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Abstract: The biological activity of chitosan determines its broad application as a biopolymer for
non-woven wound dressings fabricated by electrospinning. The electrospinning process is affected
by a large number of different factors that complicate its optimization. In the present work, the
electrospinning of chitosan lactate was carried out using a needleless technique from water solutions
of different compositions. Surface response methodology was used to evaluate the effects of the
concentration of chitosan, polyethylene oxide, and ethanol on solution properties, such as viscosity,
surface tension, and conductivity, as well as the process characteristics and fiber quality. The viscosity
of the spinning solution is determined by the polymer concentration as well as by the interpolymer
interactions. The addition of ethanol to the spinning solutions effectively decreases the solution
surface tension and conductivity, while increasing the volatility of the solvent, to provide more intense
fiber spinning. Atomic force microscopy revealed that the chitosan lactate fibers were obtained
without defects and with a narrow thickness distribution. The spinning parameters, voltage, distance
between electrodes, and rotation speed of the spinning electrode had insignificant influences on the
fiber diameter during needleless electrospinning.

Keywords: chitosan lactate; non-woven materials; needleless electrospinning; response
surface methodology

1. Introduction

Electrospun chitosan membranes have wide applications in biomedicine as wound dressings
and in tissue regeneration and drug delivery [1–4] because of the biocompatibility, biodegradability,
and biological activity of chitosan [5–7]. However, electrospinning of chitosan remains difficult: Only
strongly acidic solutions can be spun effectively, and guest polymers (most frequently polyethylene
oxide (PEO) or polyvinyl alcohol) must be used for initialization of the electrospinning process. Aqueous
chitosan solutions are less stable than acidic ones and require greater initial amounts of PEO [8].
The process of electrospinning is influenced by many different factors, including the properties of the
polymer solution, the parameters of the electrospinning process, and the environmental conditions [9].
The main properties of solutions that determine their spinning ability and affect the fiber quality are
the viscosity, surface tension, and conductivity, and the solvent vapor volatility [10].
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Electrospun fibers used for cell proliferation should have a diameter that corresponds to the size
of the tissue extracellular matrix [11]. The fiber diameter also affects the mechanical properties of
the electrospun membrane [12]. Fibers produced by an electrospinning process can, therefore, have
diameters related to the process parameters [9] and to the properties of the initial polymers and their
solutions [13]. The electrospinning process is frequently optimized by response surface methodology
(RSM) [14–16], which allows determination of the influence of several factors and their interaction
simultaneously by compact experiment design. RSM is, therefore, less time-consuming than the
conventional one-factor-at-a-time approach [17,18] and can be used when the quantitative evaluation
of response parameters is possible.

For a needle electrospinning process, a reverse relationship exists between the solution flow rate
and the average fiber diameter [19]. The distance between the nozzle tip and the collector surface is also
related to the diameter in cases of quick solvent evaporation [20]. By contrast, contradictory reports
have been published on the role of the applied voltage on the diameter distribution. For example,
Reneker et al. [21] indicated an inverse relationship, whereas Baumgarten et al. [22] reported a direct
relationship, and Katti et al. [23] found no significant effect of voltage on the diameter distribution.

The main drawback of conventional needle electrospinning is a low yield of fibers. This has
prompted the development of needleless electrospinning as a way to scale up fiber production. This
higher productivity suggests the possibility of applying higher voltages of 30–70 kV as the solution
volumes are increased. Needleless electrospinning has proven more advantageous when compared
with multi-needle processes for scale-up [24]. For this process, Taylor cones and solution jets are
formed next to each other on the surface of the rotating spinning electrode that emerges from the
polymer solution. This technique differs from the conventional needle process and requires its own
selection of optimal parameters. Therefore, identification of the dependencies that allow control over
the process and the final quality of the nonwovens remains relevant.

The electrospinning of chitosan lactate has been described previously [25–27], but the procedure
required the use of a high concentration of trifluoroacetic acid and methylene chloride, as well as the
presence of polylactic acid as a guest polymer. In the present study, we report a “green” method that
overcomes the usually poor spinning ability of chitosan lactate water solutions and allows needleless
electrospinning of chitosan lactate fibers from an aqueous solution. The resulting electrospun mats
from chitosan lactate became insoluble after heating due to crosslinking via amidation between chitosan
and the lactate salt [28], making these fibers suitable for biomedical applications in water media.

The aims of the present study were to determine the effect of the spinning solution composition
on the quality of the nanofibers obtained under the conditions of needleless electrospinning and to
analyze the effect of adding ethanol as a way to increase the efficiency of electrospinning of chitosan
from aqueous solutions.

2. Materials and Methods

2.1. Chitosan Characterization

Chitosan lactate was purchased from Biolog Heppe GmbH (Landsberg, Germany). The molecular
weight (MW) and the degree of deacetylation (DD) were determined after neutralization of the chitosan
lactate solution with NaOH followed by purification by dialysis and lyophilization. The MW of
8.0 × 104 was calculated from the Mark–Houwink equation [29]:

[η] = 3.41 × 10−3Mη1.02, (1)

where [η] is the characteristic viscosity of a solution of chitosan in 2% acetic acid with 0.3 M NaCl,
determined using an Ubbelohde capillary viscometer at a temperature of 20 ◦C and Mη is the viscosity
average MW. The DD of chitosan sample was determined by conductometric titration (0.85) using a
Hanna EC215 conductometer (Hanna Instruments, Woonsocket, RI, USA) and by 1H NMR spectra
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(0.86) recorded on a Bruker Avance 400 (Billerica, MA, USA) spectrometer at operating frequencies of
400 MHz. PEO with MW 9.0 × 105 was purchased from Merck Group (Darmstadt, Germany).

2.2. Electrospinning Solutions

A series of solutions were prepared to determine the influence of the solution composition and the
process parameters. In the first case, the content of chitosan lactate, PEO, and ethanol was varied, as
shown in Table 1. In the second case, the solution contained 3% chitosan lactate, 10% PEO (in relation
to chitosan), and 10% ethanol. The chitosan lactate was first dissolved in water under stirring for 2 h.
The calculated amount of PEO was then added, followed by the ethanol after the complete dissolution
of the PEO. Ethanol was used to facilitate chitosan electrospinning from aqueous solutions, as these
are characterized by high surface tension [30].

Table 1. Solution properties, electrospinning parameters, and fiber diameter depending on the
solution composition.

Entry
Concentration, % Solution Properties

E 1,
kV/cm

Fiber
Diameter,

nm
Chitosan

Lactate (A)
PEO
(B)

Ethanol
(C)

η,
mPa·s

σ,
mN/m

Conductivity,
mSm/cm

1 4 20 10 6317 52.4 2.2 1.8 850 ± 110
2 4 5 0 781 65.4 3.2 2.4 500 ± 90
3 2 20 0 218 60.1 2.3 2.6 380 ± 70
4 2 5 10 210 48.0 1.7 2.3 470 ± 80

1 E is the electric field intensity at which stable electrospinning occurred.

2.3. Determination of Solution Parameters

The dynamic viscosity (η) of the spinning solutions was determined using a Fungilab Viscolead
Pro M (Fungilab, Barcelona, Spain) viscometer, the solution conductivity was determined using a
Hanna EC 215 conductometer, and the surface tension (σ) was measured using a Krüss K20 tensiometer
(Krüss GmbH, Hamburg, Germany).

2.4. Electrospinning

The electrospinning was performed using needleless NanoSpider Lab 500 equipment (Elmarco,
Liberec, Czech Republic). The operating scheme is presented in Figure 1. The process parameters
were maintained in the following intervals: voltage of 50–70 kV, the distance between electrodes of
20–24 cm, and rotating speed of 3–11 rpm.
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2.5. Fiber Morphology and Diameter

The morphology of the obtained fibers was studied by atomic force microscopy (AFM) using a
Smena scanning probe microscope (NT-MDT, Zelenograd, Russia). Samples were scanned in tapping
mode with a curvature tip radius of 10 nm, a probe resonant frequency of 190 kHz, and a force constant
of 58 N/m. The processing of AFM images and the calculations of the average fiber diameters and
standard deviations were performed using the ImageJ program. Scanning electron microscopy (SEM)
was carried out on a Phenom G Pro instrument (Phenom-World BV, Eindhoven, the Netherlands), and
the average fiber diameter and diameter distribution were determined using the microscope software.

2.6. Statistical Analysis

MS Excel with the statistical package was used for statistical analysis. A value of p < 0.01 was
considered statistically significant for the model and the individual model terms.

3. Results and Discussion

3.1. The Influence of Solution Composition and Properties

Solutions for electrospinning were prepared according to the scheme of a fractional factorial
design of 23 experiment, where the varied factors were the contents of chitosan (A), PEO (B), and
ethanol (C). The solution parameters, the parameters of electrospinning, and the fiber diameters for
given solution compositions are presented in Table 1. The intensity of the electric field during the
stable electrospinning (E, kV/cm) was calculated from the applied voltage and used as a characteristic
of the electrospinning process, taking into account the distance between the spinning and collector
electrodes. The process parameters in each case were set optimally, based on a visual assessment
of the intensity and quality of the electrospinning, and the minimum value of the voltage that gave
high-quality spinning was recorded. In this case, the minimum voltage depends on the characteristics
of the solutions. The values of the solution parameters mainly corresponded to the ranges suitable for
electrospinning [10], with the exception of somewhat greater surface tension. The high surface tension
of water is considered the main obstacle for its use as a solvent for polymers in electrospinning [10].

Table 2 shows the effects of each component on the defined parameters. An increase in the
concentration of polymers caused a significant increase in the viscosity of the solutions, and an effect
was also observed for the interaction of chitosan and PEO concentration, leading to an additional
increase in viscosity. This latter effect is due to the interaction of the polymers through the formation of
hydrogen bonds, which is considered as one of the reasons why PEO initiates the electrospinning of
chitosan [31]. Increasing the chitosan concentration increased the conductivity of the solution, as well
as its surface tension. The introduction of ethanol into the solution reduced these parameters, thereby
increasing the spinnability of the solutions. An increase in the content of all the components resulted in
a decrease in the spinning intensity, and the effect of increasing the concentration of chitosan exceeded
the effect of increasing the content of PEO. The introduction of ethanol, to a great extent, facilitated
the spinning process, but the possibility of an effect of the interaction of PEO and chitosan cannot
be excluded.

Table 2. The influence of the solution composition on the solution properties and spinning process 1.

Component Viscosity Surface
Tension Conductivity Intensity of the Stable

Electrospinning
Fiber

Diameter

Chitosan lactate (A) ++ + ++ −− ++
PEO (B) ++ 0 − − +

Ethanol (C) ++ 2 −− −− −−
2 ++ 2

1 +(−) modest influence, ++(−−) considerable influence, 0 neutral influence; 2 the effect is due to the conjugate effect
of the interaction of the first two factors (AB).
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An increase in the spinning voltage resulted in thinner fibers, and the effects of the content of the
component solutions on tension and fiber thickness were inverse and in good agreement. In this case,
an unambiguous characterization of the influence of the components of the solutions on the fiber sizes
is not possible, but the solutions that were molded at low tension values can be used to regulate the
fiber diameter in a rather wide range by changing the forming voltage. This dependence has been
repeatedly reported in the literature [9].

3.2. Fiber Morphology

The AFM studies showed fibers that were smooth and free from beads (Figure 2) and with a rather
narrow diameter distribution (Table 1). Overall, thinner fibers formed a denser network. A general
consensus is that the diameter of the scaffold fibers for cell cultivation should correspond to the size of
the fibers of the extracellular collagen matrix; that is, 50–500 nm [32]. Beads were observed rarely and
only during the electrospinning of solution No 4 with minimal chitosan concentration and viscosity.
Insufficient viscosity of the solution is considered to be one of the main reasons for the appearance of
beads [33].
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Figure 2. Atomic force microscopy (AFM) images of nanofibers electrospun from the solutions of
different composition (presented in Table 1), scanning area size is 20 × 20 µm.

3.3. The Influence of Ethanol Addition

A series of experiments was carried out to determine the positive effect of ethanol on the efficiency
of chitosan formation from aqueous media and to establish the optimal concentration of ethanol in the
spinning solution (Figure 3). A qualitative decrease in the spinning efficiency was observed when
20 vol% of ethanol was added to the mixture; no further improvement occurred above this concentration.
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Figure 3. The influence of the ethanol addition on the electrospinning process.

3.4. The Influence of the Process Parameters

The RSM is used widely for the optimization of electrospinning processes. A study on the process
of fabrication of magnetic nanofibers of polyvinyl alcohol incorporated with γ-Fe2O3 nanoparticles
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distinguished only two significant parameters: flow rate and applied voltage [15]. RSM revealed the
chitosan/PEO ratio and MW of chitosan as the main factors influencing the variation of accessible
surface nitrogen concentrations between 0% and 6.4%. The model showed good adequacy, thereby
providing a tool for tailoring the surface properties of chitosan/PEO blends by addressing the amount
of accessible chitosan [14].

A full factorial design (23) was selected to screen out the process parameters. Appropriate levels
for the parameters were determined by conducting some initial experiments to test the validity of all
factorial points. Table 3 summarizes the factors and levels for factorial design during electrospinning.

Table 3. Factors and levels for full factorial design.

Factor Low (−1) Center (0) High (+1)

Voltage (A, kV) 50 60 70
Distance (B, cm) 20 22 24

Rotating speed (C, rpm) 3 7 11

Statistical analyses were carried out for two response parameters: average fiber diameter and
average electrical current during electrospinning. The current value was supposed to indicate the
efficiency of electrospinning, similar to the electrical field intensity during the determination of solution
influence on fiber diameter (see Section 3.1). The design layout and experimental results are presented
in Table 4.

Table 4. Complete design layout and experimental results.

Entry Run Order U, kV d, cm ω, rpm

Fiber Diameter, nm
Current,
µA

AFM SEM

Mica Paper Support Average Mode

1 3 70 24 11 350 ± 80 510 ± 70 286 244 32.5
2 7 70 24 3 460 ± 75 500 ± 65 271 253 34.5
3 8 70 20 11 455 ± 60 475 ± 70 242 228 40.0
4 6 70 20 3 380 ± 70 510 ± 50 279 251 47.0
5 4 50 24 11 530 ± 105 530 ± 70 279 227 12.0
6 2 50 24 3 310 ± 90 555 ± 90 307 282 14.5
7 1 50 20 11 200 ± 50 500 ± 85 260 235 22.0
8 5 50 20 3 400 ± 75 560 ± 60 290 199 14.0

The average fiber diameter was measured by several different methods. Fiber electrospinning
directly to mica allowed the generation of fiber images that show greater detail (Figure 4), and that
allowed the evaluation of the fiber diameter by the height of the fibers. However, the results differed
substantially from the determinations of fiber width using SEM and AFM images because of the
significantly smaller number of fibers on mica used in the calculations; therefore, the fiber height was
not considered as a response parameter.

The fiber diameters obtained with AFM were two times larger than those obtained with SEM;
however, the tendency of the changes was the same. The size difference can be related to the
systematic error of the determination of fiber borders by the programs used. The model significance
was determined for an average fiber diameter calculated from SEM images (Table 5), fiber diameter
mode (Table 6), and average current (Table 7). The influence of a factor was considered significant at
p < 0.01 [15].
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Table 5. ANOVA analysis for average fiber diameter (SEM) as a response.

Source df Sum of Squares Mean Square F-Value p-Value Status

linear 3 1869 623 2.97 0.160 insignificant
a (U, kV) 1 421 421 2.00 0.230 insignificant
b (d, cm) 1 648 648 3.09 0.154 insignificant

c (ω, rpm) 1 800 800 3.81 0.123 insignificant
error 4 839 210
total 7 2708

Table 6. ANOVA analysis for fiber diameter mode (SEM) as a response.

Source df Sum of Squares Mean Square F-Value p-Value Status

linear 3 1520 507 0.81 0.552 insignificant
a (U, kV) 1 132 132 0.21 0.670 insignificant
b (d, cm) 1 1070 1070 1.70 0.262 insignificant

c (ω, rpm) 1 319 319 0.51 0.515 insignificant
error 4 2512 628
total 7 4032

Table 7. ANOVA analysis for average electrical current as a response.

Source df Sum of Squares Mean Square F-Value p-Value Status

linear 3 1157 386 20.88 0.007 significant
a (U, kV) 1 1047 1047 56.66 0.002 significant
b (d, cm) 1 109 109 5.89 0.072 insignificant

c (ω, rpm) 1 1.53 1.53 0.08 0.788 insignificant
error 4 73.9 18.5
total 7 1231

None of the models was statistically significant. The electrical current depends strongly on the
applied voltage (or, more accurately, on the electrical field intensity) and does not depend on any other
parameter that was varied during the experiment. Thus, the current is most likely related to the charges
formed by ionization of the air close to the spinning electrode and the polymer jet [34]. Therefore,
the current value cannot be considered as an indicator of electrospinning efficiency. The process
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parameters used in needleless electrospinning of aqueous chitosan lactate did not have any significant
influence on the fiber diameter.

4. Conclusions

Using the technique of surface response, we showed that the addition of ethanol to the composition
of the spinning solutions greatly facilitates the process of electrospinning of chitosan from aqueous
solutions because this addition decreases the surface tension and conductivity of the solution.
The interaction of chitosan and PEO in spinning solutions affects the solution viscosity and spinning
ability. The spinning process parameters during needleless electrospinning at high voltages of 50–70 kV
have an insignificant influence on the fiber diameter.
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