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Abstract: Today, the current trends of manufacturing are towards the adaptation and implementation
of smart manufacturing, which is a new initiative to turn the traditional factories into profitable
innovation facilities. However, the concept and technologies are still in a state of infancy,
since many manufacturers around the world are not fully knowledgeable about the benefits of
smart manufacturing compared to their current practices. This article reviews several aspects of smart
manufacturing and introduces its advantages in terms of energy-saving and production efficiency.
This article also points out that some areas need further research so that smart manufacturing can be
shaped better.

Keywords: smart manufacturing; energy; cyber-physical system; data analytics; Industrial
Internet-of-Things; artificial intelligence; additive manufacturing; robotics

1. Introduction

1.1. Introduction to Smart Manufacturing

Smart manufacturing (SM) is a production system integrated by multiple subsystems for data
exchange, through an interconnected network. It allows production to change quickly based on a
more complex array of factors. Through data analysis and decision-making, the process can be better
tailored to meet the requirements of production, affording the user better control of the quality and
superior optimization in the overall process.

In 2015, SM was first defined in the United States in Congressional Bill S.1054 as “a set of
advanced sensing, instrumentation, monitoring, controls, and process optimization technologies and
practices that merge information and communication technologies with the manufacturing environment
for the real-time management of energy, productivity, and costs across factories and companies” [1].
The National Institute of Standards and Technology (NIST) defines SM as “fully-integrated, collaborative
manufacturing systems that respond in real-time to meet changing demands and conditions in the
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factory, in the supply network, and in customer needs” [2]. As represented in Figure 1, SM is the
combination of advanced technologies in an interconnected manner to improve efficiency.
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Figure 1. Representation of the combined technologies, such as Internet of Things (IoT), Big Data,
Additive Manufacturing (AM), Artificial Intelligence (AI), Cyber Physical Systems (CPSs), and robotic
technologies included in SM.

In 2010, China, for the first time, surpassed the United States as the world’s largest manufacturer,
and according to current data, continues to widen its lead [3]. Furthermore, China takes the global
lead in its push towards industrial robotics built with artificial intelligence (AI) and places SM as a
priority for its growth in China’s industrial policy named “Made in China 2025”, as stated by China’s
President Xi Jinping [4]. In the following years, the European Union and Germany adopted plans
that largely rely on SM technologies to increase their national manufacturing production, and as a
result, the new term “Industry 4.0” emerged to define the fourth generation of industry [5,6]. The Wall
Street Journal referred to it as the “New Industrial Revolution” in 2013, and The Huffington Post called it
a leaving “bullet train” that will “propel the manufacturers that climb on board” [5]. In Korea, the
Manufacturing Industry Innovation 3.0 strategy was launched in 2014 to introduce SM.

The Smart Manufacturing Leadership Coalition (SMLC) states that “SM is the ability to solve
existing and future problems via an open infrastructure that allows solutions to be implemented at the
speed of business while creating value-added results” [6].

1.2. Cyber-Physical System (CPS)

1.2.1. Cyber-Physical Systems and Smart Manufacturing Trends in Advanced Manufacturing

Cyber-physical systems is the concept of traditional cybernetics via the Internet and the Internet
of Things. It combines control, computing, and communication to make the physical world and
the computer virtual world seamlessly integrated. The goal is to achieve network-based distributed
real-time control. Cyber-physical manufacturing systems (CPMS) and SM applications in advanced
manufacturing are growing trends. Cheng, J., et al. have investigated the role of 5G and Industrial
IoT (IIoT) advancements in manufacturing [7]. The research group proposed the architecture
and implementation methods of 5G-based IIoT and 5G applications, including enhancing mobile
broadband (eMBB), massive machine type communication (mMTC), and ultra-reliable and low latency
communication (URLLC) in different advanced manufacturing scenarios and technologies.
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Monostori L. et al. outlined research directions for the implementation of Cyber-physical
production systems (CPPS) [8]. The research group identified the three main components of CPPS
as intelligence, connectedness, and responsiveness. In this research, the convergence of virtual and
physical worlds and their elements were mapped. Furthermore, the changes that occurred due to the
transformation from the automation hierarchy to a CPS-based automation were recorded.

Lee, J. et al., developed a CPS architecture for the Industry 4.0-based manufacturing system where
their proposed 5C (connection, conversion, cyber, cognition, and configure) model provides a guideline
for CPS implementation in manufacturing applications [9].

Kim and Park suggested a CPS-based manufacturing system optimization strategy [10]. Roger
Burger identifies additive manufacturing (AM), sensors, autonomous vehicles, robots, advanced
materials, and advanced manufacturing systems as the six main elements of a Factory 4.0 model [11].

Overall, several of these reported studies provided valuable information resources about the
benefits of having CPPSs in their overall production yield and energy saving through production gains.

1.2.2. Energy and Cost Saving in Cyber-Physical Systems

All green technologies aim to conserve energy and natural resources, while maintaining or
improving human living standards. Many efforts in achieving green information technology (IT) have
been in the area of cyber-physical computing [12]. It is believed that new applications of computing
go beyond the traditional applications of IT and now include smart software/hardware/network to
monitor and control the systems in a human-free fashion [13]. Hahanov et al. listed “10 commitments of
Sustainable Green Computing Development” and proposed a computing in sustainable development
model, in which they grouped as reflecting/monitoring of the physical processes through singular
(single computing), network (network computing) and global computing (global computing—Internet);
controlling/managing of the physical processes through cloud computing, cyber-physical networks,
and the Internet of Things; creating intelligent cyber-physical processes through brain computing and
smart big data networks (Figure 2) [13].
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According to Nikolaos Doukas, the benefit of IoT is that large amounts of data (i.e., big data)
are collected and processed. Unlike many other fields, energy efficient/green computing is not
necessarily achieved through competing against system performance, as it can be achieved through
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the development of efficient algorithms [14]. It is shown that dynamic power dissipation is the main
source of power consumption in a digital system and system-level optimization has the most significant
energy-saving effects [15].

Energy saving in CPS systems is not limited to software optimization. Siti et al. showed energy
saving in the usage of 4th Gen versus 3rd Gen Intel® Core™ Processors. They found that the 4th Gen’s
Fully Integrated Voltage Regulator (FIVR) reduces energy consumption in the CPU and operates in
lower temperatures [16].

1.3. Traditional versus Smart Manufacturing

SM is a production system integrated by multiple subsystems for data exchange through the
Internet. It allows production to change quickly based on supply and demand. Through data analysis
and decision-making, the company can better meet the current market demand, and the production
can be better improved and tailored as necessary, lending to a more refined quality control system.
The American SM system needs a unified standard to ensure the normal operation of each subsystem.
These integrated standards span the three main manufacturing cycle phases: product, production
system, and business. The NIST openly expressed the distress of manufacturers, indicating that the
growing demand is experience in the following ways: more diverse customized services, smaller
production batches, unpredictable supply chain changes, and disruptions. Successful manufacturers
have to adapt to rapid changes while improving product quality, by optimizing energy and resource
usage. Due to the increased implementation of smart devices in manufacturing, the amount of data
feedback is also constantly expanding. With large amounts of data at the core of manufacturing, the
question becomes “How to maximize the use of the data?” [17]. This core can achieve the maximum
flow of enterprise data; more importantly, the data can be reused throughout the enterprise. However,
communication among different heterogeneous systems can only rely on standards. The information
standards given by NIST can satisfy the three manufacturing lifecycle dimensions: product, production
system, and business [18]. In 2014, the President’s Council of Advisors on Science and Technology
(PCAST) issued a report in which it identified three priority manufacturing technology changes:
Advanced Sensing (AS), Control & Platforms for Manufacturing (ASCPM), and Advanced Materials
Manufacturing (AMM) [19]. AS and ASCPM increase the ability of manufacturers to respond efficiently
and quickly based on the feedback information. Only standard systems can provide this reliance
on effective information flow and fast system response capabilities. At the end of the report, the
committee also pointed out that the standard systems can stimulate the adoption of new technologies,
new products, and new manufacturing methods [19]. The core features of SM include the following:
a comprehensive digital manufacturing enterprise with interoperability and enhanced productivity;
real-time control and small-batch flexible production through device interconnection and distributed
intelligence; coordinated supply chain management that responds quickly to market changes and
supply chain imbalances; integrated and optimized decision support to improve energy and resource
use efficiency; and the achievement of high-speed innovation cycles through advanced sensors and
data analysis technologies throughout the product cycle [20,21].

SM is a production system that goes beyond the factory floor by implementing cyber-physical
intelligent systems through a dynamic response time, that allows the system to better adapt the
manufacturing process to specific product and energy needs. It involves automated control, integrated
manufacturing, and networked companies improving productivity through information sharing and
informed decision-making. SM provides the right information at the right time to the user in an
understandable manner. There are the following levels to this integration of automation: manual,
reactive, programmable, variable, and intelligent controls. At each concurrent level, there is more
potential to save energy, and there may not be a direct reduction in energy cost. However, the greater
potential stems from a greater ability to tune the system for higher efficiency. These levels for SM are
represented stepwise in Figure 3.
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The difference between traditional manufacturing and this smarter implementation is an
integration vertically through the production line and horizontally across departments and systems.
A smart phone enables functionality beyond that of a traditional phone, by incorporating multiple
functions in a single device. Similarly, SM enables greater customization and optimization, through
the use of smarter processes to connect subsystems to a wider operational grid.

Through the implementation of SM, the ultimate goal is to handle information only once, enabling
optimization of assets, synchronization of enterprise resources, supply-chain resources, and automation
of business processing response to customer demands [24].

1.4. NIST

NIST is a US-based department that functions to adjust and publish the standards on various
fields of technological research. NIST has broad research ranges, such as biotechnology, chemistry,
semiconductor electronics, ceramics, physics, and optoelectronics. Countless products and services
depend on the technologies, measurements, and standards provided by NIST. The main competency of
NIST includes three aspects: measurement science, strict traceability, and the development and use of
standards. NIST filed Current Standards Landscape for Smart Manufacturing Systems in 2016. In this
article, the SM ecosystem is used as a basis to classify and evaluate existing standards and identify new
standard active areas that can facilitate the implementation of SM systems. On the way to achieve
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SM, the classical manufacturing system must be properly integrated. The evolution of using smart
devices in multiple facets of the manufacturing process has allowed for the following innovations:
embedded intelligence at all levels, predictive analytics, and cloud computing technologies [18,25].
All of these technologies will rely on a unified set of standards. For example, the standard for
materials characterization methods, process metrology, sensing, control methods, algorithms, and
information system frames can help users quickly choose materials and processes for AM and simplify
design-to-product conversion [26]. Many organizations developing standards are international in
their scope and functioning. As an example, International Organization for Standardization (ISO) also
develops and supports a high number of standardization works on related concepts, from the energy
efficiency of heat pumps to AM.

1.5. Smart Manufacturing Standardization Efforts

The international standard development organizations (SDOs) push for the advancement of
the SM standards in a diverse array of fields on an international level. An example of some of
the SDOs that have furthered the development of SM are the following: the aforementioned ISO,
the International Society of Automation (ISA), Institute of Electrical and Electronics Engineers (IEEE),
International Telecommunication Union Telecommunication Standardization Sector (ITU-T), and the
International Electrotechnical Commission (IEC). Each of these SDOs and many more have contributed
to the development of SM standardization. With the advancement of standardizing the process and
procedures of SM, the technologies can more easily be invested in by the governing bodies leading to
greater growth in the developing field.

The concept of SM has recently been widely invested in by the United States, Korean, and Japanese
governments, by dedicating a significant amount of funding into the newly developing area of study.
With the many benefits that come with SM implementation, numerous countries in Europe have seen
significant savings, by adopting variations of Germany’s “Industry 4.0” standard. Further adoption will
revolutionize the current manufacturing field with changes in mass customization, waste reduction, and
utility savings. The technologies that enable SM are made up of the following components: intelligent
automation, IoT, AM, augmented reality, big data analytics, automated simulations, and cloud
computing. The overarching concept of implementation is seamlessly combining these technologies
and integrating them into a collaborative system. The goal of manufacturers is to reduce overhead
costs without sacrificing product quality and production time. One of the most effective methods of
overhead reduction is increasing system-wide energy efficiency. It is also worth noting that the energy
savings potential that stems from inefficient industrial consumption makes up several billion dollars
per year possible savings in the U.S. alone [27]. These statistics demonstrate the availability of savings
afforded to the manufacturing sector if energy efficiency is improved.

2. Materials and Methods

2.1. Introduction to Data Analytics

The increasing complexity related to the optimization of the manufacturing process requires the
increased use of smart devices on a series of connected subnetworks exchanging vast amounts of data.
In this case, data analytics becomes very important. Data analysis is the use of statistical analysis
methods to analyze the collected data, summarize and understand the data, and maximize the role of
data. Data analysis was mathematically established in the early 20th century, but it is further developed
and promoted with the advancement of computer technology. With the development of the Internet,
IoT, big data, cloud computing, AI, and other new-generation information technology, it has brought
valuable opportunities to many industries [28]. SM and data analytics have a potential for today’s
manufacturing industry, to solve energy efficiency concerns from the equipment level to the entire
manufacturing plant. With the intelligent communication systems that they provide, it is proven that
both can easily make manufacturing industries more productive, affordable and competitive.
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The huge potential value of analyzing big data has attracted attention in many fields. SM is
one of them [29]. The purpose of industrial big data is not only to pursue a large amount of data
replacement through systematic data collection and analysis, but also to maximize the values. Big data
is used to solve and avoid “invisible” problems in manufacturing systems and achieve a worry-free
manufacturing environment. It can also be used to provide intelligent value-added services to the
users of products [30]. Proper use of “Big Data” and the analytics to interpret the information provides
supportive decision making and opportunities for manufacturers to stay competitive [31,32].

2.1.1. Digital Thread and Digital Twin

Digital twin is a digital replica of a physical product. Digital thread is an information bridge
between digital twin and physical products. Digital twin is the embodiment of CPS. The concept
of digital twin was first presented by Grivese in 2002 [33]; it was developed to aid the design of
machinery [34]. Digital twin is a concept related to the previously mentioned CPS, but differs in
some key aspects. Digital twin represents a physical product digitally, which can help simulate what
should happen on the actual physical “twin.” Digital twin is a prerequisite for CPS [35], and is directly
represented by the technologies of augmented reality and virtual reality within SM.

According to digital thread, all data models can communicate in both directions. Thus, the status
and parameters of real physical products will be sent back to the digital model through the CPS
integrated with the smart production system. This will result in a consistent digital model for all links
in the cycle and the ability to implement dynamic and real-time assessment of the current and future
functions and performance of the system. During the operation of the equipment, the continuous and
increasing data collected by the sensors and machines are used to interpret and utilize the data. These
data points can integrate the requirements of later product manufacturing, operation, and maintenance
into the early product design process and form design improvements, as Figure 4 shows. Digital twin
is not just a simulation, but is also used for monitoring, control, diagnostics and prediction [36]. This is
due to the bidirectional nature of the digital thread connection to the digital twin, where neither the
physical nor the digital representation are technically the simulation of the other. Rather, the factors
that influence the physical model influence the digital, and vice-versa.
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However, merely establishing a full-machine finite element model cannot be called digital
twin. It requires that all real manufacturing dimensions can be sent as feedback to the model in
production. Digital twin describes a model of each specific link connected through digital thread.
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Digital thread is the result of integrating various links and then incorporating them into SM systems,
digital measurement inspection systems, and CPS. Integrated models of the entire process through
digital thread can further help the user to determine what will happen on the actual physical products
eventually [37,38]. The concept of digital twin has attracted a lot of industrial interest in the past
few years. GE’s digital twin implementation saved $360 K by predicting a power outage in a gas
plant [39]. Nanyang Technological University (NTU) in Singapore uses the Digital Twin technology
and uncovered campus-wide energy savings of 31 percent [40]. Microsoft is also working on the Azure
Digital Twins; it can model the relationships and interactions between people and devices [41].

Despite the significant investment of major tech companies, the concept and implementation of
Digital twin is limited in the following ways:

• Digital twin’s current focus is mostly on operation and maintenance.
• There is a lack of reference models.
• The research questions and challenges of digital twin are superficial [37].

With the advancements in IoT technology, the popularity of the digital twin is increasingly
growing. Now, a sensor could easily be attached to a physical object and operational data could be
remotely collected precisely and then, the object could be smoothly controlled from its digital twin.
Creating a digital twin could be divided into several steps. Selecting a technology that helps your
need in real time data flow from the IoT device is the first step. The next step is your decision on the
operation of your digital twin. In monitoring your system, it is your main task to track the operational
performance. Overall, your implementations could start small, but grow over time.

2.1.2. IIOT in Smart Manufacturing

The ongoing research into the optimization and minimization of energy usage has led to the
development of many strategies to achieve efficient use of energy. As the room for improving energy
efficiency becomes smaller and smaller, a systematic optimization mindset should be considered to
increase the efficiency further, without relying on revolutionary inventions. It is now possible to make
better use of massive data collected in real-time from a large number of sensors attached to CPSs, thanks
to the advancement of technologies. These emerging technologies, including IoT or IIoT and big data
analytics [42–49], make the overall system processes more available for optimization, leading to less
energy waste. From a system perspective, when all individual units run harmoniously by following
some optimized rules, energy waste is minimized. This can be thought of as the “smartness”, i.e., given
a condition, an actuator acts by the following instruction. IoT can provide the required conditions,
while big data analytics can offer the instructions. At a higher viewpoint, the objective of industrial
energy efficiency is aligned with Industry 4.0, or a SM framework. Figure 5 shows a conceptual
diagram of such an “optimal” system, with feedback control aided by IIoT and big data analytics.
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Tan et al. [50] proposed an IoT enabled software application for the real-time monitoring of
energy efficiency in manufacturing shop floors. In particular, the authors introduce an approach that
uses both the energy and production data for energy efficiency assessment. The research applies the
data envelopment analysis (DEA) technique, to identify abnormal energy consumption patterns and
quantify energy efficiency gaps. Finally, the author provides quantitative evaluation results via a case
study [51].

Yan Li et al. [52] introduced a functional framework of an IoT-based energy management system
(EMS) and proposed a set of evaluation indices for industrial energy-intensive equipment. The authors
argue that the existing evaluation methods cannot comprehensively reflect the energy-consumption
level of equipment, and it is demanding to develop evaluation index systems for industrial energy
conservation and emissions reduction. Based on the IoT-based EMS and their proposed index system,
the authors analyze an integrated method for a comprehensive evaluation of the energy consumption,
where the method combines the analytic hierarchy process (AHP) [53] and a fuzzy evaluation technique.

Sachin Nimbalkar et al. examined SM technologies and data analytics approaches for improving
energy efficiency and reducing energy costs in process-supporting energy systems; specifically, those
with motors and drives, fans, pumps, air compressors, steam, and process heating. The authors
explain smart technologies from levels 0 to 3 that can be applied to increase the process efficiency
and introduced several technology vendors offering SM products, such as industrial automation
devices, internet-connected sensors, comprehensive digitalization, monitoring and control platforms,
etc. By using three real-world examples of industrial applications of smart technologies and data
analytics, they also explain how SM and IIoT are already affecting different business sectors. According
to the authors, the most energy-efficient technologies implemented from the DOE IAC1 and ESA2
assessments are level 0 or 1 (simple controls or control devices with sensors), and implementing
higher-levels of smart technologies (level 2 or 3) is likely to increase energy savings and could make
energy savings sustainable [54].

Yingfeng Zhang et al. proposed a big data-driven analytical framework (BDDAF) for reducing the
energy consumption and emission for energy-intensive manufacturing industries (EIMIs). The research
is interdisciplinary, including manufacturing, energy, and big data. In the proposed framework,
energy big data analytics is implemented based on two key components: energy big data acquisition
and energy big data mining. The author implies that traditional EIMIs are in harsh production
environments, and the IoT technology and soft sensor approaches can help collect the multi-source
and heterogeneous energy big data. In the analytics aspect, it is proposed that a closed-loop structure
of energy big data mining could mine valuable knowledge and patterns from the big data in the EIMIs.
In the paper, an application scenario is presented to show the effectiveness of the proposed framework.
It claims that the energy consumption and energy costs are reduced by 3% and 4% respectively [55].

Recent research reported by Nader Mohamed et al. [56] is about how smart techniques can enable
opportunities for energy efficiency improvement in smart factories by using a three-layer enabling
architecture in Industry 4.0 framework [53]. The architecture follows the six design principles of
Industry 4.0 [57] and consists of a CPS manufacturing services layer, a fog manufacturing services layer,
and a cloud manufacturing services layer [54]. This architecture is based on several services available on
various technologies, such as IIoT and/or Internet of Services (IoS), manufacturing CPS, fog computing,
and cloud computing. The authors suggested that these services should be integrated using a
service-oriented middleware platform specifically designed for Industry 4.0 applications, and believed
Man4Ware [58], one of such platforms, is a suitable option [55]. In particular, a blockchain-based
service-oriented middleware was considered to support trusted information exchanges, automated and
efficient negotiation processes, and efficient smart agreements among enterprises. Finally, a quantitative
benefit analysis and comparison were provided to illustrate how much energy savings are achieved by
using the Industry 4.0 solution.

As it could easily be seen from these reported studies, adding the IIoTs can enable direct energy
savings for the smart factory of today.
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2.1.3. Digital Thread/Twin in Smart Manufacturing

Gökan points out that creating a finer granularity on the machine level is necessary for achieving
energy-saving targets [59]. Digital twin is a digital shadow of a physical product. Through integration
with external sensors, it reflects all the characteristics of the object from the micro to the macro and
displays the evolution process of the lifecycle of a product. Not only the product, but also the production
system and machine maintenance, need digital twin [4]. The realizations of the feedback from the real
physical system to the digital model are the most important inspiration of digital twin. In the industrial
field, instead of importing the data to the real physical world, now people try to fit everything that
happened in the physical world back into the digital world. In this way, the coordination of the cyber
and physical world can be ensured throughout the entire lifecycle. Various types of simulation, analysis,
and even the application of AI-based digital models, can ensure its applicability to the real physical
world [25,34,37]. Without digital twin and digital thread, the SM system cannot be implemented [5].
Manufacturers can get a clear picture of actual performance through the digital twin and improve their
situational awareness and operational flexibility [37]. The equipment energy consumption is a large
part of the total manufacturing energy consumption and can benefit greatly from the aforementioned
smarter technologies [60].

Overall, the digital thread/twin technology helps the manufacturers with the information needed
to form intelligent solutions for the reduced use of energy. Several studies reported before provide best
practices and case studies, which could be adapted and implemented.

2.2. Data Analytics

2.2.1. Multi-Criteria Decision Making (MCDM)

Decision-makers often face several conflicting choices. To help people make the best decisions,
scholars develop MCDM to construct preferences and determine the correct relative weights of
criteria [61]. In the last two decades, the field of MCDM has been growing rapidly in response to
every evolving technological field. MCDM refers to the decision-making of a set of limited or infinite
solutions that conflict and are non-commensurable. It is one of the important contents of analytical
decision theory. There are two main theoretical streams: multi-attribute decision-making (MADM)
and multi-objective decision-making (MODM) [62]. The theories and methods of MCDM are widely
used in many fields, such as engineering, business, and the military [63–65].

Compared with traditional evaluation methods, MCDM can evaluate, queue, and select multiple
items. When dealing with a problem, each influencing factor will be processed based on the criteria of
the project. The weighted value of each factor is calculated by the extracted and processed data. By
using multiple decision methods with the power of modern computers, a dynamic analysis system
with a powerful analysis machine is established. A multiple criteria decision is a decision that needs to
consider two or more criteria simultaneously. If the target of an enterprise is to choose one of several
products for production, the size of the profit, the availability of existing equipment, the adequacy
of raw material supply, and other factors must be considered. MCDM has been used in many fields,
and one such example is the utilization of green building materials (GBM). Building materials should
cover all three pillars of sustainability (3P). The capability factor in all GBM choices is a multi-criteria
decision problem, which is very suitable for MCDM [64].

2.2.2. Energy Savings

The contradiction between industrial development, energy saving, and emission reduction
remains prominent. Energy usage will damage the environment to varying degrees in all stages
of production, transportation, and consumption. Reducing production costs is a challenge that
several companies have been working hard to solve. Production capacity lags and may cause the
company to be eliminated. By using automation technologies, operations can increase productivity
and reduce manpower [66]. Factory automation can significantly contribute to energy efficiency
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in manufacturing [67]. Energy-saving and emission reduction technologies have made important
contributions to sustainable development. Facing the increasingly constrained industrial resources
and environment, focusing on energy conservation and emission reduction, and taking a green and
low-carbon development path are important guarantees for sustainable development. Energy security
guarantee capabilities and low-carbon energy sources such as nuclear energy [68], wind energy,
and solar energy should be developed vigorously [69]. In the current era of sustainable development,
for supporting the current expanding economic energy demand, the energy need increases continuously.
To reduce the use of traditional non-renewable energy and release environmental damage, energy
planning is required. The MCDM method has been successfully used in energy planning processes and is
considered to be the most appropriate method for solving energy-related problems [63]. Current energy
planning has become complex, with multiple benchmarks, including technical, social, economic, and
environmental. The topographical constraints about naturally distributed renewable energy systems
have become more complex. In this case, all possible conditions of MCDM (including technology,
institution, country, standard, social, economic, and stakeholder) are sorted and weighted. Then,
MCDM gives a ranked decision for the user/algorithm to pick [18,70]. As robotic technology improves,
industrial robots’ energy efficiency has been improved. Riazi et al.’s algorithm [71] has reduced up to
45% energy without changing the original path in a task. A group of researchers uses cloud technology
to minimize industrial robot energy consumption, leading towards sustainable manufacturing [72].
Yin et al. propose a machine learning based trajectory planning method. The simulation demonstrated
the feasibility of the method and the optimization of energy use [73].

2.2.3. Artificial Intelligence (AI): High Fidelity vs. Low Fidelity

Today’s AI has gradually entered all aspects of human production and life. It is one of the hot
research topics today. The government also increased investment in AI in the 2021 budget proposal [74].
AI is developed when a machine obtains specific knowledge by analyzing and arranging a large
amount of data. AI uses the obtained knowledge to solve related problems [75]. AI has a wide range
of applications in manufacturing [76]. AI is an important part of SM to make a precise and reliable
decision. With the modern innovations that IA has offered in the fields of AM, robotics, and digital
technologies, energy companies are now exploring the possibilities of incorporating IA to increase the
more efficient utilization of energy. Machine learning (ML) has been applied all over the manufacturing
process from progress and operation to fault detection and quality improvement. The data models are
important for ML. The accuracy of the AI prediction depends on the fidelity of the data used in the
model. There are low-fidelity data and high-fidelity data.

The low-fidelity data model uses approximations to simulate the system. The high-fidelity
data model uses the data which is a close match to the real environment. Therefore, the result of
the high-fidelity model will be much closer to the real-world response than the low-fidelity model.
The low-fidelity data is much cheaper in terms of computation cost to obtain results when compared to
high-fidelity data. It is possible to obtain a large amount of data to train the algorithm. The high-density
data is mainly used to build electronic models for a thorough simulation analysis of production,
to optimize production [75,77,78].

2.3. Additive Manufacturing (AM)

2.3.1. Introduction of the Technology

AM also known as three-dimensional (3D) printing, is becoming a disruptive technology that
has begun to reshape the field of design and manufacturing. AM has significantly changed the world
by providing more flexibility to product design, less cost in producing complex shapes, less need
for assembly, and less time and materials cost in production run [79]. With these new affordances,
people have applied AM in different sectors, including medicine and health care, architecture,
transportation, aerospace, education, art, and aesthetic design. After experiencing double-digits
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for 18 of the past 27 years, the AM market is expected to grow to $21 billion by the year 2020 [80].
Compared to conventional manufacturing methods, AM shortens product development cycles, reduces
manufacturing cost and lead time, increases the sustainability of manufacturing, enables the production
of customized and personalized products, breaks the conventional supply chains, and introduces the
prospect of new business models. AM has also inspired the development of the maker movement, by
democratizing design and manufacturing [79].

The following table (Table 1) illustrates the various AM processes.

Table 1. Classification of AM processes by ASTM International [81].

Material
Extrusion Powder Bed Fusion Vat

Photopolymerization
Material
Jetting Binder Jetting Sheet

Lamination

Technologies
Fused Deposition

Modeling,
Contour Crafting

Select Laser Sintering, Direct
Metal Laser Sintering, Selective
Laser Melting, Electron Beam

Melting

Stereolithography
Polyjet/
Inkjet

Printing

Indirect Inkjet
Printing

Laminated
Object

Manufacturing

Materials
Thermoplastic,
Ceramic/Metal

Pastes

Polymer/Metal/
Ceramic Powder

Photopolymer,
Ceramic

Photopolymer,
wax

Polymer/
Ceramic/

Metal Powder

Polymer/
Ceramic/Metal

Film

Energy Thermal Energy Laser Beam, Electron Beam Ultraviolet Laser
Thermal
Energy,

Photocuring

Thermal
Energy

Laser Beam,
Ultrasonic
Vibration

Based on different working principles and printable materials, the recent ASTM standard has
classified the major AM systems into seven categories: (1) material extrusion, (2) powder bed fusion,
(3) vat photopolymerization, (4) material jetting, (5) binder jetting, (6) sheet lamination, and (7) directed
energy deposition.

Material extrusion: fused deposition modeling (FDM) created layers by mechanically extruding
molten thermoplastic material (e.g., ABS or PLA) onto a substrate. While most of the extrusion systems
process thermoplastic materials, there are new efforts that have been made in processing ceramic and
metal pastes. The FDM process has gained popularity among DIY crowds, due to its inexpensiveness
and flexibility.

Powder bed fusion: The powder bed fusion techniques adopt an energy beam (e.g., laser or
electron beam) to selectively melt a power bed. As long as a layer is scanned, the next layer of powder
is spread via a rolling mechanism. Afterward, the next layer of powder is fused to the previous layer.
There are powder bed fusion systems taking polymer and metal powder as materials. The selective
laser sintering (SLS) process is typically adopted to process polyamides and polymer composites.
This process can also be adapted to create ceramic and metal melting blends. The resulting “green
parts” require high-temperature sintering as the post-processing. Direct metal laser sintering (DMLS),
selective laser melting (SLM) and electron beam melting (EBM) are the most popular metal powder
bed fusion techniques.

Vat photopolymerization: the stereolithography method (SLA) utilizes an ultraviolet laser to
selectively polymerize the UV curable resins to create a layer of solidified material. More layers are
subsequently cured until the part is complete. The process is limited to photopolymers, because it
relies on photopolymerization. Some newly developed processes can process ceramic components
(e.g., alumina, zirconia, PZT) by suspending nanoparticles in the resin.

Material jetting: Inspired by the 2D ink-jet printing technology, material jetting processes deposit
wax and/or a photopolymer droplet onto a substrate via drop-on-demand inkjetting in a drop-by-drop
or continuous manner. The jetted droplets undergo a phase change via heating or photocuring. Recently,
new attempts in direct inkjetting of nanoink suspensions of ceramics, metals, and semiconductors are
made to create parts with additional functionalities.

Binder jetting: the binder jetting process selectively deposits a liquid polymer onto a powder
bed. The droplet infiltrates the surface of the powder bed and forms a printed powder agglomerate
primitive. Then, the powder recoating is done via powder spreading. After completing the whole part,
post-processing is required to solidify the part. This process can process any powdered materials that
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can be successfully spread and wet by the jetted binder. Different materials including metal, ceramic,
foundry sand, and polymer, are processed using binder jetting.

Sheet lamination: laminated object manufacturing (LOM) is adopted in an AM system, which
brings the benefits of low internal tension and fragility of the parts, high surface finish details, and
lower material, machine, and process costs. The metal parts can be created by the sheet lamination AM
process, by cutting, stacking, and gluing profiled metallic laminates. Ultrasonic welding has also been
introduced to produce functional gradient metallic structures.

Directed energy deposition: direct energy deposition (DED) AM processes directly feed the metal
powder or wire into the focal point of an energy beam, to generate a molten pool. DED has a multi-axis
motion platform similar to the three-dimensional welding machines. The most commonly used energy
sources include lasers and electron beams. The DED process can also add a coating or clad to the
existing surfaces.

In all these technologies, it was proven that AM can be an excellent solution for the production
needs of any business with minimal energy consumption, and selecting the appropriate AM technology
for the customers’ requirements on the basis of complexity, material, and batch size is the key for the
successful outcomes.

2.3.2. Green Technology

As pointed out by a recent paper [82], AM tends to be overlooked in energy scenarios. According
to the research, it is expected that a 5% to 27% reduction of the global energy demand is achievable with
the adoption of AM in 2050 [82]. The largest effect of AM on energy efficiency comes from the high
material efficiency of AM compared to the conventional manufacturing processes [10,68–74,82–88].
AM’s nature of “adding” material instead of “subtracting” material achieves high material efficiency
in applications such as fuel mixing heads and diffusion burners for automotive or aerospace parts, and
injection molding dies [85]. These parts have a high “buy to fly” ratio, and therefore result in high
material waste, complex operations, and high maintenance cost using conventional manufacturing
processes. Whereas there are only minor differences in the energy consumption for the AM of
different materials, the differences in the subtractive production are substantial [84]. According to
Hettesheimer et al.’s research [84], the projection for automotive and aerospace industries indicated
that the energy-saving potential from AM may equal roughly 0.4% of the final energy consumption in
the German transport sector.

In the use phase, AM also plays an essential role in energy efficiency. It can facilitate the customized
production of strong light-weight products, and it allows designs that were not possible with previous
manufacturing techniques [87]. The adoption of lightweight parts on aircraft or cars can substantially
reduce fuel consumption and greenhouse gas emissions [83]. In Huang et al.’s paper [83], it is expected
that the estimated fleet-wide life-cycle primary energy savings will at most reach 70–173 million GJ/year
in 2050, with cumulative savings of 1.2–2.8 billion GJ, and the associated cumulative GHG emission
reductions were estimated at 92.1–215.0 million metric tons. Furthermore, it was shown through
evaluations that the energy efficiency with several light-weight parts, used to their full potential,
reduced airplane fuel consumption to 6.4%, with a material saving of 4050 tons/year of aluminum,
7600 tons/year of titanium and 8110 tons/year of nickel. Baumers et al.’s study [88] indicates that
the light-weight parts made of Ti-6Al-4V achieve a 39% weight reduction compared to the original
part, and 2.6 × reduction in greenhouse gas emission. If these parts are assembled for a JetA1 aircraft,
through its lifetime, the fuel-saving is $22,000, while the fuel-saving becomes $880,000 for a Boeing 747
aircraft [88]. Verhoef et al. expect that a 5% to 25% energy saving can be made [79] in the aerospace
sector globally, due to the adoption of light-weight parts made by AM. Additive manufacturing also
enables the production of parts with better performance for energy saving, through the process of part
consolidation, minimizing the reduction in strength due to the fabrication process. The use of additively
manufactured SiC high-temperature components saves energy and emissions in the industrial heating
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processes [10]. Additive-manufactured metallic-3D Ox-Ox CMC achieved cooling-flow savings in all
hot turbine stages [12].

In addition, AM has also significantly changed other aspects of the lifecycle of the production,
including supply chains, handling, process time, power consumption, emission, labor and
maintenance [10,82,83,87,88]. Verhoef et al. found that a 4% to 21% energy saving in the construction
sector is achievable due to the effects of AM on feedstock and transportation together with the adoption
of parts made by AM [82]. Thomas et al. pointed out the increased automation in AM could lead
to a more cost-effective production [87]. AM has a competitive advantage in defense and aviation.
AM reduces multiple individual parts into one part. AM has the potential to reduce aircraft weight by
55% and increase the sustainability of the aerospace industry. This technology affords manufacturing
the ability to minimize subtractive tooling, reduce part count through part consolidation, and minimize
assembly time on low part count productions [89].

Several of the research and case studies reported above proved that additively manufactured
products required 50% to 75% less energy than large-scale manufactured goods.

2.3.3. Sustainability

Sustainability is a balance of resources and benefits, without further harming the environment.
This includes improving energy efficiency and material utilization to maximize the carrying capacity
of resources and the environment to achieve long-term benefits. The utilization of raw materials and
energy conservation is of great significance for sustainable development. Compared with traditional
manufacturing technology, powder metallurgy can save 44% in energy. The material utilization rate
of powder metallurgy is 95%, much higher than the traditional metal process. Emissions of toxic
and hazardous substances have also been reduced during the manufacturing process [90]. The AM
fabrication method, often called “rapid prototyping,” is the depositing of feedstock layer-by-layer
to create a 3D part. Notably, 3D printers can quickly produce complex physical models within a
relatively short time, and the systems themselves are simpler and safer to operate than most traditional
fabrication equipment.

• Rapid Prototyping—Rather than creating a faulty part out of expensive material, manufacturing a
simpler and quicker prototype in which to test can greatly minimize waste.

• Cost Savings—The aforementioned waste can be costly in not only material expenses but for some
applications, it can save energy expenses. For high-energy applications such as forging or casting,
printing a test model before the finished part provides many benefits.

• Customization—The benefit of additive instead of subtractive manufacturing is being able to
create previously unachievable shapes [91].

AM’s main benefits are customization and waste reduction. However, it is worth noting that
the energy consumption on traditional fused deposition modeling 3D printers is greater than that of
traditional methods. For prototyping, this energy difference can be easily compensated through waste
reduction. This does mean that the functional non-prototype parts are only valid, from an energy
standpoint, in lightweight low part count applications, such as aerospace [92].

2.4. Robotics

2.4.1. Industrial Automation and Robotics

Industrial robots have been around for many years. The application of industrial robots has
reduced the demand for personnel in the industry. In recent years, the development of information
technology has promoted the intelligent development of robots. The ability to collect and share
vast quantities of data among machines is a new advancement that has great potential to increase
efficiency and robotic capabilities. The use of IoT-aided robots in industrial plants and smart areas
grants manufacturing the following benefits: access control in restricted sites, assist during panic and
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danger episodes, predict and avoid dangerous situations, and manage equipment and instruments
autonomously [93]. The IoT can also be applied for more efficient data collection from machines,
allowing for it to be more useful and to aid people or organizations more effectively in streamlining
bulk data into usable data [94]. The interconnectivity of industrial automation presents an unparalleled
increase in productivity; however, the advancements require the following challenges to be addressed:
the need for a secure and high bandwidth network to communicate with robots; the ability to analyze,
communicate, and interact with other robots; and the ability to coordinate robots’ activities to optimize
their capabilities within the network [93].

The ability to automate tasks in manufacturing will lead to further changes in the role of people in
the industry. As factories become more automated, humans will move into specialized roles, where their
input is irreplaceable. Many would think this means the obsolescence of mid-tier assembly workers
and their removal from the process. Some, however, would argue that this idea of assembly line
work being routine is a misconception that undervalues experiential knowledge and the adaptability
of humans [95]. This common line of thinking also encourages the idea that people can be easily
replaced by robotic automation in any field perceived as having simple steps when complicated
processes can abound. Sabine Pfeiffer refutes the commonly thought of a situation where robotic labor
eliminates mid-tier workers, creating a wide skill gap at facilities, with only highly trained employees,
like engineers, and minimally trained staff, like janitorial staff [95]. Instead, he offers a new perspective
where mid-grade workers are still present, heading off problems before they can affect the product
and making the production line run smoothly, arguing that, as automated systems become more
complex, a new area of labor will appear to reduce the vulnerability of the structure and maintain it.
This side grade of the labor force will prompt the creation of new interfaces that allow for more efficient
interactions between workers and machines. The use of augmented reality with wearable smart glasses
and touch interaction through mobile devices has been explored in the case of maintenance and other
basic tasks on the production floor. The results of the tests highlight several benefits and shortcomings
of both augmented reality and touch interactions [96]. The ability of workers to communicate with the
automated environment around them is of utmost importance to maximize their ability to maintain
the technologically advanced systems.

The cloud is still a relatively new invention that allows for unique applications of older and newer
technologies. Benefits of this include access to large libraries of data, off-site computing power, shared
processes for machine learning, and the use of collective human skills. In the future, the use of cloud
infrastructure could lighten the load of emerging users by removing the need for highly specific hard
or soft -wares, through several business models. Unique features implicit in the cloud offer further
the potential benefits, such as reduced costs of maintenance [97]. An example of its applications with
robots is the reduction of on-site equipment. Complex tasks, such as grasping current technology,
require lots of complex equipment and take up space within the production facilities, whereas in
cloud computing, the computing equipment is stored elsewhere and instructions for tasks can simply
be downloaded, saving space and energy [98]. Cloud technology is not bereft of its complications,
though. Current issues include the allocation of computing resources, where data storage will be
held, the scheduling of real-time demands and processing performance, security for the cloud-based
computing servers and users, and the assurance of quality to maintain efficiency [99,100].

2.4.2. Energy Efficiency of Robots

As indicated before SM and its impact on energy efficiency is one of the hot topics in today’s
advanced manufacturing [101]. Several industries try to find solutions to cut their energy consumption
by improving their current automated systems with robotic cells and accessories. This solution is an
easy step since the robotics and automation concepts are not new for several practitioners. The current
trends indicate a big demand for industrial robots.

In 2016, for the first time, the electronics industry exceeded the automotive industry in the demand
for industrial robotics in the Asian markets of China, Japan, and Korea. Worldwide, the electronics
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sector’s share of the robotics market rose steadily to 32% in 2017, almost equal to the automotive sector
(33%) [102,103]. This ratio is quickly changing, and the electronics and metal industries are quickly
becoming prominent robotic markets. This change indicates that sectors that have not been historical
markets for industrial robotics are now adapting to this robotics revolution.

The International Federation of Robotics (IFR) executive summary for 2019 projects that China
alone will account for about 48% of the top 10 markets, with a size almost double that in 2016.
Furthermore, the four East Asian countries of China, Japan, Korea, and Taiwan will constitute
approximately 75% of the market [103].

Historically, improvements in energy consumption in robotized industrial plants have been
achieved through improvements in hardware, software, or a combination of both [104]. Improving
energy efficiency through hardware improvement is achieved by proper selection of the robotic
system [105], replacement of hardware components with more efficient components [106], or the
addition of components for energy storage and recovery, such as flywheels [104,107]. Energy efficiency
improvement through software has been achieved by optimizing the trajectory of the robotic arm
or through improving operation schedules [104,108]. However, the main disadvantage in industrial
robotic systems is that industrial robots have to be isolated, and only operate in highly controlled and
deterministic environments for safety [109,110].

In the next generation of intelligent industrial robotics, the approach of improving energy
consumption is radically changed, due to the unique features over current-generation robotics in the
advanced sensory and perception systems, control algorithms, as well as the enhanced data processing
capability [111].

Compared to current-generation industrial robots, the next-generation intelligent industrial robots
are more dynamic and compact and equipped with an advanced computing capability, coupled with
an advanced sensing and perception system to sense a human presence around them. Robotic systems
work together to achieve energy efficiency improvement, by allowing the unit to work collaboratively
side-by-side with human operators. This is a significant improvement in the operations of industrial
robots. This collaboration can simplify troubleshooting processes and reduce costs significantly
for manufacturers. Ground studies conducted at Toyota, Ford, and Mercedes Benz indicated that
deploying co-bots resulted in increased production [112]. Furthermore, the National Institute of
Standards predicts that intelligent robotics can save manufacturers at least $40.4 billion annually [109].
As a result, the IFR forecasts that collaborative robots will take the lead in the robotics industry in
coming years [113].

2.4.3. Collaborative Robots

A requirement for SM autonomous production is that robotic operators must complete tasks
without the need for isolation. SM encompasses a wide range of topics, including the emergence of
new robotic technologies that are perfect for the new industrial revolution.

Robots are the physical representation of the CPSs, as mentioned previously. The introduction
of robots into the manufacturing setting has propelled production far beyond what was previously
achievable. To compare the 1990s to 2014 markets, the three largest companies had a market share of
$36 billion to $1.09 trillion, with 1.06 million fewer employees. These were the three largest companies
in Detroit (the 1990s), and the three largest companies in Silicon Valley (2014). The widespread
introduction of robotics resulted in a necessary workforce that is 90% smaller. By connecting the robots
system-wide, the results in Germany suggest another financial and productivity boost for the US
manufacturing industry, by following similar methods. Today, several economists believe that robotics
and automation represent a wave of technological change that could lead to a structural shift in the
manufacturing industry [114].

This intelligent control scheme for operating robots affords the companies and operators greater
control over the efficiency of automated manufacturing. A robotic technology that directly benefits
is the principle of “Collaborative Robots.” Commonly referred to as “Co-Bots,” collaborative robots
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are intelligently controlled systems that have feedback loops in place that safely allow a robot and
operator or robot and robot to work in tandem.

The operation of co-bots varies from manufacturer to manufacturer; a common method of
collaborative sensing is through the use of a sensory field, where, for a given space, the controller is
aware of all objects, personnel, and features that could influence the operation. This field is generally
done with cameras, laser detection, and/or thermal imaging. Another method of collaborative sensing
is through the use of on-board sensors. Robots that are intended to work in tandem are equipped
with safety sensors that slow or stop motion when touched by an object that introduces an increase of
torque. With these sensors equipped, the controller will hard-stop when contact with an operator is
made. For most robot manufacturers, this tolerance can be set so that injury can be minimized/avoided
in the event of an accident.

In relevance to SM, the efficient use of co-bots requires a reliable, safe data stream. The prerequisites
to maximizing the effectiveness of the robots require a majority of the SM technologies: big data
analytics, IIoT, and digital twin and thread. It is the processing of all concurrently that allows for the
most energy-saving potential.

3. Discussion

Many factories in manufacturing today are semi- or fully automated. Only a few employees are
needed to operate the machines. However, this cannot be called SM. Smart manufacturing requires the
entire industry chain to form an interconnected network comprised of subnetworks linked together.
IoTs collect data from all links from supplier to production to business and import the data into a
virtual data model for analysis, to further optimize and adjust each link to minimize or even avoid
problems, energy, and material use. Large amounts of data need to be transferred and analyzed quickly.
The fidelity of the data used to train the model also requires trade-offs to enable high-speed, accurate
simulation and prediction. A better digital model is needed for dynamic real-time monitoring and
the optimization of product quality, energy consumption, mechanical wear, etc. This poses some
challenges for sensors, storage, data complexity, quality, and communication. Various devices are used
in this process, and unified standards are required to achieve fast and effective data communication
between the devices.

According to the definition of SM, data is centralized, linking the CPS to all subsystems to capture
the data input, and the data must be processed and sent as an output non-locally to coordinate activities.
The increase in interconnectivity requires increased cybersecurity and network speed to ensure that
the processes that are connected are also secure. Sustainable development and energy conservation are
the way forward. By analyzing data and optimizing the entire industry chain, most functions can be
improved. However, data analysis also brings demand for processors with high energy consumption
and high computing power.

There are two options for working with big data. One is to develop new hardware to increase
computing power to achieve high speed. However, high computing power is directly proportional
to energy consumption. The second is the development of new high-speed algorithms to reduce the
need for hardware systems. The energy consumption of robots has declined in recent years. A lot of
researchers show that robots can be further optimized for energy saving. The rapid development of
technology has also made unified frameworks and standards necessary. In this way, new technologies
can be used quickly.

It is very clear that manufacturing has a new face in the 21st century. The traditional method of
manufacturing practices does not provide as much benefit when compared to the smarter technologies
available to companies. Today, customer requirements mostly focus on light weight, low cost,
and sustainable end products. These pressing constraints make the manufacturers consider the
implementation of SM technologies. However, the barriers of implementation are in multiple categories.
The need of initial cost of implementation, highly qualified workforce and construction/maintenance
factors are becoming main issues for the manufacturers at the time of decision making.
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In order to keep the manufacturing companies competitive and capitalize on new opportunities,
developing and implementing a SM assessment tool can help the manufacturers prepare their operations
for the challenges of today’s technological advancements. Such an assessment tool could include
and survey a number of key areas in manufacturing facilities reported through the coverage of this
review paper. The findings of this kind of assessment usually report the strengths and weaknesses of a
company’s abilities and readiness to the digital manufacturing world.

4. Conclusions

SM is increasingly accepted and adopted by industry and academia; more fields and research
areas have found that there is potential in adapting the smarter manufacturing standards to the larger
systems. Moreover, the more traction that SM gains, the more research questions arise. Overall, SM
has a big advantage in energy-saving compared to traditional manufacturing. Several research studies
reported throughout the review showed that products made though SM technologies required 50% to
75% less energy than large-scale manufactured goods.

SM combines multiple technologies, including but not limited to CPS, IoT, robotics/automation,
big data analytics, and cloud computing. At present, only a few of these technologies have matured,
and most of them are still in the development period before large-scale adoption. Manufacturing
companies are still in the early stages of data application. Most companies use the collected data to
explain the rules and root causes of historical performance, instead of using the data for predictive
analysis to support decision-making.

The purpose of AM is to optimize agile supply chains to achieve sustainable production. SM is not
purely automated production. With the support of the Internet of Things, this is the key to production
and collaboration with workers and robots based on market demand. Each of these technologies can
reduce energy consumption to a certain extent for production. The integration of SM will further
reduce the energy consumption of the production industry and contribute to world environmental
protection. Today, SM is still in its early stages. Given the high level of interest in various industries,
it is foreseeable that rapid development in this area will be achieved soon. Due to its interdisciplinary
nature, advances in the field of basic research may find methods for industrial applications faster than
in the past few years. For researchers who do not have much interaction with applied research in their
field, this may be an opportunity to collaborate with researchers in related fields and industries and
witness the application of their research in real life.
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