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Abstract: Reversible absorbents for safe storage of toxic hydrazine were developed. Various cross-linked
polar polymers were examined as absorbents for hydrazine and its 35% aqueous solution,
and structurally similar polymers were found to be suitable for effective absorption. Namely, cross-linked
polyacrylamide (CPAM) was most effective among examined various hydrophilic polymers.
CPAM absorbed 43- and 31-fold heavier amounts of absolute hydrazine and 35% aqueous solution,
respectively, by simple soaking. Absorbed hydrazine could be quantitatively released either by N2

gas flow and compression, and the resulting absorbent reabsorbed hydrazine without loss of the
absorption ability. The absorption ability was higher than conventional covalent storages, and the
release protocol, without dissolution of the absorbent, are suitable for storage systems in hydrazine
fuel cells.
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1. Introduction

Hydrazine contains high energy and has been applied as a fuel. The most practical applications
are fuels for reaction control systems of artificial satellites, auxiliary power units for spacecraft like
the Space Shuttle, and propellants of rockets and spacecraft like the MESSENGER orbiting the
planet Mercury [1–3]. The fighter jet F-16 Fighting Falcon also employs hydrazine as the fuel of
the aircraft’s emergency power unit. The hypergolic property by mixing with N2O4, ammonium
nitrate, and energetic ionic liquids realizes simple ignition systems suitable to space vehicles [1–6].
Another potential application is a fuel for basic fuel cells [6–20]. Hydrazine fuel cells using 10–15%
aqueous solution have some advantages toward acidic typical fuel cells based on hydrogen or methanol.
The output is as high as that of hydrogen fuel cells. The low corrosion properties of hydrazine solutions
enable uses of metals such as Co, Ni, and carbon materials unable to be used in conventional fuel cells
requiring Pt due to the harsh acidity. Liquid fuels are basically advantageous for consumers’ uses such
as fuel stations for automobiles and domestic fuel cells by the safer methods of storage and refueling.

However, as other fuels, the high energy can cause unfortunate explosions originating from
leakage of hydrazine-based fuels. The high toxicity of absolute or highly concentrated hydrazine used
for rocket fuels is also a severe problem [9,21–23]. For example, inhalation exposures of hundreds
ppm orders of hydrazine derivatives are reported to be lethal to various animals. This severe problem
accentuates the importance of safe treatment protocols for hydrazine fuels.

For safe storage of hydrazine derivatives and its aqueous solution, immobilization of hydrazine
derivatives has been examined to avoid leakage. Some polar polymers such as various polysaccharides
serve as gellants for hydrazine and its derivatives [24–30]. The gels are thixotropic, and can
be transformed to sols with fluidity suitable enough to be supplied to combustion engines of
rockets through pipelines. However, the liquids containing the gellants may revert to gels again,
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which is responsible to clogging up the pipelines. Due to the drain of the gellants with the
fuels, this system cannot be applied to rechargeable fuel systems, such as for cars and aircrafts.
Accordingly, desirable immobilization systems are those with reversibility based on immobilizers
remaining in fuel tanks. From this point of view, chemical immobilization of hydrazine in aqueous
solution was attempted using cross-linked polymers bearing ketone moieties [10]. The reversible
immobilization proceeds via the condensation of hydrazine with the ketone moieties to produce
pendant hydrazone moieties, which can be hydrolyzed to release hydrazine via the treatment with hot
water. However, the amount of storable hydrazine on the support is very low (below 5 wt%) due to
the hydrophilic segment to give the affinity with aqueous hydrazine and the stoichiometric nature of
the immobilization. With insufficient recyclability of approximately 80%, probably originating from
the undesired Wolff–Kishner reduction consuming the ketone moieties, is also a problem.

We thought that a simple gelation system universally adoptable to various applications, namely
rockets, aircrafts, and fuel cells, is more desirable. Materials focused on are absorbents based on
insoluble polymers capable of absorbing high amounts of hydrazine to the weight of the absorbents
without dissolution. Herein, we report absorbents for hydrazine enabling efficient and reversible
gelation consisting of absorption by simple soaking and quantitative release by compression or N2 flow.

2. Materials and Methods

2.1. Materials

Absolute hydrazine and poly(vinyl alcohol) (PVA) (degree of polymerization ; 2000, degree of
saponification ; 80) were purchased from Tokyo Kasei Kogyo (Tokyo, Japan), and used without
purification. Aqueous solution of hydrazine (35 wt%) and poly(N-vinyl pyrrolidone) (PVP)
(Mw = 1,300,000) were purchased from Aldrich (Missouri, MO, USA), and used without purification.
N-Isopropylacrylamide was purchased from Wako Chemical (Tokyo, Japan) and purified by
recrystallization with a mixed solvent of hexane and diethyl ether. N,N-Dimethylacrylamide was
purchased from Wako Chemical and purified by distillation under reduced pressure in the presence
of CaH2. Acrylamide was purchased from Wako Chemical and purified by recrystallization with
methanol. N-Hydroxymethylacrylamide and 2,2′-azobisisobutyronitrile (AIBN) were purchased from
Tokyo Kasei Kogyo, and purified by recrystallization with methanol. Methylenebisacrylamide (MBAA)
and formalin were purchased from Kanto Chemical (Tokyo, Japan), and used without purification.
Bracken starch was purchased from Inoue Tengyokudo (Nara, Japan). Sulfuric acid (47% in H2O) was
purchased from Wako Chemical, and used as 20% solution after dilution with water.

2.2. Methods

2.2.1. Synthesis of Polymers by Radical Polymerization (Typical Procedure)

Absorbents were prepared via a conventional free radical polymerization technique. A monomer,
AIBN (1 mol%), and 1,4-dioxane (1 mL to 1 mmol of the monomer) were added in a glass tube under a
nitrogen atmosphere. The tube was degassed, sealed, and heated at 60 ◦C for 4 h. The polymer was
isolated by precipitation into diethyl ether and drying under reduced pressure. The molecular weight
was estimated by size exclusion chromatography on a Tosoh (Tokyo, Japan) HLC-8220 GPC instrument
equipped with four consecutive polystyrene gel columns [Tosoh TSK-gel (bead size and exclusion limit
molecular weight); Super AW-H (9 µm and 4 × 107 g/mol), Super AW-5000 (7 µm and 4 × 106 g/mol),
Super AW-4000 (6 µm and 4 × 105 g/mol), and Super AW-3000 (4 µm and 6 × 104 g/mol)] using
N,N-dimethyl formamide (DMF) containing 10 mM lithium bromide as an eluent at 40 ◦C. Cross-linked
polymers were prepared by radical polymerization using 0.500 g of monomer and 3 mol% amounts of
MBAA initiated by potassium persulfate and tetramethylethylenediamine (10 wt% to monomer and
10 drops, respectively) in 10 mL of water, and purified by Soxhlet extraction with water.
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Polyacrylamide (PAM): AM = 0.178 g, Yield = 0.152 g (74.0%), molecular weight was not measured
due to the poor solubility in DMF.

Poly(N-hydroxymethylacrylamide) (PHMAM): HMAM = 0.253 g, Yield = 0.228 g (90.1%),
molecular weight was not measured due to the poor solubility in DMF.

Poly(N-isopropyl acrylamide) (PNIPAM): NIPAM = 0.283 g, Yield = 0.233 g (82.0%),
Mn (Mw/Mn) = 58,300 (2.60).

Poly(N,N-dimethylacrylamide) (PDMAM): DMAM = 0.249 g, Yield = 0.216 g (86.7%),
Mn (Mw/Mn) = 35,000 (3.97).

Cross-linked PAM: (CPAM): AM = 0.500 g, Yield = 0.367 g (68.9%).
Cross-linked PHMAM (CPHMAM): HMAM = 0.500 g, Yield = 0.465 g (84.5%).
Cross-linked PDMAM (CPDMAM): DMAM = 0.500 g, Yield = 0.313 g (59.7%).

2.2.2. Synthesis of Cross-Linked PVA (CPVA)

PVA (2.00 g) was dissolved in distilled water (10 mL) at 75 ◦C in a round-bottom flask. The flask
was cooled to 40 ◦C, and an aqueous dispersion of bracken starch (1.00 g in 10 mL of water) was added.
Then, the mixture was stirred at 80 ◦C until the mixture became a paste. The paste was cooled to 40 ◦C,
and 20% sulfuric acid (12.0 mL) and 37% formalin (5.0 mL) were added. The mixture was stirred at
60 ◦C for 5 h. The precipitate was collected by filtration and washed with water for 30 min (3 times).
A white solid was obtained after drying under reduced pressure (1.79 g, yield = 76.0%).

2.2.3. Gelation of Hydrazine with Absorbents

An absorbent (100 mg) was added in a 5-mL glass vial. Then, hydrazine or its aqueous solution
was slowly added drop-wise until the added liquids were not absorbed. The excess amounts
of hydrazine were removed with cotton swabs. The amounts of the absorbed hydrazine were
determined gravimetrically.

2.2.4. Releasing of Hydrazine from Hydrazine gels by N2 Gas Flow (Typical Procedure)

Hydrazine gel (100 mg, CPAM/hydrazine = 1/29 (w/w)) was placed in a cylindrical glass tube
(length = 3.0 cm, diameter = 0.5 cm) equipped with a N2 gas inlet and a hydrazine outlet leading to
a cold trap cooled with liquid N2. N2 gas was flowed at a flow rate of 100 mL/min. The amount
of released hydrazine was determined by the gravimetric change of the glass tube containing gel
measured at every one hour after wiping off the hydrazine droplets emitted from the gel.

2.2.5. Releasing of Hydrazine from Hydrazine Gels by Mechanical Compression

Hydrazine gel (1.255 g, CPAM/hydrazine = 1/23 (w/w)) was filled in a 10-mL plastic syringe
equipped with cotton at the outlet. The plunger directly attached with an IMADA (Toyohashi, Japan)
DS2-500N force meter was pushed at a pressure of 85 N/cm2. The syringe containing gel was weighed,
and the amount of released hydrazine was determined by the gravimetric decrease (0.554 g, 46 wt% to
absorbed hydrazine).

3. Results and Discussion

3.1. Solubility of Polymers in Anhydrous and Aqueous Hydrazine

First, the solubility of water-soluble polymers was examined for anhydrous hydrazine and 35 wt%
aqueous hydrazine solution (Table 1). The examined polymers are PNIPAM, PDMAM, PVP, PA,
PHMAM, and PVA (Figure 1). Protic polymers without hydrophobic moieties, namely PAM, PHMAM,
and PVA, had higher affinity with hydrazine. A plausible reason is the multiple and intermolecular
hydrogen bonds between the slightly acidic protons and the basic nitrogen atoms in hydrazine, and the
Lewis basic structures such as carbonyl groups and the active protons in the polymers, respectively.
The high polarity of hydrazine (dielectric constant = 52) presumably resulted in the lower affinity with
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the aprotic polymers. This solubility correlates with the Hildebrand solubility parameters (δ) [31].
The δ values may be calculated by various methods, and the calculated values for some polymers
differ with the methods. Specifically, the reported δ values for PNIPAM range widely from 19.2 to 28.0,
and a typical and average value is indicated in Table 1. The protic polymers with small substituents
have higher δ than the aprotic polymers except PVP, and exhibited high affinity with hydrazine. PAM
bearing the most analogous structure with hydrazine and having the highest δ value was soluble in
both anhydrous hydrazine and 35 wt% hydrazine aq. The polymers having moderately high δ values,
namely PHMAM, PVA, and PVP, showed relatively lower affinity with hydrazine and the aqueous
solution. PVA was dissolved in hydrazine at room temperature without any treatment, but swelled
in 35 wt% hydrazine aq. This result indicates that PVA have higher affinity toward hydrazine than
water requiring heating for dissolving of PVA. The insolubility of PNIPAM having an active hydrogen
atom in absolute hydrazine would have originated from the high hydrophobicity of the isopropyl
group, which cannot be overcome by the affinity based on the hydrogen bonds. The lower affinity of
PVP toward the high δ value is the absence of active hydrogen capable of interacting with the basic
nitrogen atom in hydrazine. As a result of the hydrophobic isopropyl group, PNIPAM was soluble in
35 wt% hydrazine aq. below 0 ◦C, showing lower critical solution temperature behavior.

Table 1. Solubility of water-soluble polymers in hydrazine and 35 wt% hydrazine aq.

Polymer
(Typical δ in MPa1/2 [31])

PAM
(27–28)

PHMAM
(24 or 31)

PVA
(26–29)

PNIPAM
(22)

PDMAM
(18)

PVP
(26)

Anhydrous hydrazine Sol Sw Sol Insol Insol Insol
35 wt% hydrazine aq. Sol Sw Sw Sol below 0 ◦C Sol Sol

Conditions: polymer (20 mg), hydrazine (2.0 mL), rt. Sol = soluble; Sw = swelled; Insol = insoluble.
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Figure 1. Structures of examined polymers.

3.2. Gelation of Hydrazine with Cross-Linked Polymers

We prepared insoluble absorbents for practical applications. CPAM, CPHMAM, and CPVA were
selected by their high affinity. CPDMAM was also examined as a reference. CPAM, CPHMAM,
and CPDMAM were obtained via cross-linking copolymerization with MBAA (3 mol% to monomers).
CPVA was prepared by acetalization of PVA with formalin. The absorption of absolute hydrazine and
35 wt% hydrazine aq. was examined at room temperature (Table 2). The amounts of gelation were
defined as the amounts required for losing fluidity (Figure 2).

Table 2. Saturated amounts of anhydrous hydrazine and 35 wt% hydrazine aq. absorbed by
cross-linked absorbents (cross-linker contents = 3 mol%).

Absorbent Anhydrous Hydrazine/Absorbent (w/w) 35 wt% Hydrazine aq./Absorbent (w/w)

CPAM 43/1 31/1
CPHMAM 32/1 23/1
CPDMAM 5/1 19/1

CPVA 10/1 5/1
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Figure 2. Photo images of (a) CPAM (100 mg) and (b) gel of CPAM absorbing the saturated amount of
anhydrous hydrazine.

CPAM was the best absorbent for both anhydrous and aqueous solution of hydrazine, as can be
expected from the solubility. The absence of active hydrogen atoms in CPDMAM resulted in lower
absorption ability in spite of the presence of the carbonyl groups accepting the active hydrogen atoms
of hydrazine to improve the absorption ability. The low absorption ability of CPVA can be attributed
to the strong hydrogen bonding between the hydroxyl groups and the lower affinity between the OH
and the protic amide groups.

In order to develop more effective absorbent, the effect of the cross-linker content of CPAM
was examined for absorption of anhydrous hydrazine (Figure 3). The maximum absorption of
58-fold in weight was attained using 1 mol% amount of MBAA. The amounts of absorbed hydrazine
are comparable to gelation with polysaccharides typically used in 1–10 wt% to hydrazine [24–30].
The lower cross-linker content resulted in low cross-linking efficiency leading to lower ability to keep
hydrazine in the gel. As the increase of the cross-linker content, the absorption efficiency decreased
gradually. This decrease may be ascribed to the increase in the cross-linking density preventing swell
by hydrazine.

Figure 3. Effect of cross-linker content on saturated amount of anhydrous hydrazine absorbed
by CPAM.

3.3. Release of Absorbed Hydrazine

We tried two methods, N2 gas flow and compression, for releasing of absorbed hydrazine from
the hydrazine gels. First, the releasing by N2 gas flow is described. Hydrazine gel prepared from
CPAM and anhydrous hydrazine [1/29 (w/w)] was placed in a glass tube, and hydrazine was released
by N2 flow. CPAM used was prepared using 4 mol% amount of MBAA. The amount of released
hydrazine was measured gravimetrically (Figure 4). Higher flow rate of N2 resulted in higher releasing



Technologies 2018, 6, 80 6 of 8

rate, and 97% of hydrazine was released after 6 h by 100 mL/min of N2 flow. All the releasing rates
are almost constant during the releasing experiments, suggesting good mobility of hydrazine in the
gels. The remained dried absorbent could absorb identical amount of hydrazine again, and absorbed
hydrazine was released almost quantitatively by the same treatment (Table 3). This result demonstrates
the reversibility of this system.

Technologies 2018, 6, x FOR PEER REVIEW  6 of 8 

 

in the gels. The remained dried absorbent could absorb identical amount of hydrazine again, and 

absorbed hydrazine was released almost quantitatively by the same treatment (Table 3). This result 

demonstrates the reversibility of this system. 

 

Figure 4. Releasing of hydrazine from CPAM-based hydrazine gel (CPAM/hydrazine = 1/29 (w/w)) by 

N2 flow. 

Table 3. Absorption of hydrazine with CPAM and releasing of hydrazine from CPAM-based 

hydrazine gel by N2 gas flow. 

Cycle Absorbed Hydrazine/CPAM (w/w) Hydrazine Release Ratio (%) 

1st 29/1 97 

2nd 29/1 96 

Conditions: Hydrazine-CPAM gel = 100 mg, N2 gas flow = 100 mL/min, 6 h. 

The second method is the releasing by compression. The hydrazine gel prepared from hydrazine 

and CPAM (w/w = 23/1, 5% cross-linked) was filled in a plastic syringe equipped with a cotton filter, 

and the releasing was conducted by pushing the plunger at 85 N/m2. As a result, 46% amount of 

hydrazine was released. The resulting hydrazine gel absorbed hydrazine by immersion into 

hydrazine, and the reabsorbed amount was identical to the first absorption (23-fold weight to the 

absorbent). Although the release was not quantitative under this compression condition, this release 

method by compression is suitable to be built in fuel cell systems. 

5. Conclusions 

A reversible gelation system for hydrazine was developed for applications to safe storage-

release of hydrazine fuels for hydrazine-based basic fuel cells. Various cross-linked polymers 

absorbed hydrazine by simple soaking without dissolution. CPAM was the best absorbent among 

various hydrophilic cross-linked polymers examined, and absorbed 43- and 31-fold heavier amounts 

of absolute hydrazine and 35% aqueous solution, respectively, by simple soaking. Absorbed 

hydrazine could be quantitatively released either by N2 gas flow and compression. The resulting 

absorbent after the release process remained without dissolution, and reabsorbed hydrazine without 

loss of the absorption ability. These simple methods of release and the recyclability are suitable for 

installing into fuel cell systems. Accordingly, the developed reversible gelation system will provide 

hydrazine fuel cells safety in charge and storage of the hydrazine fuels. 

H
y
d

ra
z
in

e
 r

e
le

a
s
e

 r
a

ti
o

 (
%

)

Time (h)

0 mL/min

50 mL/min

100 mL/min

0 2 4 6 8 10
0

20

40

60

80

100

Figure 4. Releasing of hydrazine from CPAM-based hydrazine gel (CPAM/hydrazine = 1/29 (w/w))
by N2 flow.

Table 3. Absorption of hydrazine with CPAM and releasing of hydrazine from CPAM-based hydrazine
gel by N2 gas flow.

Cycle Absorbed Hydrazine/CPAM (w/w) Hydrazine Release Ratio (%)

1st 29/1 97
2nd 29/1 96

Conditions: Hydrazine-CPAM gel = 100 mg, N2 gas flow = 100 mL/min, 6 h.

The second method is the releasing by compression. The hydrazine gel prepared from hydrazine
and CPAM (w/w = 23/1, 5% cross-linked) was filled in a plastic syringe equipped with a cotton filter,
and the releasing was conducted by pushing the plunger at 85 N/m2. As a result, 46% amount of
hydrazine was released. The resulting hydrazine gel absorbed hydrazine by immersion into hydrazine,
and the reabsorbed amount was identical to the first absorption (23-fold weight to the absorbent).
Although the release was not quantitative under this compression condition, this release method by
compression is suitable to be built in fuel cell systems.

4. Conclusions

A reversible gelation system for hydrazine was developed for applications to safe storage-release
of hydrazine fuels for hydrazine-based basic fuel cells. Various cross-linked polymers absorbed
hydrazine by simple soaking without dissolution. CPAM was the best absorbent among various
hydrophilic cross-linked polymers examined, and absorbed 43- and 31-fold heavier amounts of
absolute hydrazine and 35% aqueous solution, respectively, by simple soaking. Absorbed hydrazine
could be quantitatively released either by N2 gas flow and compression. The resulting absorbent
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after the release process remained without dissolution, and reabsorbed hydrazine without loss of the
absorption ability. These simple methods of release and the recyclability are suitable for installing into
fuel cell systems. Accordingly, the developed reversible gelation system will provide hydrazine fuel
cells safety in charge and storage of the hydrazine fuels.

Further works are ongoing for practical applications in fuel cells for vehicles. The challenges
remained involve further optimization of materials, examination on tolerance to temperature and
repeated gelation-release cycles, and designs of systems for delivery of fuels into cells. We will report
the update soon.
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