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Abstract: The uncertainties in various Electromagnetic (EM) problems may present a significant effect
on the properties of the involved field components, and thus, they must be taken into consideration.
However, there are cases when a number of stochastic inputs may feature a low influence on
the variability of the outputs of interest. Having this in mind, a dimensionality reduction of the
Polynomial Chaos (PC) technique is performed, by firstly applying a sensitivity analysis method
to the stochastic inputs of multi-dimensional random problems. Therefore, the computational cost
of the PC method is reduced, making it more efficient, as only a trivial accuracy loss is observed.
We demonstrate numerical results about EM wave propagation in two test cases and a patch antenna
problem. Comparisons with the Monte Carlo and the standard PC techniques prove that satisfying
outcomes can be extracted with the proposed dimensionality-reduction technique.

Keywords: Monte Carlo method; Morris method; polynomial chaos; random media problems;
variable screening

1. Introduction

Uncertainty quantification in the context of an Electromagnetic (EM) problem is of vital
significance, as the calculation of the involved field quantities can be a challenging task. For instance,
biological tissues are complicated media with high variability in their electric characteristics [1], and as
a result, the utilization of deterministic approaches may not constitute a safe choice. Other problems
involve the geometrical uncertainties introduced due to fabrication tolerances during the construction
of printed circuit board antennas, which may have a significant impact on their performance [2].
Neglecting those random fluctuations can lead to unrealistic outcomes; therefore, deterministic
schemes are not sufficient in such cases. For this reason, various techniques have been proposed
that deal with uncertainty problems more efficiently.

The most common method for assessing EM uncertainties is the Monte Carlo (MC) approach [3].
In this context, a given problem is solved repeatedly, using various random samples of the input
parameters. The convergence of the MC method may be achieved after a large number of simulations,
which eventually make it impractical in many cases. A more efficient technique is based on Polynomial
Chaos (PC) expansions [4]. This algorithm manages to extract reliable results in problems with low or
moderate numbers of random variables. The PC scheme has been already utilized in many EM cases,
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where the stochastic inputs present uncertainties in electric [5] or geometric features [6]. However,
as the dimensionality of a given problem grows, the computational cost of the PC approach increases,
rendering it eventually less efficient.

In this paper, we perform a dimensionality reduction on the PC scheme by firstly applying
a sensitivity analysis based on the Morris method [7]. In this way, the random variables with the
smaller contributions to the variance of the output of interest are detected, and can be neglected
without significant precision loss. Then, the PC technique is utilized with only the most influential
stochastic inputs, reducing the computational times significantly. This approach is case dependent,
as different sets of random variables may be the most important ones in different problems. The present
paper generalizes the preliminary work of [8], and the proposed methodology is additionally applied
to the more complex case of a patch antenna problem. Comparisons between the MC and conventional
PC schemes indicate that satisfying outcomes can be extracted at a reduced computational cost.

2. Brief Literature Review of Related Works

In the pertinent literature, various suggestions have been proposed to tackle the limitations of
the PC technique. A number of popular approaches make use of sparse grids based on the Smolyak
method [9], which can significantly reduce the number of required simulations. However, Smolyak
grids still suffer from the “curse of dimensionality” in problems with a high number of random inputs.
For this reason, other techniques have been suggested that mitigate this shortcoming even further.
The work in [10] utilizes an adaptive algorithm for the construction of nested sparse grids. This method
starts by estimating the mean value of the examined function and proceeds to the calculation of the
PC coefficients by taking advantage of the mean estimation in the previous step. As a result, fewer
quadrature points are required, while preserving high accuracy. Alternative approaches are hierarchical
sparse grids [11], which are based on piecewise multi-linear hierarchical basis functions. Hierarchical
surpluses are utilized for error control and adaptively refine the collocation points in discontinuity
regions in the stochastic space.

Other algorithms manage to reduce the number of terms in the PC method by seeking sparse
solutions. For example, the authors of [12] proposed the utilization of hyperbolic index sets to
truncate the PC expansions. Then, a sparse solution was constructed by performing an adaptive
algorithm based on least angle regression. In [13], a weighted `1-minimization approach was proposed
for the computation of sparse PC representations. The weights in the `1 norm were computed
via an approximation of the PC coefficients. As a result, coefficients with very small values were
further penalized, improving the overall efficiency. In [14], a compressed sensing algorithm was
presented, which exploits the concept of D-optimality. A design of experiments was constructed
therein, utilizing the QR factorization with column pivoting. Then, the orthogonal matching pursuit
method, which is a popular technique for finding sparse solutions, was properly modified to take into
account these designs.

Additionally, tensor recovery algorithms have been successfully utilized for uncertainty
quantification, reducing the number of required simulations in the PC method [15]. The tensor
recovery is performed by applying an alternating minimization approach. The presented results
in [15] indicated that the proposed method can be more efficient than sparse grids and the MC
technique for the examined test cases. The work in [16] performed a tensor recovery algorithm in
hierarchical uncertainty quantification problems. Low-level simulations were accelerated by utilizing
the anchored analysis of variance method, while high-dimensional surrogate models were handled via
tensor-train decomposition at the high level. Both approaches achieved a near-linear complexity with
respect to the number of random inputs.
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3. Proposed Methodology

3.1. Polynomial Chaos Expansions

According to [4], the PC expansion can represent a random function y via a series of orthogonal
polynomials. Specifically, if y depends on N stochastic variables ξ1, ξ2, . . . , ξN , it can be expressed as:

y (ξ) =
∞

∑
i=0

ciΨi (ξ) (1)

where ξ = [ξ1, ξ2, . . . , ξN ]
T . The ci parameters represent the polynomial coefficients and Ψi are

orthogonal basis functions. The expansion in (1) is approximated by truncating the infinite summation
to P + 1 terms, with a value of:

P + 1 =
(N + k)!

N!k!
(2)

where k is the polynomial order. For cases with multiple independent random variables, the basis
functions are constructed from univariate polynomials, as follows:

Ψ (ξ) =
N

∏
i=1

ψαi (ξi) (3)

where αi denotes the corresponding polynomial order [17] and ψαi are the corresponding 1D
polynomials. The choice of the basis depends on the distribution of each stochastic input.
For instance, uniform variables require the Legendre basis, and Hermite polynomials are suitable for
normal distributions.

After the approximation of the PC expansion has been determined, the corresponding mean value
and variance can be computed as:

M {y} = c0 (4)

σ2 {y} =
P

∑
i=1

c2
i ||Ψi||2 (5)

where:
||Ψi||2 =

∫
ΩN

Ψ2
i (ξ) pd f(ξ)dξ (6)

ΩN is the N-dimensional random space, and pd f(ξ) denotes the joint probability-density function.
In order to estimate the expansion coefficients, two main techniques exist: intrusive and non-intrusive
ones. The first approaches modify the deterministic solver by performing the computation of the PC
expansion terms within the solver. On the contrary, the non-intrusive methods perform a number of
deterministic realizations at specific collocation points in the random space. Then, one way to obtain
the PC coefficients is through linear regression. In this case, given a total number of S collocation
points in ΩN , the PC expansion must remain valid at each one of them. As a result, this leads to the
following system of equations:

Ψ0 (ξ1) Ψ1 (ξ1) . . . ΨP (ξ1)

Ψ0 (ξ2) Ψ1 (ξ2) . . . ΨP (ξ2)
...

...
. . .

...
Ψ0 (ξS) Ψ1 (ξS) . . . ΨP (ξS)


︸ ︷︷ ︸

A


c0

c1
...

cP


︸ ︷︷ ︸

C

=


y0

y1
...

yS


︸ ︷︷ ︸

Y

(7)
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where y1, y2, . . . , yS denote the outputs from the deterministic simulations. It is essential that the
number of equations S be equal to or greater than the P + 1 coefficients. The overdetermined system
in (7) can be solved through the least squares method as:

C ≈
(

AAT
)−1

ATY (8)

An alternate way to estimate the coefficients is through the spectral projection method, which takes
advantage of the orthogonality of the polynomial basis [18]. As a result:

ci =
1

||Ψi||2
∫

ΩN

y (ξ)Ψi (ξ) pd f(ξ)dξ (9)

The integrals in (9) can be approximated with the help of quadrature. Specifically, after selecting
an appropriate set of collocation points, (9) is estimated as:

ci '
1

||Ψi||2
imax

∑
i=1

y (ξ i)Ψi (ξ i)wi (10)

where wi are the weights and imax is the number of collocation points. In this work, the selection of
collocation points is performed via the Clenshaw–Curtis nodal sets [19], which are based on Chebyshev
polynomials. The Clenshaw–Curtis nodes are calculated as:

xk = − cos
π (k− 1)

S− 1
, k = 1, 2, . . . , S (11)

Finally, the computation of (10) is implemented by utilizing the Smolyak algorithm [9],
which manages to create a sparse representation of a full-tensor grid.

3.2. The Morris Method

In order to perform the dimensionality reduction in the PC approach, we apply a sensitivity
analysis to the stochastic inputs. In this way, the trivial random variables can be identified, and thus
treated as deterministic. The chosen sensitivity analysis algorithm is the Morris method [7], due to its
low computational cost. In particular, this technique starts by defining a set of r (typically between
10 and 15) possible parameter values in the random space. Then, the quantity of interest f is calculated
for a vector dj = [d1, d2, . . . , dn] of this set, with 0 < j ≤ r. Next, each element of dj is perturbed by

a factor ∆j
i at a time, while the others are kept unchanged. The values of ∆j

i are usually a predetermined
multiple of 1/(r − 1). This step continues until all the elements of dj change. After that, the jth
elementary effect [7] is calculated for each variable, as:

EEj
i (ξ) =

f
(

d1, d2, . . . , di + ∆j
i , . . . , dN

)
− f (d1, d2, . . . , dN)

∆j
i

(12)

This procedure is repeated for all the r points. Finally, the r elementary effects are averaged for
every random variable:

m∗i =
1
r

r

∑
j=1

∣∣∣EEj
i

∣∣∣ (13)

where m∗i denotes the mean elementary effects [20] of the variable i. The stochastic inputs with a high
mean elementary effect are considered influential, while the ones with a low mean elementary effect
are treated as trivial. In this work, the Finite-Difference Time-Domain (FDTD) method [21] is used as
a deterministic solver. This technique performs a discretization of the Maxwell equations both in time
and space and computes the involved field components in a leapfrog manner (a brief description of
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this scheme is presented in Section 3.3). However, the quantities m∗i have to be calculated for every cell
of the discretized spatial grid. As a result, the following heuristic is employed.

• For all j, k = 1, . . . , N.
• Let g be the cells in the grid that satisfy m∗j ≥ m∗k .

• Calculate the mean m∗j , for the cells in g. Let this be M
{

m∗j [g]
}

.

• Compute the product len (g) M
{

m∗j [g]
}

, where len (g) is the number of values in g.

Therefore, an N × N matrix is created, where each element depicts the significance of variable
ξ j, compared to ξk. Then, the mean value in each row (excluding the zeros in the main diagonal) is
computed; thus, a vector J composed of N elements is extracted.

3.3. The Finite-Difference Time-Domain Technique

The FDTD technique is one of the most popular algorithms for solving full-wave propagation
problems. Specifically, this scheme employs second-order central differences to Maxwell’s differential
equations. For example, in the one-dimensional case, the scalar equations of the Faraday and the
Ampere laws are given by:

µ
∂Hy

∂t
=

∂Ez

∂x
(14)

ε
∂Ez

∂t
=

∂Hy

∂x
(15)

where Hy and Ez denote the magnetic and electric strengths in the y and z directions, respectively.
Furthermore, ε is the dielectric permittivity, and µ expresses the magnetic permeability. The time
and spatial partial derivatives can be replaced with finite difference approximations. Applying this
to (14) yields:

µ
Hy|

n+ 1
2

i+ 1
2
− Hy|

n− 1
2

i+ 1
2

∆t
=

Ez|ni+1 − Ez|ni
∆x

(16)

where n indicates the time step index. Solving for Hy|
n+ 1

2
i+ 1

2
gives:

Hy|
n+ 1

2
i+ 1

2
= Hy|

n− 1
2

i+ 1
2
+

∆t
µ∆x

(
Ez|ni+1 − Ez|ni

)
(17)

where the values of ∆x and ∆t denote the spatial and time discretization steps. Since the space is
discretized, the field components are updated for all the i cells in the FDTD grid [21]. The electric field
values can be similarly computed by applying the same procedure to (15).

4. Numerical Results

The proposed approach was assessed via three different EM problems. The first numerical test
involved a coaxial cable with eight uniform random dielectric materials, whose properties are shown
in Table 1. Figure 1 depicts the geometric features for the 1D problem. We considered an incident
Gaussian pulse (maximum frequency of 2 GHz), which emanated at a distance x = 0.015 m for 25 ns.
The FDTD grid consisted of 1200 cells, with a discretization density equal to 40 cells per wavelength
in the vacuum at 2 GHz. This problem was examined in two cases where in each case, the dielectric
permittivities ranged between ±5% and ±8% of the corresponding mean values. The magnetic
permeability was considered deterministic and equal to µ0. The level of parameter L in Smolyak’s
algorithm [9] and the order of the PC expansion were both set to three. Furthermore, the perturbation
step ∆j

i was constant for every random variable and had a value of 0.5. Finally, unwanted reflections
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were minimized by applying the first-order Mur’s absorbing boundary condition [22] at the two ends
of the computational domain.

Table 1. Mean dielectric permittivities for the transmission-line problem.

Dielectric Materials Mean Dielectric Permittivities

ε1 8.0ε0
ε2 2.4ε0
ε3 5.6ε0
ε4 5.6ε0
ε5 6.0ε0
ε6 7.2ε0
ε7 9.4ε0
ε8 8.7ε0

Figure 1. Geometric features of the 1D transmission-line problem.

The reduced dimension PC approach was compared with 1000 MC realizations and the
original PC method. In this problem, the Morris method required 108 runs for the estimation
of the mean elementary effects, which was only a small amount of extra computational burden.
The proposed algorithm solved the transmission-line problem using the six most influential variables.
The significance of each random input was determined via a threshold, which was equal to 3× 10−7

and was applied in J. Therefore, the overall efficiency of the PC algorithm was increased. Figure 2a,b
illustrate the mean and the standard deviation of the E field for the first case, respectively. Evidently,
the outcomes of the depicted curves were quite satisfactory. In Figure 3, the mean elementary effects are
illustrated for each variable of the transmission-line problem for the first case. As already mentioned,
the stochastic inputs with high mean elementary effects at a given point in the grid are considered
important at that position. In Figure 4a,b, the mean value and the standard deviation of the E field are
depicted for the second case. For this scenario, the MC approach required 77 s, while the traditional
PC algorithm and the proposed scheme took about 65 s and 38 s, respectively.
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Figure 2. (a) Mean value and (b) standard deviation of the electric field for the first case of the 1D
transmission-line problem. PC, Polynomial Chaos.
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Figure 3. Mean elementary effects for each random variable in the first case of the 1D
transmission-line problem.
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Figure 4. (a) Mean value and (b) standard deviation of the electric field for the second case of the 1D
transmission-line problem.

The second problem examined the wave propagation within a two-dimensional (2D) space with
six concentric dielectric cylinders of infinite length, whose characteristic parameters are shown in
Table 2. The computational domain was discretized into 440× 440 cells, with a spatial density of
20 cells per wavelength in the vacuum. In this case, a sinusoidal wave was used as a source at 2 GHz,
emanating at the center of the domain for 14.142 ns. The dielectric permittivities followed again
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a uniform distribution, in the range between ±5% of their corresponding mean values. In Figure 5,
the geometry of this problem is displayed, where the random materials were positioned apart by
0.075 m. The first-order Mur’s boundary condition was applied in this case as well. Furthermore, this
problem was re-examined, with random inputs ranging between ±10% of their average values.
Figure 6a,b depict the mean and the standard deviation of the magnetic field intensity for the
“5% percent” case, while Figure 7a,b illustrate the same quantities for the “10% percent” scenario.
The results of the proposed method presented a good agreement in this problem as well, as only slight
differences were observed, compared to the MC and the standard PC solutions. The simulation time
for the MC realizations was approximately 3.28 h (1000 simulations), while the original PC scheme
required 1.30 h (389 simulations). However, the proposed PC method needed 44 min (137 runs from
the Morris method and 84 runs from the PC scheme with a total of 221 simulations); thus, a speedup of
4.47 compared to the MC method was achieved.

Table 2. Mean dielectric permittivities for the 2D problem.

Dielectric Materials Mean Dielectric Permittivities

ε1 8.0ε0
ε2 2.4ε0
ε3 5.6ε0
ε4 4.2ε0
ε5 6.0ε0
ε6 7.2ε0

Figure 5. Geometric features of the 2D problem.
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Figure 6. (a) Mean value and (b) standard deviation of the magnetic field for the first case of the
second problem.
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Figure 7. (a) Mean value and (b) standard deviation of the magnetic field for the second case of the
second problem.

The third problem consists of a patch antenna, the effects of the stochastic inputs on the reflection
coefficient (the ratio of the reflected wave to the incident wave at the feeding point of the antenna [23])
of which are examined [24]. In Figure 8, the geometry of the antenna is illustrated, while Table 3 depicts
the statistical properties of its random quantities. Those quantities followed a uniform distribution.
Furthermore, the antenna was excited via a waveguide port, placed at the edge of the microstrip. In this
case, the boundaries were terminated via a Perfectly-Matched Layer (PML) [21]. The dimensionality
reduction was performed using the three most important variables, which according to the Morris
method were the variables W, L, and the permittivity of the dielectric substrate ε.

Table 3. Mean values and standard deviations for the parameters of the patch-antenna problem.

Parameters Mean Values Standard Deviations

Fi 12.5 mm 0.360 mm
Gp f 1.0 mm 0.028 mm
W f 8.5 mm 0.245 mm
W 51.0 mm 1.472 mm
L 38.0 mm 0.438 mm
ε 4.3ε0 0.049ε0

Figure 8. Schematic of the patch-antenna problem.
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In Figure 9, the mean elementary effects of the patch-antenna are displayed, where it is inferred
that the aforementioned random variables were the most influential. Furthermore, the mean value,
as well as the standard deviation of the reflection coefficient are depicted in Figure 10a,b, respectively.
Specifically, it can be concluded that the mean resonance frequency of the patch-antenna was around
1.8 GHz. In Figure 11, the cumulative distribution function (the probability of a stochastic input
taking a given value or less [25]) of the reflection coefficient is illustrated around the mean resonance
frequency. The presented outcomes displayed a satisfactory agreement; thus, similar results can be
extracted with much less computation time. The required simulation time for the traditional PC
scheme was around 6 h (389 simulations), and the proposed approach needed 2.33 h (69 simulations
from the PC technique and 84 from the Morris method). The MC realizations lasted 15.33 h
(1000 simulations). In conclusion, a speedup of 2.57 compared to the standard PC technique has
been achieved. The patch-antenna problem was examined again with three additional random inputs:
the substrate width Wsl (mean value: 102 mm, standard deviation: 8.67 mm), the substrate length Lsl
(mean value: 76 mm, standard deviation: 4.81 mm), and the substrate height h (mean value: 4.5 mm,
standard deviation: 0.01 mm). In this test case, four random variables were considered stochastic,
the parameters W, L, ε, and Lsl . The remaining ones were treated as deterministic. Figure 12a,b
illustrate the mean and the standard deviation for this scenario. In this case, the simulation time of the
MC method was about 10 h, while the conventional PC scheme required approximately 18 h. However,
the proposed PC approach needed 4 h (137 simulations from the PC technique and 120 realizations
from the Morris method); thus, a speedup of 2.5 compared to the MC scheme was achieved.
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Figure 9. Mean elementary effects of the path-antenna problem for the first case.
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Figure 10. (a) Mean value and (b) standard deviation of the reflection coefficient for the first case of the
path-antenna problem.
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Figure 12. (a) Mean value and (b) standard deviation of the reflection coefficient for the second case of
the path-antenna problem.

5. Conclusions

A sensitivity analysis algorithm has been implemented, in order to reduce the computational
cost of the PC scheme. The selection of the most important random variables in a given problem
can be performed with the proposed heuristic, which is based on the Morris method. The numerical
outcomes prove the reliability of the described approach; hence, the efficiency of the PC method can
be increased. As future work, a dimensionality reduction of the PC expansion can be performed by
combining the Morris method along with anisotropic index sets. Specifically, the indices corresponding
to the influential random inputs are more significant than the ones of the trivial stochastic variables.
Consequently, the high-order bases, which correspond to the negligible random variables, can be
neglected; therefore, the accuracy and the efficiency of the PC method can be further improved.
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