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Abstract: Presently, cryptographic hash functions play a critical role in many applications, such as
digital signature systems, security communications, protocols, and network security infrastructures.
The new standard cryptographic hash function is Secure Hash Algorithm 3 (SHA-3), which is
not vulnerable to attacks. The Keccak algorithm is the winner of the NIST competition for the
adoption of the new standard SHA-3 hash algorithm. In this work, we present hardware throughput
optimization techniques for the SHA-3 algorithm using the Very High Speed Integrated Circuit
Hardware Description Language (VHDL) programming language for all output lengths in the Keccak
hash function (224, 256, 384 and 512). Our experiments were performed with the Nios II processor on
the FPGA Arria 10 GX (10AX115N2P45E15G). We applied two architectures, one without custom
instruction and one with floating point hardware 2. Finally, we compare the results with other existing
similar designs and found that the proposed design with floating point 2 optimizes throughput (Gbps)
compared to existing FPGA implementations.

Keywords: cryptography; hash algorithm; hash function; Keccak hash function; SHA-3; sponge
function; FPGA; Nios II processor

1. Introduction

Science of cryptography is the information protection technique to encrypt, store and secure data
when transmitted, to prevent reading of private information by intruders or public. Cryptography
provides many security enchantments to obviate a security problem and is widely used today, due to
its assurance benefits. Critical aspects of cryptography are to offer control, integrity, confidentiality,
non-disclaimer, and authentication of the data. Cryptography is a prominent technique used
extensively in security.

In recent years, security has been a critical issue in many security applications, such as networking,
communication and data authentication in systems. Due to the rapid development of the Internet,
security such as authentication must be implemented and maintained to ensure the integrity of
information. Hash functions are used in authentication mechanisms, such as the Hashed Message
Authentication Code (HMAC) [1], Digital Signatures [2], Secure Electronic Transactions (SET) [3],
Public Key Infrastructure (PKI) [4] and network security [5,6].

Presently, legacy architectures of hash functions are ideal candidates for attack using modern
cryptanalysis techniques. Serious attacks against SHA-1 were published in [7]. After the successful
attacks on SHA-1, it was decided by the NIST to move to SHA-2. The SHA-2 function include in the

Technologies 2020, 8, 15; doi:10.3390/technologies8010015 www.mdpi.com/journal/technologies


http://www.mdpi.com/journal/technologies
http://www.mdpi.com
https://orcid.org/0000-0002-6252-426X
https://orcid.org/0000-0002-6849-4241
https://orcid.org/0000-0002-2180-9752
http://dx.doi.org/10.3390/technologies8010015
http://www.mdpi.com/journal/technologies
https://www.mdpi.com/2227-7080/8/1/15?type=check_update&version=2

Technologies 2020, 8, 15 2of 14

same general hash function family of SHA-1 so that similar cryptanalysis methods could succeed in
the attack [8].

This has led the National Institute of Standards and Technology (NIST) to look for new and safer
hashing algorithms. Thus, a new cryptographic hash function standard, the Secure Hash Algorithm
3 (SHA-3), has been developed that offers a high level of security. SHA-3 is based on the Keccak
algorithm and adopted as a standard by NIST [9].

In our conference paper [10] we implemented the SHA-2 hash algorithm as a custom hardware
accelerator, in three different architectures: without custom instruction, with floating point 1 and
floating point 2 Intel IP cores. Our architectures are implemented on a Altera DE2-115 Development
and Education Board carrying a Cyclone IV E (EP4C115F29C7) architecture and use a Nios II soft core
processor. The results showed, at the speed of the SHA-2 hash algorithm increased by 7% and 11%
and the count of cycles reduced by 8% and 14%, respectively.

In this paper, we have enhanced our original research with the following key ideas, techniques and
methodologies. We designed the SHA-3 algorithm in the Keccak hash function for all proposed output
lengths (224, 256, 384 and 512) in the Intel FPGA Arria 10 GX (10AX115N2P45E1SG). We implemented
the SHA-3 algorithm with VHDL programming language. We researched two architectures: the first
was without custom instruction and the second was with floating point hardware 2. We designed
the two architectures with common evaluation criteria such as frequency, throughput, area, efficiency.
Finally, we compared our results with similar published Keccak architectures, found out that they
outperform in terms of throughput and efficiency.

The main contributions of the paper are summarized as follows:

o  We designed the Keccak core solution for all the output lengths of the algorithm (224, 256, 384,
and 512).

o  We researched on the optimization strategy for the throughput and efficiency of all output lengths
of the Keccak algorithm (SHA-3).

e  We performed extensive analysis and compared the throughput and efficiency of our proposed
method with other similar methods.

e  For the first time, to the best of our knowledge, we provide extensive estimation of performance
and power analysis for all the output lengths for the SHA-3 algorithm.

The structure of the paper is organized as follows. In Section 2, we refer to an overview of research
works similar to ours. In Section 3, we briefly present the Keccak Hash Function. In Section 4, we give
an outline of the procedure followed for implementing SHA-3 on FPGA. In Section 5, we present the
results of our work. Finally, in Section 6 we summarize the conclusions of our research.

2. Related Work

Many researchers proposed several models of the Keccak hash algorithm targetting FPGA devices,
to improve throughput, efficiency, area reduction, and power consumption. However, there is still
a need to improve throughput and efficiency. Research in security is a vivid domain and this is
evident from the plethora of interesting publications. Here, we highlight the ones best connected with
our research.

In [11], the authors deal with the performance efficient SHA-3 candidates implemented in
the hardware. The main purpose of their work is to compare the hash functions using area and
throughput. In their research they use Xilinx FPGA. The throughput achieved for the Keccak hash
function is 11.9 Gbps and the covered area (Slices) is 4745. We achieve better results both in the area
and throughput.

On this work [12], the authors propose a pipelined Keccak architecture. The proposed Keccak
architecture is implemented on a Xilinx FPGA platform (Virtex-5) and simulated in ModelSim.
The results show that the proposed architecture achieves good results in frequency and throughput.
Our implementation achieves better results in both frequency and throughput.
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In [13], the authors address the computational efficiency of SHA-3 candidates in the material.
The main purpose of their work is to compare the effectiveness of architectures for the fragmentation
functions per unit area. Their research is carried out with the Virtex-5 FPGA. The results showed that
the proposed architecture achieves good efficiency and throughput. We achieve better results in both
efficiency and throughput.

The authors in [14] propose pipelined, parallel and re-timed architectures in order to increase
efficient and throughput hardware implementations of the Keccak algorithm. The proposed
architectures are implemented on Spartan-3, Virtex-2 and Virtex-4 devices. The results show that the
proposed architectures achieve good results in efficient and throughput. Our implementation achieves
better results in both efficient and throughput.

Compact FPGA implementations of the five SHA-3 finalists are given by kerckhof et al. [15].
In these implementations, the hash function implemented as a small area coprocessor without using
system external or internal memory. In the best case, low area designs limit the internal data path to
64-bit bus widths.

In [16], the authors commit a detailed hardware performance evaluation of the last round SHA-3
candidates (JH, BLAKE, GROESTL, KECCAK, and SKEIN). They synthesize the hardware designs of
the 5 algorithms using Virtex-5, 6 and 7 FPGA chips to get area, frequency and throughput results.
They illustrated that the KECCAK algorithm outperforms all other SHA-3 finalists algorithms in terms
of clock frequency, area, and throughput.

The two implementations which propose [17] the hardware Keccak hash function described in this
article, have been implemented in a FPGA Virtex-5 device. The author’s design approaches include
the use of DSP blocks that result in minimal use of traditional logical user, such as lookup tables
(LUTs), pipelining that lead to increased time efficiency and combination of the two techniques. Their
experimental results prove that Keccak implementations using the DSP blocks are an inefficient design
method for applications with low complexity requirements.

Evaluation of compact FPGA implementations for all SHA-3 finalists is presented in [18].
He focuses on area-efficiency and he does not rank the candidates by absolute throughput, but rather
by the area and the throughput-area ratio. Furthermore, he removed the need for extra memory as it
used by the other authors and added 25 * /d additional clock cycles.

Finally, Pereira et al. [19] present a technique for paralel processing on FPGA and GPU of the
Keccak hash algorithm. They provide the core functionality and the evaluation is performed on
an Xillinx Virtex 5 FPGA. However, the results of the pipeline architecture show that the throughput is
7.7 GB and the efficiency is 2.47 Mbps/Slices at output length r = 576 achieving worse results than our
implementation at the same output length.

All these research projects are aimed at increasing the throughput of the cryptographic hash
function Keccak. In contrast with these authors, we present two architectures of the SHA-3 algorithm in
Keccak hash function, using the Nios-II processor. The first architecture is without custom instruction
and the second is with floating point hardware 2. The two techniques proposed in this document
provide a secure SHA-3 algorithm in Keccak hash function. Our proposed design, using floating point
hardware 2, optimizes throughput (Gbps) and efficiency (Mbps/Slices) compared to existing FPGA
implementations.

3. Keccak Hash Function

Keccak is a hash function consisting of four cryptographic hash functions and two
extendable-output functions. These six functions are based on an approach called sponge functions.
Sponge functions provide a way to generalize cryptographic hash functions to more general functions
with arbitrary-length outputs [20].

The block diagram of SHA-3 consists of four functional blocks called state function, round
constant, buffer function and Keccack function as shown in Figure 1. The algorithm receives as
a matrix, an input called state. The state has a length of 1600 bits and consists of a three dimensional
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5 x 5x word-size table, where word-size € {1,2,4,8,16,32,64}. The buffer function has two input
parameters, the first is the number of bits (64 bits or 256 bits) that accepts as input data, and the second
is the state matrix and generates hash output based on sponge construction. Depending on the desired
output length, the algorithm uses two parameters for the sponge construction as shown in Figure 2.

Input Data State Matrix &= =
|
FLllar:lcftf\et:n () Cﬁggpait
Hash value Keccack Function
Initialization
Absorbing
Squeezing

Figure 1. Block diagram of Keccak algorithm.
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The two input parameters are the bitrate with r-bits, and the capacity with c-bits which determines
the attainable security level. The input message is padded and divided into blocks of r-bits. Function
f is the main processing part and consists of 24 rounds with processes. The function f acts on a state,
with width b = r 4 ¢ where r is the outer state and c is the inner state.

The processes of function f are theta, rho, pi, chi and iota denoted as 6, p, 7, x and t respectively,
in a state matrix A. Theta, as shown in Equation (1), consists of a parity computation, a rotation of one
position, and a bitwise XOR.

Clx] = A[x,0] ® A[x,1] ® A[x,2] @ Alx,3] ® Alx,4] 0<x<4
x] = C[x — 1] @ ROT(C[x +1],1) 0<x<4 1)

Theta (8): D|
Alx,y] = Alx,y] ® D[x] 0<xy<4
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Rho in Equation (2) is a rotation by an offset that depends on the word position, and pi is
a permutation.

Rho (p) — Pi(m): Bly,2x+3y] = ROT(A[x,y],r[x,y]) 0<x,y<4 ()
Chi in Equation (3) consists of bitwise XOR, NOT, and AND gates.
Chi (x): Alx,y] = Blx,y] ® ((NOTB[x+1,y])AND(B[x +2,y])) 0<x,y<4 (3)

Finally, iota in Equation (4) is a constant round addition.

lota (1):  A[0,0] = A[0,0] & RC 4)

When these five processes are completed, a round is completed. The Padding function
complements the bits to be processed.

The Keccak function has three different stages, initialization, absorption, and squeezing. In the
absorption phase, the r-bit input message blocks are XORed with the first r-bit of the state and the
resulting outputs are interrelated with the function f. When all message blocks are processed, the
sponge’s construction changes to the compression phase. In the compression phase, the first r-bit of
the state is returned as an output block and is also inserted with the function f. The number of output
blocks can be arbitrary and selected by the user.

The Round Constant function RC[i] are given in Table 1 and consists of 24 permutations values
that assign 64 bit data to Keccak function. The NIST standard defines the following four versions of the
Keccak sponge function [2] for message M and output length d as shown in Table 2. More information
about Keccak algorithm can be found in [21].

Table 1. The round constants RC|[i] of keccak algorithm.

RC[0] | 0x0000000000000001 | RCI8] | 0x000000000000008A | RC[16] | 0x8000000000008002
RC[1] | 0x0000000000008082 | RC[9] | 0x0000000000000088 | RC[17] | 0x8000000000000080
RC[2] | 0x800000000000808A | RC[10] | 0x0000000080008009 | RC[18] | 0x000000000000800A
RC[3] | 0x8000000080008000 | RC[11] | 0x000000008000000A | RC[19] | 0x800000008000000A
RC[4] | 0x000000000000808B | RC[12] | 0x000000008000808B | RC[20] | 0x8000000080008081
RC[5] | 0x0000000080000001 | RC[13] | 0x800000000000008B | RC[21] | 0x8000000000008080
RC[6] | 0x8000000080008081 | RC[14] | 0x8000000000008089 | RC[22] | 0x0000000080000001
RC[7] | 0x8000000000008009 | RC[15] | 0x8000000000008003 | RC[23] | 0x8000000080008008

Table 2. SHAS3 instances.

Instance Output Size d  Rate r-Block Size Capacity ¢

SHA3-224(M) 224 1152 448
SHA3-256(M) 256 1088 512
SHA3-384(M) 384 832 768
SHA3-512(M) 512 576 1024

4. Implementation

4.1. Nios II Embedded Processor

Nios II is the integrated soft core processor for the Intel FPGA family [22]. The first Nios processor
was 16 bit, while the later successor Nios Il is 32 bit. According to the Nios original architecture, Nios
II presents several enhancements. Nios II is considered to be suitable for most embedded applications
(e.g., from DSP to control). Similarly, the Xilinx processor family incorporates a similar competitive
softcore CPU with Nios, MicroBlaze.
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The advantage of Nios II over MicroBlaze is that it is licensed through a third IP provider for basic
ASICs and their simulation in Synopsys Designware. Figure 3 show operation of the Nios Il embedded
processor and how it connects to external custom logic units.

Mioz 11 Embedded Processor

Y

Figure 3. Nios Il embedded processor with custom logic unit [22].
4.2. Floating Point Hardware 2

The Floating Point Hardware 2 (FPH2) [23] component provides low cycle count implementations
of add, sub, multiply, and divide operations, and custom instruction implementations of additional
floating point operations. The FPH2 component is the preferred floating point implementation for
the Nios II processor. Intel recommends FPH2 rather than the legacy FPH1 because it provides better
performance and a smaller device footprint. Table 3 shows a list of the floating operations implemented
by each custom instruction.

Table 3. Floating operations implemented by each custom instruction.

Floating Point Hardware 2 Component
(altera_nios_custom_instr_floating_point_2)

Combinatorial Custom Instruction Multi-Cycle Custom Instruction
(altera_nios_custom_instr_floating_point_2_combi) (altera_nios_custom_instr_floating_point_2_multi)
minimum add
. subtract
maximum .
multiply
compare divide
negate square root
absolute q
convert

4.3. System Integration

In this work, we focused on reducing the number of clock cycles using floating point hardware 2
in order to achieve higher throughput and efficiency. Additionally, in our architectures, we took into
consideration all the output lengths of the Keccak hash algorithm.

In our experiments we used Quartus II version 18.1 Standard Edition software on Windows 10
Professional 64-bit, Intel Core i7-7820X (3.60 GHz) CPU, 32 GB DDR4 SDRAM and Terasic DE5a-Net
board. Table 4 and Figure 4 show the specifications of the DE5a-Net board [24] that were used for the
SHA-3 implementation.
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Table 4. Intel Arria® 10 GX FPGA Specifications.

Parameters Values
Family Intel Arria® 10 GX FPGA
Device 10AX115N2F45E1SG
Memory 2 x 4 GB DDR4 SO-DIMM 2400 MHz SDRAM
System Clock Frequency 50 MHz Oscillator

RS422 7-Segment 4 User 2 User SMA Altera Arria 10 GX
Header Display LEDs Switches Clock /0 10AX115N2F45E1SG 4 QDRI+ SRAM 12V Power Supply
Connector

256MB Flash
4 QSFP+ Ports—|

DDR4

Si5340A Clock __§ & s : E QCarria0
Generator = 10AX1ISN2F 4SETSE
P CFE"A;::M 34

DDR4_ |
SO-DIMM-B Socket
USB-Blaster Il

JTAG
Header (DNI)

4 Push-Buttons | I
PCI Express x8 Edge CPU-RST MAX_RST 12V Fan
FPGA Mode Select & Button Button  Connector
Factory/User Load Image Select

Figure 4. Intel DE5a-Net Arria® 10 GX FPGA board (Terasic, Taiwan) [24].

The SHA-3 algorithm was implemented in the Keccak hash function using the VHDL
programming language. Each individual VHDL file was examined separately to verify its functionality.
All tests were performed using the ModelSim 10.6d simulator. Then, in the top module, we designed
and created block diagrams of all individual VHDL files. We then simulated the top module using
ModelSim with valid input samples given in [25]. After verifying the simulation results, we proceeded
to design the Nios II.

The Keccak core supports all the output lengths of the Keccak algorithm (224, 256, 384,
and 512). The Keccak core block performs the most important function throughout our system
design. The Keccak core has 24 permutation rounds and each round consists of five sequential phases
called Theta, Rho, Pi, Chi and Iota denoted as 0, p, 7r, x and t respectively as Figure 5 shows. Keccak
takes each stage the state array and after applying the corresponding stage function, returns a new
updated state array. The Keccak core has the Control Unit, which is a Finite-State Machine (FSM).
The FSM consists of 5 states:

S1 for instance choice
52 for main computing
S3 for hash computing
54 for rounds

S5 for last round

O-DIMM-A Socket



Technologies 2020, 8, 15 8 of 14

Keccak Core

Figure 5. Keccak Core block diagram.

The design of the Nios Il was done using the platform designer. The design of the components
of the system that we implemented, includes Clock, System ID peripheral, On-chip RAM, Parallel
Input Output (PIOs), JTAG-UART, performance counter, DDR4 SDRAM controller, PLL, and Keccak
component. The Nios II processor uses On-chip RAM as operating memory. All data is transferred
from Nios II to Keccak component via Avalon Switch Fabric, as shown in Figure 6. Figure 7 shows the
entire design of our system that we implemented with the Nios II processor.

Then, using the Pin Planner tool we outsourced the connections for SDRAM, PIOs and
system clocks. Finally, the implemented system design was applied in the FPGA Arria 10 GX
(10AX115N2F45E1SG). By the synthesis report, we get the detailed results for the entire system
design we implemented, such as logic use, total registers, total pins, total block memory bits, total DSP
blocks and total PLLs.

A

Keccak Avalon [wite ]
Core | Interface [Reod |

Figure 6. Data transfer between Avalon Switch Fabric and Keccak Core.

F Y

F Y
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F 9
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Reset

‘ USB — Blaster Interface ‘

JTAG Uart Interface

‘ Performance Counter

Avalon Switch Fabric

‘ On-Chip Memory ‘ ‘ SDRAM Controller ‘ System ID H Floating Point 2 H Keccak Core ‘
3
msg
PIO(O)| v PIO(50)
v v
SDRAM Chip Input / Output Stream

Figure 7. The block diagram of the entire system. Nios II system implemented on the DE5a-NET DDR4

board.

5. Experimental Results

Experiments have been performed in real hardware using FPGA Arria 10 GX
(10AX115N2P45E1SG). The SHA-3 algorithm has been implemented in the Keccak hash function using
the VHDL programming language and the Nios II processor was used for all Keccak algorithm output
lengths (224, 256, 384 and 512).

5.1. Synthesis Report

We implemented architecture without custom instruction and floating point architecture with
floating point 2. By the synthesis report we extracted the detailed results for the entire system design
we had implemented the SHA-3 algorithm with the Keccak hash function. Results of the synthesis of
the two architectures are presented in Table 5.

Table 5. SHA-3 Algorithm with the Keccak hash function synthesis report.

Items Without Custom With Floating

Instruction Point Hardware 2
. . 11,102/427,200 * 12,020/427,200 *
Logic use (in ALMs) (3%) (4%)
Total registers 24,519 24,568
Total pins 370/992 * 372/992 *
p (37%) (38%)
. 1,501,453/55,562,240 *  1,504,301/55,562,240 *
Total block memory bits (3%) (3%)
3/1518* 7/1518 *
Total DSP Blocks (<1%) (<1%)
7/112% 7/112%
Total PLLs (6%) (6%)

* Denotes the maximum resource in the category.
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5.2. Throughput and Efficiency Results

The evaluation of the SHA-3 algorithm in the Keccak hash function is performed with three
metrics of frequency, area, and throughput.

Throughput signifies the number of bits processed per unit time and is specified in Gbps or Mbps.
The Throughput is calculated theoretical using Equation (5). In Equation (5), the No. of bits processed
is the bitrate size ‘v’, frequency is the maximum frequency reported by the tool and No. of clock cycles
after which output is generated. Clock cycles represent the number of iterations needed of the five
functions Theta, Rho, Pi, Chi and Iota to generate the hash value.

No. of bits x frequency

Throughput = No. of clock cycles ©)
The Efficiency is calculated by using Equation (6).
- _ Throughput
Efficiency = Aren (6)

Table 6 shows the results of our two architectures. The maximum clock frequency is 692 MHz in
both architectures. In the implementation without Custom Instruction the clock number of the five
functions is 27 while in the implementation with floating point hardware 2 it is 24. Area use is specified
with respect to number of slices. Every slice of Arria 10 GX FPGA contains four logic (in ALMs) and
eight storage elements.

Table 6. Throughput and Efficiency results of our two architectures.

Proposed Design

Design without Cl.lstom Pro&?tslf t;l?}t;;ign
Instruction
Area (Slices) 2776 3005
r=1152 29.525 33.216
Throughput (Gbps) r=1088 27.885 31.370
r=_832 21.323 23.989
r=>576 14.762 16.608
r=1152 10.63 11.05
Efficiency (Mbps/Slices) r=1088 10.04 10.43
r=832 7.68 7.98
r=576 5.31 5.52

Tables 7 and 8 show the comparison with other similar architectures, getting the best proposed
implementation, in terms of throughput and efficiency. The existing implementations we have found,
support the results of their research by simulating Modelsim so our implementation shows, in some
cases, an increase in Area (Slices).



Technologies 2020, 8, 15 11 of 14

Table 7. Throughput results and comparison. With bold is ours experimental results.

Frequency Area Throughput (Gbps)

Design FPGA .
(MHz)  (Slices) . _ 4152 r=1088 r=832 r=576

Kitsos P. et al.

e ] 215 4745 - 119 - -
ggfg)“[g] etal, Virtex-5 31711 4793 - - - 12.68
{ggirzv)vfﬂ) ;{ etal, Virtex-5 271 1414 - 1228 - -
ggl"ze)lﬁ‘%ios Geetal yitexs 285 2573 - - - 570
é%rfl)kh[cl’gls etal, Virtex-6 285 188 - - - 0077
{;5‘1‘521; '[31' . Virtex-6 197 397 - 107 - -
gfgfg;’i[rl‘;’ etal. Virtex-5 189 1117 5915 6263 8190 8518
Fz eorle;a[ g]et al Virtex-5 452 3117 - - - 770
élgif(l))A[iZ; al. Virtex-4 509 4356 - 233 - -
Proposed design Arria 10 GX 692 3005 33216 31370 23.989  16.608
with FPH2

The proposed design with floating point hardware 2 achieves the highest throughput and
efficiency, compared to the optimum implementations of other similar architectures. The results
show that our architecture achieves a reduction in the number of clock cycles.

Table 8. Efficiency results and comparison. With bold is ours experimental results.

Frequency  Area Efficiency (Mbps/Slices)
(MHz)  (Slices) . _ 1157 ,-1088 r=832 r=576

Design FPGA

Kitsos P. et al.

T ; 215 4745 - 2.50 - -
ggfg)“[g] etal, Virtex-5 31711 4793 - - - 27
{%EV)VF;]Y etal, Virtex-5 271 1414 - 8.68 - -
gglvze)lﬁl;g]ios G.etal Virtex-5 785 2573 - - - 2.21
é%rfl)kh[‘;gls etal. Virtex-6 285 188 - - - o4
{;glgzl; 1[31' . Virtex-6 197 397 - 2.69 - -
ngfg;’i[rl‘;’ etal Virtex-5 189 1117 3.00 317 415 43
georle;a[ 1F§]et al Virtex-5 452 3117 - - - 247
Proposed design Arria 10 GX 692 3005 11.05 10.43 7.98 5.52
with FPH2

5.3. Power Analysis EPE

The power analysis for the DE5a-Net DDR4 board from the implementation of the SHA-3 in
Keccak hash function is given in Table 9. The temperature rating for the DESa-Net DDR4 board based
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on the provided thermal parameters is 22.1 °C. The maximum ambient temperature that the DE5a-Net
DDR4 board can handle without breaking the maximum temperature junction is 95.8 °C. The thermal
power consumed is 0.018 W. The thermal power dissipated on the chip is 0.766 W. The total thermal
power of all resources is 0.784 W. Power analysis was performed using the Intel tool Early Power
Estimators (EPE) [26].

Table 9. Power analysis.

Thermal Analysis Thermal Power (W)

Junction Temp, TJ (°C) 221 HPS 0.018
Maximum Allowed TA (°C) 95.8 PSTATIC 0.766

TOTAL (W) 0.784

6. Conclusions and Future Work

The attacks on SHA-1 led to transition of the SHA-2. The functions of SHA-2 belong to the
same class of hash functions as SHA-1, so NIST decided to adopt a new and safer hash algorithm.
The newly selected cryptographic hash function standard is the SHA-3. The Keccak hashing algorithm
considered the safest up to date and has strong resistance to cryptanalysis attacks as well as high
hardware description performance.

In this paper, we focused on the high throughput of the Keccak hash algorithm using the Nios II
processor in the FPGA Arria 10 GX (10AX115N2P45E1SG). We opted for the proposed design for all
Keccak algorithm output lengths (224, 256, 384 and 512) using the VHDL programming language. We
tested functionality of all individual VHDL files with valid response samples.

We performed a design without any custom instruction and implementation with floating point
hardware 2 for all output lengths of the Keccak algorithm. Finally, the results for throughput and
efficiency of our architecture with floating point hardware 2 achieved better performance due to the
reduced number of clock cycles, at least 12.86% and 12.78% respectively compared to existing designs.

In this paper, we implementing the Keccak algorithm, the winner of competition from NIST
and the newly selected cryptographic hash function standard as the SHA-3. For future work, we
will implement the other four SHA-3 finalists: blake, Grostl, jh, and Skein. When trying to design
more serial architectures, the possibility to share resources, regular structure of an algorithm, and the
ordered memory addressing, are added factors that may influence the performance. The diversity in
the architectural implementation of these algorithms can lead us to a guide that shows us the ideal
solution for hardware security.
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Abbreviations

The following abbreviations are used in this manuscript:

SHA Secure Hash Algorithm

NIST National Institute of Standards and Technology

VHDL  Very High Speed Integrated Circuit Hardware Description Language
FPGA Field-Programmable Gate Array
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FPH
Gbps

Floating Point Hardware
Gigabits per second

HMAC Hashed Message Authentication Code

SET Secure Electronic Transactions
PKI Public Key Infrastructure

IP Intellectual Property

DSP Digital Signal Processing
LUTs lookup tables

GPU Graphics Processing Unit
Mbps Megabits per second

GB Gigabytes

RC Round Constant

CPU Central Processing Unit

ASIC Application-Specific Integrated Circuit
GHz Gigahertz

DDR4 Double Data Rate 4

SDRAM Synchronous Dynamic Random-Access Memory
SO-DIMM  Small Outline Dual In-line Memory Module

MHz Megahertz

FSM Finite-State Machine

PIO Parallel Input Output

JTAG Joint Test Action Group

UART Universal Asynchronous Receiver Transmitter
PLL Phase Locked Loop

USB Universal Serial Bus

ALM Adaptive Logic Module

C Celsius

W Watt

EPE Early Power Estimators
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