0.0018.

Figure 4. Values obtained from Examples 1 and 2.

−5 0 5 10 15

0

100

200

300

zj

nu
m

be
r

of
js

(a) Q
′

= 0.001,
MSE = 1.5205e− 05.

−15 −10 −5 0 5 10

0

1

2

3

zj

nu
m

be
r

of
js

(b) Q
′

= 0.1111,
MSE = 6.0841e− 13.

Figure 5. Values obtained from imagenet image classification for 1000 classes and a custom net for
MNIST digit classification for 10 classes.

By using the proposed approximation (18), the obtained modified softmax values are

f̂ j (z) =





0.0469, j = 1
1, j = 2
0.1250, j = 3
0.0156, j = 4
0, j = 5, . . . , 30.

(42)

Eqs. (41) and (42) show that the proposed architecture chooses component z2 with value 1 while124

the actual probability is 0.7675. This means that the introduced error of MSE = 0.0018, can be negligible,125

depending on the application, dictated by Q
′
= 0.0449� 1.126

In the following, tests using vectors obtained from real CNN applications are considered. More127

specifically, in an example shown in Fig. 5, the vectors are obtained from image and digit classification128

applications. In particular Figs. 5a and 5b depict the values used as input to the final softmax layer,129

generated during a single inference for a VGG-16 imagenet image classification network for 1000 classes130

and a custom net for MNIST digit classification for 10 classes. Quantity Q
′

can be used to determine131

whether the proposed architecture is appropriate for application on vector z before evaluating the132

MSE. It is noted that MSE for the example of Fig. 5a and MSE for the example of Fig. 5b are of the133

orders of 10−13 and 10−5, respectively which renders them as negligible.134

(a) (b)

Figure 5. Values obtained from imagenet image classification for 1000 classes and a custom net for
MNIST digit classification for 10 classes. (a) Q

′
= 0.001, MSE = 1.5205 × 10−5. (b) Q

′
= 0.1111,

MSE = 6.0841 × 10−13.

Technologies 2020, 8, 46 10 of 20

Subsequently, the proposed method is applied on the ResNet-50 [35], VGG-16, VGG-19 [36],
InceptionV3 [37] and MobileNetV2 [38] CNNs, for 1000 classes with 10000 inferences of a custom
image data set. In particular, for the case of ResNet-50, Figure 6a,b depict the histograms of the MSE
and Q

′
values, respectively. More specifically, Figure 6a demonstrates that the MSE values are of

magnitude 10−3 with 8828 of the values be in the interval[2.18× 10−28, 8.16× 10−4]. Furthermore,
Figure 6b shows that the Q

′
values are of magnitude 10−2 with 9096 of them be in the interval

[0, 0.00270]. Furthermore, Table 1a–e depict actual softmax and the proposed method softmax-like
values obtained by executing inference on the CNN models for six custom images. The values are
sorted from left to right with the maximum value on the left side. Furthermore, the inferences a . . . f and
a
′
. . . f

′
denote the same custom image as input to the model. More specifically, Table 1a demonstrates

values from six inferences for the ResNet-50 model. It is shown that for the case of inference a the
maximum obtained values are f1(z) = 0.75371140 and f̂1(z) = 1, for f j(z) and f̂ j(z), respectively.
Other values are f2(z) = 0.027212996, f3(z) = 0.018001331, f4(z) = 0.014599146, f5(z) = 0.014546203
and f̂2(z) = 0.03515625, f̂3(z) = 0.0234375, f̂4(z) = 0.0185546875, f̂1(z) = 0.0185546875, respectively.
Hence, as shown by colorally 1, the maximum takes the value ‘1’ and the remainder of the values
follow the values obtained by the actual softmax function. Similar analysis can be obtained for all the
inferences a . . . f and a

′
. . . f

′
for each one of the CNNs. Furthermore, the same class is outputted from

the CNN in both cases for each inference.
For the case of VGG-16, Figure 7a depicts the histogram of the MSE values. It is shown that

the values are of magnitude 10−3 and 8616 are in the interval [1.12× 10−34, 7.26× 10−4]. Figure 7b
demonstrates histogram for the Q

′
values with magnitude of 10−2 and more than 8978 values are in

the interval [0, 0.00247]. Table 1b demonstrates that in the case of the e and e
′

inference the top values
are 0.51182884 and 1, respectively. The second top values are 0.18920843 and 0.369140625, respectively.
In this case, the decision is made with a confidence of 0.51182884 for the actual softmax value and 1 for
the softmax-like value. Furthermore, the second top value is 0.369140625 which is not negligible when
compared to 1 and hence denotes that the selected class is of low confidence. The same conclusion
derives for the case of the actual softmax value. Furthermore, for the case of a− f and a∗− f ∗ inferences,
the values obtained by Figure 8b are close to the actual pdf softmax outputs. In particular, for the d
and d∗ cases, the top 5 values are 0.747070313, 0.10941570, 0.065981410, 0.018329350, 0.012467328 and
0.747070313, 0.110351563, 0.06640625, 0.017578125, 0.01171875, respectively. It is shown that values are
similar. Hence, depending the application, an alternative architecture, as shown in Figure 2b can be
used to generate pdf softmax values as outputs.

Version August 12, 2020 submitted to Technologies 10 of 24

0 2 4 6 8

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE
values.

0 0.5 1 1.5 2 2.5 3

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 6. Values obtained from imagenet image ResNet-50 net classification for 1000 classes.

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE
values.

0 0.5 1 1.5 2 2.5

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 7. Values obtained from imagenet image VGG-16 net classification for 1000 classes.

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE values.

0 0.5 1 1.5 2

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 8. Values obtained from imagenet image VGG-19 net classification for 1000 classes.

(a) (b)

Figure 6. Values obtained from imagenet image ResNet-50 net classification for 1000 classes.
(a) Histogram of the MSE values. (b) Histogram of the Q

′
values.

Moreover, Figure 8a,b depict graphically the values for the actual softmax and the proposed
softmax-like output for inferences A and B, respectively, for the case of the VGG-16 CNN for the output
classification. Furthermore, Figure 8c–f depict values for the architectures in Figure 2a,b, respectively.

Technologies 2020, 8, 46 11 of 20

It is shown that in the case of Figure 2a, the values demonstrate a similar structure. In case of Figure 2b,
values are similar to the actual softmax outputs.

Similar analysis can be performed for the case of VGG-19. In particular, Figure 9a demonstrates
that MSE is of magnitude 10−3 and 8351 of which are in the interval [2.49 × 10−34, 6.91 × 10−4].
In Figure 9b 8380 values are in the interval [0, 0.00192]. For the case of InceptionV3, histograms
in Figure 10a,b demonstrate MSE and Q

′
values the 9194 and 9463 of which are in the intervals

[2.62× 10−25, 7.08× 10−4] and [0, 0.003], respectively. For the MobileNetV2 network, Figure 11a,b
demonstrate MSE and Q

′
values the 8990 and 9103 of which are in the intervals [2.48 × 10−25,

1.05× 10−3] and [1.55× 10−7, 0.004], respectively. Furthermore, Table 1c–e derive similar conclusions
as in the case of VGG-16.

Version August 12, 2020 submitted to Technologies 10 of 24

0 2 4 6 8

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE
values.

0 0.5 1 1.5 2 2.5 3

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 6. Values obtained from imagenet image ResNet-50 net classification for 1000 classes.

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE
values.

0 0.5 1 1.5 2 2.5

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 7. Values obtained from imagenet image VGG-16 net classification for 1000 classes.

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE values.

0 0.5 1 1.5 2

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 8. Values obtained from imagenet image VGG-19 net classification for 1000 classes.

(a) (b)

Figure 7. Values obtained from imagenet image VGG-16 net classification for 1000 classes. (a) Histogram
of the MSE values. (b) Histogram of the Q

′
values.

Version August 12, 2020 submitted to Technologies 11 of 24

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values
nu

m
be

r
of

in
fe

re
nc

es

(a) Histogram of the MSE values.

0 0.5 1 1.5 2 2.5 3

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 9. Values obtained from imagenet image inceptionV3 net classification for 1000 classes.

0 0.2 0.4 0.6 0.8 1

·10−2

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE values.

0 1 2 3 4

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 10. Values obtained from imagenet image MobileNetV2 net classification for 1000 classes.

0 200 400 600 800 1,000

0

0.1

0.2

0.3

0.4

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(a) Actual softmax values for
inference A.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(b) Actual softmax values for
inference B.

(a) (b)

Version August 12, 2020 submitted to Technologies 12 of 24

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(c) Proposed approximation
softmax values for inference A
based on architecture of Fig. 2a
and (18).

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(d) Proposed approximation
softmax values for inference B
based on architecture of Fig. 2a
and (18).

0 200 400 600 800 1,000

0

0.1

0.2

0.3

0.4

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(e) Proposed approximation
softmax values for inference A
based on architecture of Fig. 2b
and (30) with p = 10.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

16

(f) Proposed approximation
softmax values for inference B
based on architecture of Fig. 2b
and (30) with p = 10.

Figure 11. Actual and proposed approximation softmax values for two inferences namely A and B, for
the VGG-16 CNN.

(c) (d)

Figure 8. Cont.

Technologies 2020, 8, 46 12 of 20

Version August 12, 2020 submitted to Technologies 12 of 24

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(c) Proposed approximation
softmax values for inference A
based on architecture of Fig. 2a
and (18).

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(d) Proposed approximation
softmax values for inference B
based on architecture of Fig. 2a
and (18).

0 200 400 600 800 1,000

0

0.1

0.2

0.3

0.4

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(e) Proposed approximation
softmax values for inference A
based on architecture of Fig. 2b
and (30) with p = 10.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

16

(f) Proposed approximation
softmax values for inference B
based on architecture of Fig. 2b
and (30) with p = 10.

Figure 11. Actual and proposed approximation softmax values for two inferences namely A and B, for
the VGG-16 CNN.

(e) (f)

Figure 8. Actual and proposed approximation softmax values for two inferences, namely A and B,
for the VGG-16 CNN. (a) Actual softmax values for inference A. (b) Actual softmax values for inference
B. (c) Proposed approximation softmax values for inference A based on architecture of Figure 2a
and (18). (d) Proposed approximation softmax values for inference B based on architecture of Figure 2a
and (18). (e) Proposed approximation softmax values for inference A based on architecture of Figure 2b
and (30) with p = 10. (f) Proposed approximation softmax values for inference B based on architecture
of Figure 2b and (30) with p = 10.

Version August 12, 2020 submitted to Technologies 10 of 24

0 2 4 6 8

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE
values.

0 0.5 1 1.5 2 2.5 3

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 6. Values obtained from imagenet image ResNet-50 net classification for 1000 classes.

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE
values.

0 0.5 1 1.5 2 2.5

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 7. Values obtained from imagenet image VGG-16 net classification for 1000 classes.

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE values.

0 0.5 1 1.5 2

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q
′

values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 8. Values obtained from imagenet image VGG-19 net classification for 1000 classes.

(a) (b)

Figure 9. Values obtained from imagenet image VGG-19 net classification for 1000 classes. (a) Histogram
of the MSE values. (b) Histogram of the Q

′
values.

Version August 12, 2020 submitted to Technologies 11 of 24

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE values.

0 0.5 1 1.5 2 2.5 3

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 9. Values obtained from imagenet image inceptionV3 net classification for 1000 classes.

0 0.2 0.4 0.6 0.8 1

·10−2

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE values.

0 1 2 3 4

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 10. Values obtained from imagenet image MobileNetV2 net classification for 1000 classes.

0 200 400 600 800 1,000

0

0.1

0.2

0.3

0.4

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(a) Actual softmax values for
inference A.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(b) Actual softmax values for
inference B.

(a) (b)

Figure 10. Values obtained from imagenet image inceptionV3 net classification for 1000 classes.
(a) Histogram of the MSE values. (b) Histogram of the Q

′
values.

Technologies 2020, 8, 46 13 of 20

In general, in all cases identical output decisions are obtained for the actual softmax and the
softmax-like output layer for each one of the CNNs.

Version August 12, 2020 submitted to Technologies 11 of 24

0 2 4 6

·10−3

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE values.

0 0.5 1 1.5 2 2.5 3

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 9. Values obtained from imagenet image inceptionV3 net classification for 1000 classes.

0 0.2 0.4 0.6 0.8 1

·10−2

0

0.2

0.4

0.6

0.8

1
·104

MSE values

nu
m

be
r

of
in

fe
re

nc
es

(a) Histogram of the MSE values.

0 1 2 3 4

·10−2

0

0.2

0.4

0.6

0.8

1
·104

Q values

nu
m

be
r

of
in

fe
re

nc
es

(b) Histogram of the Q
′

values.

Figure 10. Values obtained from imagenet image MobileNetV2 net classification for 1000 classes.

0 200 400 600 800 1,000

0

0.1

0.2

0.3

0.4

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(a) Actual softmax values for
inference A.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Classes

So
ft

m
ax

va
lu

e
fo

r
V

G
G

-1
6

(b) Actual softmax values for
inference B.

(a) (b)

Figure 11. Values obtained from imagenet image MobileNetV2 net classification for 1000 classes.
(a) Histogram of the MSE values. (b) Histogram of the Q

′
values.

Considering the impact of the data wordlegth representation, let (l, k) denote the fixed-point
representation of a number with l integral and k fractional bits. Figure 12a,b depict histograms for the
MSE values obtained for the case of 1000 inferences by the VGG-16 CNN. It is shown that the case
w = (6, 2) demonstrates the smaller MSE values. The reason for this is that the maximum value of the
inputs in the softmax layer is 56 for all the 1000 inferences, and hence the value of 6 for the integral
part is sufficient.

Version August 12, 2020 submitted to Technologies 19 of 24

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1
0

200

400

600

800

MSE values

in
fe

re
nc

e
nu

m
be

r

w=(3,2)
w=(4,2)

(a) Histograms for the MSE values for (3,2) and (4,2) data
wordlength.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

·10−3

0

100

200

300

400

500

600

MSE values

in
fe

re
nc

e
nu

m
be

r

w=(5,2)
w=(6,2)

(b) Histograms for the MSE values for (5,2) and (6,2) data
wordlength.

Figure 14. Histograms for the MSE values for various data wordlengths for the case of 1000 inferences
in the VGG-16 CNN.

(a)

Version August 12, 2020 submitted to Technologies 19 of 24

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1
0

200

400

600

800

MSE values

in
fe

re
nc

e
nu

m
be

r

w=(3,2)
w=(4,2)

(a) Histograms for the MSE values for (3,2) and (4,2) data
wordlength.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

·10−3

0

100

200

300

400

500

600

MSE values

in
fe

re
nc

e
nu

m
be

r

w=(5,2)
w=(6,2)

(b) Histograms for the MSE values for (5,2) and (6,2) data
wordlength.

Figure 14. Histograms for the MSE values for various data wordlengths for the case of 1000 inferences
in the VGG-16 CNN.

(b)

Figure 12. Histograms for the MSE values for various data wordlengths for the case of 1000 inferences
in the VGG-16 CNN. (a) Histograms for the MSE values for (3, 2) and (4, 2) data wordlength.
(b) Histograms for the MSE values for (5, 2) and (6, 2) data wordlength.

Technologies 2020, 8, 46 14 of 20

Summarizing, it is shown that the proposed architecture suits well for the final stage of a CNN
network as an alternative to implementing the softmax layer stage, since the MSE is negligible. Next,
the proposed architecture is implemented in hardware and compared with published counterparts.

Table 1. Top-5 softmax values for six indicative inferences for each model. The actual softmax values
and the proposed method values are obtained by (1) and (18), respectively. For the VGG-16 CNN,
values obtained by (30) are also presented.

(a) ResNet-50.

Inference Top-5 Softmax Values

(1)

a 0.75371140 0.027212996 0.018001331 0.014599146 0.014546203
b 0.99992204 4.0420113× 10−5 8.1600538× 10−6 5.8431901× 10−6 2.5279753× 10−6

c 0.36263093 0.13568024 0.090758167 0.063106202 0.061747193
d 0.93937486 0.011548955 0.010892190 0.0068663955 0.0043140189
e 0.98696542 0.0090351542 0.0010830049 0.00068612932 0.00025251327
f 0.99833566 0.0015795525 4.6098357× 10−5 2.2146454× 10−5 1.0724646× 10−5

(18)

a
′

1 0.03515625 0.0234375 0.0185546875 0.0185546875
b
′

1 0 0 0 0
c
′

1 0.3740234375 0.25 0.173828125 0.169921875
d
′

1 0.01171875 0.0107421875 0.0068359375 0.00390625
e
′

1 0.0087890625 0.0009765625 0 0
f
′

1 0.0009765625 0 0 0

(b) VGG-16.

Inference Top-5 Softmax Values

(1)

a 0.99999309 2.3484120× 10−6 9.8677640× 10−7 4.2830493× 10−7 3.1285174× 10−7

b 0.99389344 0.0014656042 0.00072381413 0.00062438881 0.00028156079
c 0.94363135 0.022138771 0.0087750498 0.0048798379 0.0047590565
d 0.73901427 0.10941570 0.065981410 0.018329350 0.012467328
e 0.51182884 0.18920843 0.10042682 0.055410255 0.030226296
f 0.59114474 0.40821150 0.00043615574 0.00017272410 1.3683101× 10−5

(18)

a
′

1 0 0 0 0
b
′

1 0.0009765625 0 0 0
c
′

1 0.0234375 0.0087890625 0.0048828125 0.0048828125
d
′

1 0.1474609375 0.0888671875 0.0244140625 0.0166015625
e
′

1 0.369140625 0.1962890625 0.107421875 0.05859375
f
′

1 0.6904296875 0 0 0

(30)

a∗ 0.999023438 0 0 0 0
b∗ 0.99609375 0.000976563 0 0 0
c∗ 0.954101563 0.021484375 0.008789063 0.004882813 0.00390625
d∗ 0.747070313 0.110351563 0.06640625 0.017578125 0.01171875
e∗ 0.456054688 0.16796875 0.088867188 0.048828125 0.026367188
f ∗ 0.5 0.345703125 0 0 0

Technologies 2020, 8, 46 15 of 20

(c) VGG-19.

Inference Top-5 Softmax Values

(1)

a 0.99204987 0.0035423702 0.0018605839 0.00044701522 0.00035935538
b 0.99999964 2.9884677× 10−7 1.5874324× 10−11 1.5047866× 10−11 9.9192204× 10−13

c 0.99405837 0.0013178071 0.00071631809 0.00040839455 0.00027133274
d 0.19257018 0.12952097 0.12107860 0.10589719 0.074582554
e 0.99603385 0.0014963613 0.0010812994 0.00024322474 0.00015848021
f 0.74559504 0.15503055 0.010651816 0.0081892628 0.0075844983

(18)

a
′

1 0.0029296875 0.0009765625 0 0
b
′

1 0 0 0 0
c
′

1 0.0009765625 0 0 0
d
′

1 0.671875 0.6279296875 0.548828125 0.38671875
e
′

1 0.0009765625 0.0009765625 0 0
f
′

1 0.20703125 0.013671875 0.0107421875 0.009765625

(d) InceptionV3.

Inference Top-5 Softmax Values

(1)

a 0.98136926 0.00067191740 0.00022632803 0.00020886297 0.00018680355
b 0.52392030 0.17270486 0.12838276 0.0024479097 0.0017230138
c 0.61721277 0.042022489 0.038270507 0.011870607 0.0036431390
d 0.96187764 0.0011140818 0.00084153039 0.00069097377 0.00045776321
e 0.99643219 0.00058087677 0.00015713122 5.3965716× 10−5 4.0285959× 10−5

f 0.45723280 0.41415739 0.00078048115 0.00071852183 0.00068869896

(18)

a
′

1 0 0 0 0
b
′

1 0.3291015625 0.244140625 0.00390625 0.0029296875
c
′

1 0.0673828125 0.0615234375 0.0185546875 0.005859375
d
′

1 0.0009765625 0 0 0
e
′

1 0 0 0 0
f
′

1 0.9052734375 0.0009765625 0.0009765625 0.0009765625

(e) MobileNetV2.

Inference Top-5 Softmax Values

(1)

a 0.81305408 0.014405688 0.012406061 0.0091119893 0.0077789603
b 0.95702046 0.0042284634 0.0040278519 0.0020813416 0.00098748843
c 0.49231452 0.022776684 0.020905942 0.018753875 0.018386556
d 0.60401917 0.29827181 0.015593613 0.010511264 0.0038427035
e 0.97501647 0.0032496843 0.0014790110 0.0008857667 0.00076536590
f 0.87092900 0.022609057 0.0044059716 0.0023696721 0.0014177967

(18)

a
′

1 0.017578125 0.0146484375 0.0107421875 0.0087890625
b
′

1 0.00390625 0.00390625 0.001953125 0.0009765625
c
′

1 0.0458984375 0.0419921875 0.0380859375 0.037109375
d
′

1 0.4931640625 0.025390625 0.0166015625 0.005859375
e
′

1 0.0029296875 0.0009765625 0 0
f
′

1 0.025390625 0.0048828125 0.001953125 0.0009765625

Technologies 2020, 8, 46 16 of 20

5. Hardware Implementation Results

This section describes implementation results obtained by synthesizing the proposed architecture
outlined in Figure 2. Among several authors reporting results on CNN accelerators, [22–24] have
recently published works focusing on hardware implementation of the softmax function. In particular,
in [23], a study based on stochastic computation is presented. Geng et al. provide a framework for
the design and optimization of softmax implementation in hardware [26]. They also discuss operand
bit-width minimization, taking into account application accuracy constraints. Du et al. propose
a hardware architecture that derives the softmax function without a divider [25]. The appproach
relies on an equivalent softmax expression which requires natural logarithms and exponentials.
They provide detailed evaluation of the impact of the particular implementation on several benchmarks.
Li et al. describe a 16-bit fixed-point hardware implementation of the softmax function [27]. They use
a combination of look-up tables and multi-segment linear approximations for the approximation
of exponentials and a radix-4 Booth–Wallace-based 6-stage pipeline multiplier and modified
shift-compare divider.

In [24], the architecture demonstrates LUT-based computations that add complexity and exhibits
444,858 µm2 area complexity by using 65-nm standard-cell library. For the same library the architecture
in [25] reports 640,000 µm2 area complexity with 0.8 µw power consumption at a 500 MHz clock
frequency. The architecture in [28] reports 104,526 µm2 area complexity with 4.24 µw power
consumption at a 1 GHz clock frequency. The proposed architecture in [26] demonstrates power
consumption and area complexity of 1.8 µw and 3000 µm2, respectively at a 500 MHz clock frequency
with UMC 65 nm standard cell library. In [27], it is reported 3.3 GHz and 34,348 µm2 frequency and
area complexity at 45 nm technology node. Yuan [22] presented an architecture for implementing
the softmax layer. Nevertheless there is no discussion of the implementation of the LUTs and there
are no synthesis results. Our proposed softmax-like function differs from the actual softmax function
due to the approximation of the quantity log

(
(n− 1)Q

′
+ 1
)

, as discussed in Section 3. In particular,
(18) approximates the softmax output as a decision making application and not as a pdf function.
The proposed softmax-like function in (30) approximates outputs as pdf function, depending on
the number of p terms used. As p → n, (30)→ actual softmax function. The hardware complexity
reduction derives from the fact that a limited number, p, of zis contribute to the computation of the
softmax function. Summarizing, we compare both architectures depicted in Figure 2a,b with [22] to
quantify the impact of p on the hardware complexity. Section 4 shows that the softmax-like function
suits well in a CNN. For a fair comparison we have implemented and synthesized both architectures,
our proposed and [22], by using a 90 nm 1.0 V CMOS standard-cell library with Synopsys Design
Compiler [39].

Figure 13 depicts the architecture obtained from synthesis where the various building blocks,
namely maximum evaluation, subtractor and the simplified exponential LUTs that perform in parallel,
are shown. Furthermore registers have been added at the circuits inputs and outputs for applying
the delay constraints. Detailed results are depicted in Table 2a–c for the proposed softmax-like
of Figure 2a, the [22] and the proposed softmax-like of Figure 2b layer with size 10, respectively.
Furthermore, results are plotted graphically in Figure 14a,b where area vs. delay and power vs.
delay are depicted, respectively. Results demonstrate that substantially area savings are achieved
with no delay penalty. More specifically, for a 4 ns delay constraint the area complexity is 25,597 µm2

and 43,576 µm2 in case of architectures in Figure 2b and [22], respectively. For the case where the
pdf output is not significant, the area complexity reduction can be 17,293 µm2 for the architecture
on Figure 2a. Summarizing, depending on the application and the design constraints there is a
trade-off between the additional p terms used for the evaluation of the softmax output. As we increase
the value of the parameter p, then the actual softmax value is better approximated while hardware
complexity increases. When p = 1, then the hardware complexity is minimized while softmax output
approximation diverges.

Technologies 2020, 8, 46 17 of 20

Version August 12, 2020 submitted to Technologies 17 of 24

flipflopi_0

flipflopi_0_0

flipflopi_1

flipflopi_1_0

flipflopi_2

flipflopi_2_0

flipflopi_3

flipflopi_3_0

flipflopi_4

flipflopi_4_0

flipflopi_5

flipflopi_5_0

flipflopi_6

flipflopi_6_0

flipflopi_7

flipflopi_7_0

flipflopi_8

flipflopi_8_0

flipflopi_9

flipflopi_9_0
max1

...xi_0

...xi_1

...xi_2

...xi_3

...xi_4

...xi_5

...xi_6

...xi_7

...xi_8

...xi_9

sub_50

sub_50_G10

sub_50_G2

sub_50_G3

sub_50_G4

sub_50_G5

sub_50_G6

sub_50_G7

sub_50_G8

sub_50_G9

reset

clk

10 nets(a[0][9],...)

10 nets(a[1][9],...)

10 nets(a[2][9],...)

10 nets(a[3][9],...)

10 nets(a[4][9],...)

10 nets(a[5][9],...)

10 nets(a[6][9],...)

10 nets(a[7][9],...)

10 nets(a[8][9],...)

10 nets(a[9][9],...)

clk

reset

100 pins(a1...

100 pins(g1...

output
register

input
register

Maximum
evaluation

Subtractor

Simplified
Exponential
LUT

Figure 12. Proposed architecture obtained by synthesis.

area complexity reduction can be 17293 µm2 for the architecture on Fig. 2a. Summarizing, depending234

on the application and the design constraints there is a trade-off between the additional p terms used235

for the evaluation of the softmax output. As we increase the value of the parameter p then the actual236

softmax value is better approximated while hardware complexity increases. When p = 1, then the237

hardware complexity is minimized while softmax output approximation diverges.238

6. Conclusions239

This paper proposes hardware architectures for implementing the softmax layer in a CNN with240

substantially reduced reduction in area× delay and power× delay product, respectively, for certain241

cases. A family of architectures that can approximate the softmax function have been introduced242

and evaluated, each member of which is obtained through a design parameter p, which controls the243

number of terms employed for the approximation. It is found that a very simple approximation using244

p = 1, suffices to deliver accurate results in certain cases, even though the derived approximation is not245

a pdf. Furthermore, it has been demonstrated that for image and digit classification applications, the246

proposed architecture suits ideally as it achieves an MSE of the order of 10−13 and 10−5, respectively,247

which are considered low.248

References249

1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.250

2. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press, 2016. http://www.deeplearningbook.251

org.252

3. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and253

semantic segmentation. CoRR 2013, abs/1311.2524, [1311.2524].254

4. Carreras, M.; Deriu, G.; Meloni, P. Flexible Acceleration of Convolutions on FPGAs: NEURAghe 2.0. CPS255

Summer School, PhD Workshop, 2019.256

5. Zainab, M.; Usmani, A.R.; Mehrban, S.; Hussain, M. FPGA Based Implementations of RNN and CNN:257

A Brief Analysis. 2019 International Conference on Innovative Computing (ICIC), 2019, pp. 1–8.258

doi:10.1109/ICIC48496.2019.8966676.259

Figure 13. Proposed architecture obtained by synthesis.

Table 2. Area, delay and power consumption for the 10-class softmax layer output of a convolutional
neural network (CNN).

(a) Architecture of Figure 2a.

Delay (ns) Area (µm2) Power (µw)

2.93 16,891 1611.6
3.43 17,293 1423.7
3.95 15,550 1070.5
4.42 15,788 936.8
4.94 15,084 812.4
5.47 15,349 503.5

(b) Architecture in [22].

Delay (ns) Area (µm2) Power (µw)

3.99 43,576 3228.2
5.19 32,968 1695.1
6.45 25,445 871.8
7.95 26,358 714.4
9.44 25,846 624.9
10.41 26,154 570.2

(c) Architecture of Figure 2b with
p = 5.

Delay (ns) Area (µm2) Power (µw)

3.42 27,615 1933.2
3.92 25,597 1576.3
4.91 23,654 1216.4
5.42 21,458 1050.6
6.45 20,251 838.6
7.94 20,147 636.1

Technologies 2020, 8, 46 18 of 20

(a) (b)

Figure 14. Area, delay and power complexity plots for a softmax layer of size 10, for the proposed
and [22] circuits in the case of 10-bit wordlength implemented in a standard-cell library. A, B and C in
the legends denote architectures in Figure 2a, Figure 2b and [22], respectively. (a) Area vs. delay plot.
(b) Power vs. delay plot.

6. Conclusions

This paper proposes hardware architectures for implementing the softmax layer in a CNN with
substantially reduced reduction in area× delay and power× delay product, respectively, for certain
cases. A family of architectures that can approximate the softmax function have been introduced
and evaluated, each member of which is obtained through a design parameter p, which controls the
number of terms employed for the approximation. It is found that a very simple approximation using
p = 1, suffices to deliver accurate results in certain cases, even though the derived approximation is
not a pdf. Furthermore, it has been demonstrated that for image and digit classification applications,
the proposed architecture suits ideally as it achieves MSEs of the order of 10−13 and 10−5, respectively,
which are considered low.

Author Contributions: All authors contributed equally. All authors have read and agreed to the published verion
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
2. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

Available online: http://www.deeplearningbook.org (accessed on 27 August 2020).
3. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014.

4. Carreras, M.; Deriu, G.; Meloni, P. Flexible Acceleration of Convolutions on FPGAs: NEURAghe 2.0;
Ph.D. Workshop; CPS Summer School: Alghero, Italy, 23 September 2019.

5. Zainab, M.; Usmani, A.R.; Mehrban, S.; Hussain, M. FPGA Based Implementations of RNN and CNN:
A Brief Analysis. In Proceedings of the 2019 International Conference on Innovative Computing (ICIC),
Lahore, Pakistan, 1–2 November 2019; pp. 1–8. [CrossRef]

6. Sim, J.; Lee, S.; Kim, L. An Energy-Efficient Deep Convolutional Neural Network Inference Processor with
Enhanced Output Stationary Dataflow in 65-nm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020,
28, 87–100. [CrossRef]

7. Hareth, S.; Mostafa, H.; Shehata, K.A. Low power CNN hardware FPGA implementation. In Proceedings
of the 2019 31st International Conference on Microelectronics (ICM), Cairo, Egypt, 15–18 December 2019;
pp. 162–165. [CrossRef]

http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/ICIC48496.2019.8966676
http://dx.doi.org/10.1109/TVLSI.2019.2935251
http://dx.doi.org/10.1109/ICM48031.2019.9021904

Technologies 2020, 8, 46 19 of 20

8. Zhang, S.; Cao, J.; Zhang, Q.; Zhang, Q.; Zhang, Y.; Wang, Y. An FPGA-Based Reconfigurable CNN
Accelerator for YOLO. In Proceedings of the 2020 IEEE 3rd International Conference on Electronics
Technology (ICET), Chengdu, China, 8–12 May 2020; pp. 74–78.

9. Tian, T.; Jin, X.; Zhao, L.; Wang, X.; Wang, J.; Wu, W. Exploration of Memory Access Optimization for
FPGA-based 3D CNN Accelerator. In Proceedings of the 2020 Design, Automation Test in Europe Conference
Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 1650–1655.

10. Nakahara, H.; Que, Z.; Luk, W. High-Throughput Convolutional Neural Network on an FPGA by
Customized JPEG Compression. In Proceedings of the 2020 IEEE 28th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), Fayetteville, AR, USA, 3–6 May 2020; pp. 1–9.

11. Shahan, K.A.; Sheeba Rani, J. FPGA based convolution and memory architecture for Convolutional
Neural Network. In Proceedings of the 2020 33rd International Conference on VLSI Design and 2020 19th
International Conference on Embedded Systems (VLSID), Bangalore, India, 4–8 January 2020; pp. 183–188.

12. Shan, J.; Lazarescu, M.T.; Cortadella, J.; Lavagno, L.; Casu, M.R. Power-Optimal Mapping of CNN
Applications to Cloud-Based Multi-FPGA Platforms. IEEE Trans. Circuits Syst. II: Express Briefs 2020, 1.
[CrossRef]

13. Zhang, W.; Liao, X.; Jin, H. Fine-grained Scheduling in FPGA-Based Convolutional Neural Networks.
In Proceedings of the 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics
(ICCCBDA), Chengdu, China, 10–13 April 2020; pp. 120–128.

14. Zhang, M.; Li, L.; Wang, H.; Liu, Y.; Qin, H.; Zhao, W. Optimized Compression for Implementing
Convolutional Neural Networks on FPGA. Electronics 2019, 8, 295. [CrossRef]

15. Wang, D.; Shen, J.; Wen, M.; Zhang, C. Efficient Implementation of 2D and 3D Sparse Deconvolutional
Neural Networks with a Uniform Architecture on FPGAs. Electronics 2019, 8, 803. [CrossRef]

16. Bank-Tavakoli, E.; Ghasemzadeh, S.A.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. POLAR: A Pipelined/
Overlapped FPGA-Based LSTM Accelerator. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 838–842.
[CrossRef]

17. Xiang, L.; Lu, S.; Wang, X.; Liu, H.; Pang, W.; Yu, H. Implementation of LSTM Accelerator for Speech
Keywords Recognition. In Proceedings of the 2019 IEEE 4th International Conference on Integrated Circuits
and Microsystems (ICICM), Beijing, China, 25–27 October 2019; pp. 195–198. [CrossRef]

18. Azari, E.; Vrudhula, S. An Energy-Efficient Reconfigurable LSTM Accelerator for Natural Language
Processing. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles,
CA, USA, 9–12 December 2019; pp. 4450–4459. [CrossRef]

19. Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka, I.; Grabska-Barwinska, A.; Colmenarejo, S.G.;
Grefenstette, E.; Ramalho, T.; Agapiou, J.; et al. Hybrid computing using a neural network with dynamic
external memory. Nature 2016, 538, 471–476. [CrossRef] [PubMed]

20. Graves, A.; Wayne, G.; Danihelka, I. Neural Turing Machines. arXiv 2014, arXiv:1410.5401.
21. Olah, C.; Carter, S. Attention and Augmented Recurrent Neural Networks. Distill 2016. [CrossRef]
22. Yuan, B. Efficient hardware architecture of softmax layer in deep neural network. In Proceedings of the

2016 29th IEEE International System-on-Chip Conference (SOCC), Seattle, WA, USA, 6–9 September 2016;
pp. 323–326. [CrossRef]

23. Hu, R.; Tian, B.; Yin, S.; Wei, S. Efficient Hardware Architecture of Softmax Layer in Deep Neural Network.
In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai,
China, 19–21 November 2018; pp. 1–5. [CrossRef]

24. Sun, Q.; Di, Z.; Lv, Z.; Song, F.; Xiang, Q.; Feng, Q.; Fan, Y.; Yu, X.; Wang, W. A High Speed SoftMax
VLSI Architecture Based on Basic-Split. In Proceedings of the 2018 14th IEEE International Conference on
Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018;
pp. 1–3. [CrossRef]

25. Du, G.; Tian, C.; Li, Z.; Zhang, D.; Yin, Y.; Ouyang, Y. Efficient Softmax Hardware Architecture for Deep
Neural Networks. In Proceedings of the 2019 on Great Lakes Symposium on VLSI, Tysons Corner, VA, USA,
9–11 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 75–80. [CrossRef]

http://dx.doi.org/10.1109/TCSII.2020.2998284.
http://dx.doi.org/10.3390/electronics8030295
http://dx.doi.org/10.3390/electronics8070803
http://dx.doi.org/10.1109/TVLSI.2019.2947639
http://dx.doi.org/10.1109/ICICM48536.2019.8977176
http://dx.doi.org/10.1109/BigData47090.2019.9006030
http://dx.doi.org/10.1038/nature20101
http://www.ncbi.nlm.nih.gov/pubmed/27732574
http://dx.doi.org/10.23915/distill.00001
http://dx.doi.org/10.1109/SOCC.2016.7905501
http://dx.doi.org/10.1109/ICDSP.2018.8631588
http://dx.doi.org/10.1109/ICSICT.2018.8565706
http://dx.doi.org/10.1145/3299874.3317988

Technologies 2020, 8, 46 20 of 20

26. Geng, X.; Lin, J.; Zhao, B.; Kong, A.; Aly, M.M.S.; Chandrasekhar, V. Hardware-Aware Softmax
Approximation for Deep Neural Networks. In Lecture Notes in Computer Science, Proceedings of the Efficient
Hardware Architecture of Softmax Layer in Deep Neural NetworkComputer Vision-ACCV 2018-14th Asian Conference
on Computer Vision, Perth, Australia, 2–6 December 2018; Revised Selected Papers, Part IV; Jawahar, C.V., Li,
H., Mori, G., Schindler, K., Eds.; Springer: Cham, Switzerland, 2018; Volume 11364, pp. 107–122. [CrossRef]

27. Li, Z.; Li, H.; Jiang, X.; Chen, B.; Zhang, Y.; Du, G. Efficient FPGA Implementation of Softmax Function for
DNN Applications. In Proceedings of the 2018 12th IEEE International Conference on Anti-counterfeiting,
Security, and Identification (ASID), Xiamen, China, 9–11 November 2018; pp. 212–216.

28. Alabassy, B.; Safar, M.; El-Kharashi, M.W. A High-Accuracy Implementation for Softmax Layer in Deep
Neural Networks. In Proceedings of the 2020 15th Design Technology of Integrated Systems in Nanoscale
Era (DTIS), Marrakech, Morocco, 1–3 April 2020; pp. 1–6.

29. Dukhan, M.; Ablavatski, A. The Two-Pass Softmax Algorithm. arXiv 2020, arXiv:2001.04438.
30. Wei, Z.; Arora, A.; Patel, P.; John, L.K. Design Space Exploration for Softmax Implementations. In Proceedings

of the 31st IEEE International Conference on Application-specific Systems, Architectures and Processors
(ASAP), Manchester, UK, 6–8 July 2020.

31. Kouretas, I.; Paliouras, V. Simplified Hardware Implementation of the Softmax Activation Function.
In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies
(MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [CrossRef]

32. Hertz, E.; Nilsson, P. Parabolic synthesis methodology implemented on the sine function. In Proceedings
of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009;
pp. 253–256. [CrossRef]

33. Yuan, W.; Xu, Z. FPGA based implementation of low-latency floating-point exponential function.
In Proceedings of the IET International Conference on Smart and Sustainable City 2013 (ICSSC 2013),
Shanghai, China, 19–20 August 2013; pp. 226–229. [CrossRef]

34. Tang, P.T.P. Table-lookup algorithms for elementary functions and their error analysis. In Proceedings of the
10th IEEE Symposium on Computer Arithmetic, Grenoble, France, 26–28 June 1991; pp. 232–236. [CrossRef]

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

36. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

37. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016.

38. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [CrossRef]

39. Synopsys. Available online: https://www.synopsys.com (accessed on 27 August 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-030-20870-7_7
http://dx.doi.org/10.1109/MOCAST.2019.8741677
http://dx.doi.org/10.1109/ISCAS.2009.5117733
http://dx.doi.org/10.1049/cp.2013.2022
http://dx.doi.org/10.1109/ARITH.1991.145565
http://dx.doi.org/10.1109/CVPR.2018.00474
https://www.synopsys.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Softmax Layer Review
	Proposed Softmax Architecture
	Quantitative Analysis of Introduced Error
	Hardware Implementation Results
	Conclusions
	References

