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Abstract: In this paper a study on double lap joints made of glass fibre-reinforced polymer (GFRP)
adherents and an epoxy resin as a glue is performed. Both an experimental procedure and a theoretical
model with an associated numerical discretization are presented. Experimental and numerical results
are discussed and compared. They indicate the possibility of performing an advanced mechanical
analysis of adhesive joints based on a preliminary characterization of a few mechanical parameters.
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1. Introduction

Composite profiles are commonly used for civil engineering structures where, due to a relatively
higher cost, carbon fibre-reinforced profiles (CFRPs) are still a few parts of the whole, while glass
fibre-reinforced profiles (GFRPs) are, at the moment, the standard solution, especially for new
innovative constructions and large scale applications. Within this context (i.e., innovative civil
structures entirely made of composite materials), the safety and reliability of the adhesive bonding is
still a field of investigation open to both theoretical-numerical and experimental contributions [1–6]. A
recent study about adhesive bonded joints loaded in traction [7] focuses, in a general manner, on the
interfacial damage which is affected by many factors, such as the thickness and width of the adherent,
the number of lap surfaces, and the scarf angle (for scarf lap-joints).

Although they are widely used in technical practice, adhesive joints have not been properly
assessed with reference to their performance for service conditions if applications of major importance
are concerned, for example large truss covers, large bridge decks, or spatial frames.

It is a widespread assumption to formulate the constitutive behavior of composite materials
within a linear-elastic (orthotropic) field. This is substantially true. Relevant nonlinear effects, however,
emerge over the pre-buckling range of the structural response, due to many aspects, which can be
briefly listed as follows:

- the non-linear axial, flexural, shear, and warping deformations, expecially when dealing with
thin-walled open profiles [8–11];

- the creep behavior, especially for the GFRP members [12–14]; and
- the “lumped” damage within the bonding interfaces [15,16].
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All previous factors exhibit a complex interplay which makes the formulation of “all-inclusive”
predicting models very difficult, regardless of the analytical, numerical, or experimental nature of the
proposed approach.

Given that the practical use of composite profiles for civil engineering applications, especially
for GFRP members, is strongly affected, at service conditions, by deformability limitations [8], which
implies, in general, requiring high values of stiffness, it seems appropriate to analyze the interfacial
damage at service conditions regardless of the material/geometric non-linearities, which affect, instead,
the failure load/the buckling limit for an higher load to stiffness ratio. In this perspective, it is also
reasonable to account for the linear viscoelastic formulation of constitutive equations.

The previous considerations allow for performing the analysis of the mechanical behavior of
FRP structures at service conditions within the linear field, except for the non-linear behavior of the
adhesive interfaces. A detailed interface model with damage [17] has been, thereby, proposed to
this scope: investigating the interfacial behavior accounting for damage over the initial range of the
mechanical response, where the non-linear effects within the interface layer are the only expected ones.
In this model, the adhesive is considered as a Kachanov-type material [18,19], where the constitutive
equation of the interface is obtained after the homogenization of a micro-cracked material. Assuming
that the thickness of the interface is sufficiently small, by using an asymptotic matched expansion, it is
possible to obtain an equivalent law for an imperfect soft interface [20–23].

The numerical results are computed using a standard finite element method [24]. The nonlinear
equation providing the stiffness of the interface is computed with a semi-implicit procedure.

2. Materials and Methods under Consideration

2.1. Experimental Methodology

In view of establishing a new strategy for the advanced analysis of composite-to-composite
adhesive bonding which accounts for the interfacial damage, an experimental test aimed at calibrating
the mechanical parameters of the interface model discussed below has been designed at the
Materials and Structures Laboratory of Salerno University (Civil Engineering Department). The
main experiments (two similar experiments) deal with a double-lap joint made of GFRP parts, as
indicated in Figures 1 and 2 (unit length: mm).
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Figure 2. Joint configuration (side view).

Four adherents can be identified: “1a”, “1b”, “2”, and “3”. The cross-section is identical for all
of them (28 mm ˆ 14 mm). Each adhesive layer is 1.95 mm thick and is made of an epoxy resin. The
mechanical properties of GFRP and adhesive are summarized in Tables 1 and 2.

Table 1. Mechanical properties of GFRP (from the manufacturer).

- Value

Young’s modulus E ě 30000 N{mm2

Thermal expansion coefficient α ď 100ˆ 10´6 K´1

Tensile strength fu ě 700 N{mm2

Ultimate tensile strain εu ě 1.50 %

Table 2. Mechanical properties of Kerabuild Eco Epobond (from the manufacturer).

- Value Comments

Young’s modulus E ě 2000 N{mm2 -

Thermal expansion coefficient α ď 100ˆ 10´6 K´1 p´25 ˝C ď T ď `60 ˝Cq

Bond strength
ě 50 N{mm2 EN 12188 (angle 50˝)
ě 60 N{mm2 EN 12188 (angle 60˝)
ě 70 N{mm2 EN 12188 (angle 70˝)

The GFRP samples were manufactured and provided for free by ATP-Pultrusion S.r.l.
(Angri, Italy), a leading company operating in the field of composite materials, whose contribution is
particularly appreciated. The epoxy resin was provided for free by Kerakoll S.p.a (Sassuolo, Italy).

As a preliminary goal, two uniaxial tests have been performed on GFRP samples exhibiting the
same cross-section as the adherents of the joint: 28 mm ˆ 14 mm (Figures 3 and 4).
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Figure 3. GFRP samples (axonometric view).
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Figure 4. GFRP samples (side view).

The setup includes four metal plates bonded to both ends of the sample in order to guarantee the
anchoring into the hydraulic jaws of the testing machine (Figure 5).
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Figure 5. Preliminary tests on GFRP samples: Sample “1” (left) and Sample “2” (right).

The preliminary tests and the main tests have been designed in order to provoke a dominant axial
stress state according to specific multi-step procedures, as indicated in Tables 3 and 4.

Table 3. Multi-step testing procedure (preliminary tests).

Cycles - (*) Target

1, 2, 3

(a) loading DC +0.50 mm
(b) unloading FC 0.00 N
(c) loading DC ´0.50 mm
(d) unloading FC 0.00 N

4, 5, 6

(a) loading DC +1.00 mm
(b) unloading FC 0.00 N
(c) loading DC ´1.00 mm
(d) unloading FC 0.00 N

(*) DC: displacement control; FC: force control.
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Table 4. Multi-step testing procedure (main experiments).

Cycles (*) Target

1, 2, 3

(a) loading DC +1.00 mm
(b) unloading FC 0.00 N
(c) loading DC 0.00 mm
(d) unloading FC 0.00 N

Final loading (**) DC +8 mm
(*) DC: displacement control; FC: force control; (**) up to failure.

With reference to the main tests, the strain state evolution was measured by means of 12 uni-axial
strain gauges with a grid size of 6.35 mm, characterized by a maximum strain capacity up to 3% and
accuracy equal to 10´6 (Figure 6).
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The strain gauge reliability was ensured by an appropriate choice of adhesive and by the presence
of a protective gel. As shown in Figure 6, strain gauges have been applied to the external sides of
adherents “2” and “3” at defined locations. Three different cross-sections were instrumented for any
interface involved in the mechanical behavior of the joint (Figures 7 and 8) Furthermore, four linear
variable displacement transducers (LVDTs) were used to measure the global elongation of the joint.
The experimental data were entirely acquired by means of a hardware/software system consisting of a
data scanner connected to a personal computer. The scanner guarantees an automatic and modulated
data acquisition, as well as a real-time adjustment of the data, due to the loss of the signal.
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At a fixed displacement, the current axial force (T), measured by means of a load cell, depends on
the stiffness of the entire system (GFRP, adhesive interfaces).

Both the preliminary tests and the main tests were carried out at constant room temperature (18 ˝C).
As a whole, the experiments allow the identification of the following aspects:

Via the preliminary axial tests:

- the elastic properties of the GFRP adherents (to be compared with those given by the manufacturer).

Via the main tests:

- the elastic stiffness of the joint;
- the elastic limit of the joint;
- the damage stored over any cyclic path;
- the evolution of the strains over time within the bonding length; and
- the failure load of the joint.

Although the failure load of the joint is not the actual scope of the study, it has been analyzed by
means of an additional final step consisting of a monotone loading process (elongation) up to failure.

The testing equipment is presented in the following Figure 9.
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2.2. A Model of Imperfect Interface with Damage

In this section the main steps of the model of an imperfect soft interface with unilateral contact
and damage evolution derived in [17] are described with the scope of comparing the experimental
results with the numerical predictions.

A composite body made by two deformable solids bonded together and occupying a smooth
bounded domain Ω Ă IR3 is considered. An orthonormal Cartesian frame (O, e1, e2, e3) is introduced
and let (x1, x2, x3) be taken to denote the three coordinates of a particle. The origin lies at the center of
the bonding plane and the x3-axis runs perpendicular to the bounded set S, S = {(x1, x2, x3) P Ω: x3 = 0}
which will be identified as the interface between the two adherents. The adherents are occupying,
respectively, the domains Ω˘ defined by Ω˘ = {(x1, x2, x3) P Ω: ˘x3 > 0}. On a part Sg of the boundary
BΩ, an external load g is applied, and on a part Su of BΩ, having a strictly positive measure such
that Sg X Su = Ø, the displacement is imposed to be equal to zero. Finally, a body force f is applied
in Ω. In the following, u is taken to denote the displacement field, σ the Cauchy stress tensor and
e(u) the strain tensor. Under the small strain hypothesis we have eij(u) = 1/2(ui,j + uj,i), where the
comma stands for the partial derivative. The two adherents are supposed to be elastic, according to
the following Equation (1):

σij “ a˘ijkleklpuq (1)

where a˘ are the fourth-order elasticity tensors verifying the usual conditions of positivity
and symmetry.

It is considered that the interface is made by a Kachanov-type material [18,19]. In other words,
the constitutive equations are obtained after the homogenization of a micro-cracked material. The
elastic coefficients of such a material, denoted by bijkl, depend on the averaged length l of these cracks,
this parameter being considered as a damage parameter, and linearly on the thickness of the interface ε
(the interface is soft). Usually, due to the small thickness of the interface, it is possible to use a matched
asymptotic theory [20] in order to obtain an equivalent law of the imperfect soft interface [22,23]:

σijnj “ Kijplqrujs (2)

where K(l) is the stiffness tensor of the interface (the limit of the ratio b/ε), n the external unit vector
normal to S (n = e3), and [u] is the jump in the displacement across the interface S. Note that the variable
l, which has the dimension of a length, can be compared with the so called “density of adhesion”,
which is a dimensionless variable, introduced by M. Frémond [25], which can be interpreted from a
mechanical point of view as the ratio l/l0, where l0 is the initial crack length. For the Kachanov-type
material [26], the stiffness tensor is as follows:

Kplq “

»

—

–

L
2Cl2 0 0

0 L
2Cl2 0

0 0 L
Cl2

fi

ffi

fl

(3)

where, according to [26–28], L is the length of the interphase and C is given by:

C “
π

2
1
?

E

d

1
µ
` 2

1´ υ

E
(4)

with E, µ and υ which are respectively the Young’s modulus, the shear modulus and the Poisson
ratio of the undamaged interface. The evolution of l is given by a simple derivation of a quadratic
pseudo-potential of dissipation:

γ
.
l “ pω´

1
2

K,lplq rus` . rus`q
`

(5)
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where γ is a positive viscosity parameter,ω a negative parameter similar to the Dupré’s energy, ()+ is
the positive part of a value and:

rus` “ rus i f ru3s ě 0, rus` “ pru1s , ru2s , 0q i f ru3s ď 0 (6)

It is assumed that the crack length cannot decrease and that the degradation process of the glue is
irreversible. Note that it is assumed also that the crack-length variation is not active in compression. In
order to avoid a possible interpenetration between the adherents, a unilateral contact law is added,
ru3s ě 0 , and the contact force is introduced which is always non positive (repulsive force):

#

σijnj “ Kijplqrujs` ` τi

τ1 “ τ2 “ 0, τ3 ď 0 , τ3ru3s “ 0
(7)

In conclusion:
$

’

’

’

’

’

’

’

’
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’

’
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’
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’
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’
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σij,j ` fi “ 0 in Ω˘

σijnj “ gi on Sg

ui “ 0 on Su

σij “ a˘ijklekl puq in Ω˘

σijnj “ Kij plq
“

uj
‰

`
` τi on S

τ1 “ τ2 “ 0, τ3 ď 0, τ3 ru3s “ 0 on S

γ
.
l “ pω´ 1

2 K,lplq rus` . rus`q`on S

l ě l0 on S

(8)

2.3. Numerical Modelling

In this section, a numerical procedure to solve Equation (8) is proposed. For the first five equations,
a standard finite element method is used. In order to take into account the jumps in the displacements
across the interface, a “flat” finite element is considered on the interface S that has all nodes on S,
the first ones related to Ω`, and the other ones related to Ω´. It is then possible to write a stiffness
matrix of this problem that is invertible and with standard error estimates (for more details, see, for
example, [29]).

For the evolution of the crack length inside the interface S, a semi-implicit algorithm is developed,
following the ideas discussed in [15]. First, denoted by:

F2pt, lq “ ´
1
2

L
Cl

K,l rus` . rus`

The evolution Equation (5) can be written as γ
.
l “ pω` Cl

L F2pt, lqq
`

. Then, considering a time step
∆t, a discretization of the time tn “ n∆t, and denoting by ln an approximation of lptnq, the following
semi-implicit algorithm is considered:

γ
ln`1 ´ ln

∆t
“ pω` ln`1 C

L
F2ptn, lnqq

`

or, equivalently:

ln`1 “ maxpln,
ln ` ∆tω

γ

1´ C∆t
Lγ F2ptn, lnq

q
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It is important to remark that this algorithm can be improved using a fixed point procedure for
the computation of F2pt, lq, but this does not significantly change the numerical results presented in
the next section.

3. Results

3.1. Experimental Results

As indicated above, the experimental results allow the identification of the mechanical response
of both the basic material (GFRP) and the double lap joint, the latter affected by the interfacial
behavior, too.

3.1.1. Preliminary Tests

The experimental results concerning two GFRP samples are presented in Tables 5 and 6. The
results are shown in a sequential order according to the multi-step procedure summarized in
Figures 10 and 11. It is worthy of noting that the generic step is identified by means of two points,
denoted via the subscript “0” or “1”, respectively indicating the start and the end point of the step.
The symbol “ε” indicates the axial strain while the symbol “σ” is for the axial stress. The amount of
non-reversible deformation at the end of the unloading steps (generic step “b” or “d”) is also presented.
Moreover, the symbol “E01” indicates the Young’s modulus evaluated over the generic step by means
of a linear fitting of the experimental data.

Table 5. Preliminary tests (GFRP sample “1”).

Cycle Target εo [%] ε1 [%] σo [MPa] σ1 [MPa] E01 [MPa]

1

loading 1.a DC +0.5 mm 0.000 0.161 0.00 53.14 33,642
unloading 1.b FC 0.0 N 0.161 0.006 53.14 0.00 33,349
loading 1.c DC ´0.5 mm 0.006 ´0.161 0.00 ´53.49 32,763

unloading 1.d FC 0.0 N ´0.161 ´0.038 ´53.49 0.00 41,828

2

loading 2.a DC +0.5 mm ´0.038 0.161 0.00 65.62 33,221
unloading 2.b FC 0.0 N 0.161 ´0.030 65.62 0.00 33,173
loading 2.c DC ´0.5 mm ´0.030 ´0.161 0.00 ´42.74 32,821

unloading 2.d FC 0.0 N ´0.161 ´0.064 ´42.74 0.00 41,227

3

loading 3.a DC +0.5 mm ´0.064 0.162 0.00 72.79 32,515
unloading 3.b FC 0.0 N 0.162 ´0.055 72.79 0.00 32,602
loading 3.c DC ´0.5 mm ´0.055 ´0.161 0.00 ´34.32 32,542

unloading 3.d FC 0.0 N ´0.161 ´0.082 ´34.32 0.00 41,784

4

loading 4.a DC +1.0 mm ´0.082 0.321 0.00 119.45 30,426
unloading 4.b FC 0.0 N 0.321 ´0.006 119.45 0.00 32,971
loading 4.c DC ´1.0 mm ´0.006 ´0.323 0.00 ´86.32 27,121

unloading 4.d FC 0.0 N ´0.323 ´0.119 ´86.32 0.00 38,172

5

loading 5.a DC +1.0 mm ´0.119 0.322 0.00 115.97 26,826
unloading 5.b FC 0.0 N 0.322 ´0.005 115.97 0.00 32,140
loading 5.c DC ´1.0 mm ´0.005 ´0.323 0.00 ´83.12 26,262

unloading 5.d FC 0.0 N ´0.323 ´0.107 ´83.12 0.00 35,486

6

loading 6.a DC +1.0 mm ´0.107 0.323 0.00 109.51 26,016
unloading 6.b FC 0.0 N 0.323 0.007 109.51 0.00 31,701
loading 6.c DC ´1.0 mm 0.007 ´0.323 0.00 ´82.81 25,243

unloading 6.d FC 0.0 N ´0.323 ´0.098 ´82.81 0.00 33,678
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Table 6. Preliminary tests (GFRP sample “2”).

Cycle Target εo [%] ε1 [%] σo [MPa] σ1 [MPa] E01 [MPa]

1

loading 1.a DC +0.5 mm 0.000 0.162 0.00 54.44 33,986
unloading 1.b FC 0.0 N 0.162 0.019 54.44 0.00 36,640
loading 1.c DC ´0.5 mm 0.019 ´0.162 0.00 ´62.66 34,932

unloading 1.d FC 0.0 N ´0.162 ´0.004 ´62.66 0.00 38,586

2

loading 2.a DC +0.5 mm ´0.004 0.161 0.00 57.97 35,174
unloading 2.b FC 0.0 N 0.161 0.021 57.97 0.00 40,150
loading 2.c DC ´0.5 mm 0.021 ´0.162 0.00 ´65.81 36,181

unloading 2.d FC 0.0 N ´0.162 0.008 ´65.81 0.00 37,717

3

loading 3.a DC +0.5 mm 0.008 0.161 0.00 54.91 36,079
unloading 3.b FC 0.0 N 0.161 0.031 54.91 0.00 40,531
loading 3.c DC ´0.5 mm 0.031 ´0.162 0.00 ´70.15 36,721

unloading 3.d FC 0.0 N ´0.162 0.018 ´70.15 0.00 38,001

4

loading 4.a DC +1.0 mm 0.018 0.323 0.00 107.01 35,550
unloading 4.b FC 0.0 N 0.323 0.074 107.01 0.00 41,001
loading 4.c DC ´1.0 mm 0.074 ´0.328 0.00 ´136.69 34,713

unloading 4.d FC 0.0 N ´0.328 ´0.006 ´136.69 0.00 40,143

5

loading 5.a DC +1.0 mm ´0.006 0.323 0.00 112.47 34,268
unloading 5.b FC 0.0 N 0.323 0.069 112.47 0.00 40,975
loading 5.c DC ´1.0 mm 0.069 ´0.323 0.00 ´137.65 35,248

unloading 5.d FC 0.0 N ´0.323 ´0.007 ´137.65 0.00 40,376

6

loading 6.a DC +1.0 mm ´0.007 0.323 0.00 112.98 34,334
unloading 6.b FC 0.0 N 0.323 0.069 112.98 0.00 41,424
loading 6.c DC ´1.0 mm 0.069 ´0.323 0.00 ´138.01 35,554

unloading 6.d FC 0.0 N ´0.323 ´0.013 ´138.01 0.00 40,253

In Figures 10 and 11 displacements and axial forces have been converted into non-dimensional
quantities with reference to their maximum values, attained at the end of the Step 4a. The following
results emerge.

For GFRP sample “1”, the value of the Young’s modulus (in traction) is equal to 33,084 N/mm2

(average value over cycles 1, 2, and 3) or 30,013 N/mm2 (average value over cycles 4, 5, and 6). The
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similar values in compression are, respectively, 37,161 N/mm2 (average value over cycles 1, 2, and 3)
and 30,994 N/mm2 (average value over cycles 4, 5, and 6).

For GFRP sample “2” the value of the Young’s modulus (in traction) is equal to 37,093 N/mm2

(average value over cycles 1, 2, and 3) or 37,925 N/mm2 (average value over cycles 4, 5, and 6). The
similar values in compression are, respectively, 37,023 N/mm2 (average value over cycles 1, 2, and 3)
and 37,715 N/mm2 (average value over cycles 4, 5, and 6).

The previous values allow obtaining a better characterization with respect to the indication given
by the manufacturer (see Table 1). This plays a pivotal role in the evaluation of the mechanical response
of the joint sample.

3.1.2. Main Tests

The joint samples have been tested according to an appropriate multistep procedure up to failure,
as indicated in Figures 12 and 13, where displacements and axial forces have been converted into
non-dimensional quantities with reference to the values attained at the end of the Step 1a. The
experimental results are presented in Tables 7 and 8.
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Table 7. Main test—joint sample “I”.

Cycle Target To [kN] T1 [kN] ∆Lo [mm] ∆L1 [mm] K01[kN/mm]

1

loading 1.a DC +1.0 mm 0.000 40.152 0.0000 0.9004 52.165
unloading 1.b FC 0.0 N 40.152 0.000 0.9004 0.1903 46.923
loading 1.c DC 0.0 mm 0.000 ´7.728 0.1903 0.0000 47.831

unloading 1.d FC 0.0 N ´7.728 0.000 0.0000 0.1031 53.262

2

loading 2.a DC +1.0 mm 0.000 35.466 0.1031 0.9290 44.073
unloading 2.b FC 0.0 N 35.466 0.000 0.9290 0.2280 44.044
loading 2.c DC 0.0 mm 0.000 ´9.482 0.2280 0.0000 49.994

unloading 2.d FC 0.0 N ´9.482 0.000 0.0000 0.1522 63.019

3

loading 3.a DC +1.0 mm 0.000 34.002 0.1522 0.9675 42.659
unloading 3.b FC 0.0 N 34.002 0.000 0.9675 0.2498 43.599
loading 3.c DC 0.0 mm 0.000 ´10.142 0.2498 0.0000 46.771

unloading 3.d FC 0.0 N ´10.142 0.000 0.0000 0.1796 59.885

loading final DC Ñ +8mm 0.000 44.207 0.1796 1.3053 42.630
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Table 8. Main test—joint sample “II”.

Cycle Target To [kN] T1 [kN] ∆Lo [mm] ∆L1 [mm] K01 [kN/mm]

1

loading 1.a DC +1.0 mm 0.000 39.861 0.0000 0.8898 46.582
unloading 1.b FC 0.0 N 39.861 0.000 0.8898 0.1522 57.231
loading 1.c DC 0.0 mm 0.000 ´7.116 0.1522 0.0000 60.699

unloading 1.d FC 0.0 N ´7.116 0.000 0.0000 0.0824 77.420

2

loading 2.a DC +1.0 mm 0.000 36.821 0.0824 0.7781 55.994
unloading 2.b FC 0.0 N 36.821 0.000 0.7781 0.1824 56.843
loading 2.c DC 0.0 mm 0.000 ´9.187 0.1824 0.0000 63.129

unloading 2.d FC 0.0 N ´9.187 0.000 0.0000 0.1130 82.199

3

loading 3.a DC +1.0 mm 0.000 35.005 0.1130 0.7827 54.876
unloading 3.b FC 0.0 N 35.005 0.000 0.7827 0.1998 56.302
loading 3.c DC 0.0 mm 0.000 ´10.576 0.1998 0.0000 62.529

unloading 3.d FC 0.0 N ´10.576 0.000 0.0000 0.1436 77.184

loading final DC Ñ +8mm 0.000 46.784 0.1436 1.0274 54.941

As for the GFRP samples, the generic step is identified by means of two points, denoted via
the subscript “0” or “1”. The symbol “T” denotes the axial force while the symbol “∆L” is for the
axial elongation of the joint, evaluated by means of the LVDT signals. It is important to remark
that the current elongation of the joint is usually lower than the current target displacement, due
to two circumstances: (i) the free elongation of the end of the sample, behind the adhesion zone;
and (ii) possible sliding within the anchoring devices.

The amount of non-reversible elongation at the end of the unloading steps (generic
step “b” or “d”) is also presented. Finally, the symbol “K01” indicates the axial stiffness of the joint,
evaluated over the generic step by means of a linear fitting of the experimental data.

It is important to remark that the experimental failure loads are equal to 44,207 N or 46,784 N,
respectively, for the joint samples “I” and “II”. The corresponding global elongations are ∆L = 1.3053
mm and ∆L = 1.0274 mm. The post-failure configuration is shown in Figures 14 and 15.Technologies 2016, 4, 20 13 of 18 
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At collapse, two opposite adhesive interfaces simultaneously fail. Moreover, they are
anti-symmetrically placed with respect to the mid-span cross-section of the joint samples.

The load versus elongation curves are presented in Figures 16 and 17.
The analysis of the strain gauge signals represents the final outcome of the experimental study.

In Tables 9 and 10, the strain gradients (dei{dT) attained within the FRP over the four adhesive
interfaces are presented, with ei being the strain returned by the electrical gauge placed at the location
Pi (Figure 18) and T the applied axial force. The strain gradients presented in Tables 9 and 10 have
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been averaged over the loading step “1a” (cycle 1) indicated in Table 7 (0 N < T < 40.152 kN) or
Table 8 (0 N < T < 39.861 kN). Moreover, they are magnified by 1ˆ 106. Four additional locations
have been considered (Qi, i = 3, 4, 9, 10). They represent relevant cross-sections of the equilibrium
scheme depicted in Figure 18. It is important to underline that the strain gradients at these locations
come from a linear extrapolation based on the actual measurements of the neighbouring strain gauges.
As an example, the strain at Q3 has been evaluated accounting for the strains attained at P1, P2, and
P3. The last column shows the gradient of the axial force attained within the external adherents
of the joint (adherents “2” and “3” indicated in Figure 2). They have been evaluated by means of
the following relationship: EA dei{dT, with EA denoting the axial stiffness of the GFRP adherent
(EA = 37,000 N/mm2 ˆ 28 mm ˆ 14 mm), estimated accounting for the experimental characterization
of the Young’s modulus of the GFRP explained in Section 3.1.
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Table 9. Strain and axial force gradients—joint sample “I”.

Position dei
dT EA dei

dT Position dei
dT EA dei

dT

rad ˆ 106/N´1 rad ˆ 106/N´1

P1 0.0069 0.101 P7 0.0012 0.017
P2 0.0208 0.302 P8 0.0120 0.174
P3 0.0347 0.504 P9 0.0228 0.330
Q3 0.0363 0.526 Q9 0.0240 0.347
Q4 0.0334 0.485 Q10 0.0265 0.384
P4 0.0320 0.464 P10 0.0253 0.366
P5 0.0188 0.272 P11 0.0109 0.159
P6 0.0055 0.080 P12 0.0034 0.050

Table 10. Strain and axial force gradients—joint sample “II”.

Position dei
dT EA dei

dT Position dei
dT EA dei

dT

rad ˆ 106/N´1 rad ˆ 106/N´1

P1 0.0075 0.116 P7 0.0075 0.116
P2 0.0211 0.327 P8 0.0162 0.251
P3 0.0347 0.538 P9 0.0249 0.386
Q3 0.0362 0.562 Q9 0.0259 0.401
Q4 0.0348 0.539 Q10 0.0265 0.411
P4 0.0333 0.517 P10 0.0253 0.392
P5 0.0201 0.312 P11 0.0109 0.170
P6 0.0069 0.107 P12 0.0034 0.053

As it is easy to understand, the strain analysis allows the estimation of the gradient of axial forces
N1 and N11 with respect to the equilibrium scheme of the joint (Figure 18). Moreover, the global gradient
at the left cross-section Q3–Q9 (dN1/dT + dN11/dT) emerges substantially equal to the one attained
at the right cross-section Q4–Q10 (dN1/dT + dN11/dT) for both of the joint samples “I” and “II”, thus
indicating that equilibrium is satisfied with a quasi-balanced distribution of the axial forces between
the external adherents “2” and “3”. It is important to remark that strain gauges are applied to the
top/bottom sides of the external adherents and are unable to account for possible shear deformations
within the thickness of the GFRP, which, together with experimental minor errors, may be responsible
for the following apparent paradoxes:

paq dN1{dT` dN2{dT ‰ 1

pbq dN1{dT
ˇ

ˇQ3 ‰ dN1{dT
ˇ

ˇQ4

pcq dN2{dT
ˇ

ˇQ9 ‰ dN2{dT
ˇ

ˇQ10
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3.2. Numerical Results

In order to compare experimental results to the numerical ones, the experimental response of the
joint samples has been reproduced via a numeric simulation according to many simplifications. In
particular, the loading steps are simplified compared to those given in Tables 7 and 8 and are provided
in Table 11.

Table 11. Multi-step testing procedure for numerical experiment.

Cycles (*) Target

2, 3
(a) loading DC +1.00 mm
(b) unloading FC 0.00 N

Final loading DC + 1.30 mm
(*) DC: displacement control; FC: force control

Moreover, the mechanical properties of the materials are the following.

- GFRP adherents. The Young’s modulus is equal to E = 37,000 N{mm2 (which is approximatively
the stiffness observed in the preliminary tests) and the Poisson’s ratio υ “ 0.2.

- interfaces. The epoxy resin has a Young’s modulus equal to E = 2000 N{mm2 (according to
Table 2), a Poisson’s ratio equal to υ “ 0.2, the viscosities are equal to γ “ 0.008, ω “ ´0.0001 and
the length of the representative elementary volume is equal to L “ 0.1 mm. For the computation
of the crack length, the time increment is set equal to ∆t “ 0.01 s.

The materials remain purely elastic with no failure criterion playing a role.

4. Discussion

Figures 19 and 20 give a comparison between the experimental and numerical results for the
double-lap joint as depicted in Figures 1 and 2. In the following, a comparison between numerical
results and both the main experiments is discussed.
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Figure 20. Numerical (blue) and experimental comparison for joint sample “II” (orange).

Experimental results show that the sample accommodates itself in a stable configuration after the
first loading/unloading step; thus, it is assumed that the configuration attained at the end of the first
unloading step is an origin for the further steps. It is observed that the numerical experiments are able
to reproduce the two cycles “2” and “3” with a good agreement.

The blue curve for the numerical test, and the orange/red one for the experimental results, are
close to each other. Moreover a similar hysteresis is observed. It is important that the theoretical
model does not initially include a complete failure criterion; the failure is obtained only if the damage
parameter is equal to infinity, and then it is not possible to reproduce the complete failure of the joint
numerically. The model has been improved, introducing a complementary criterion (a large value of
the damage parameter) in order to obtain the complete rupture of the interface.

In Figure 21 also presents the evolution of the damage variable l [mm] during the numerical
experiment over cycles “2”, “3”, and over the final step. It is worthy of remarking that, in the proposed
model, the damage variable is the averaged length l of the cracks in the interface, and it is always
increasing. This property is also observed in Figure 21.
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5. Conclusions

In this paper, a study dealing with double lap joints made of GFRP material and an epoxy resin
as a glue, under loading conditions that produce damage within the bonding interfaces is conducted
and an experimental setup is presented. Both experiments and a theoretical model are proposed to
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study the damage within FRP bonded joints. The theoretical model is implemented numerically. A
comparison between experimental and theoretical results with the associated numerical procedure is
proposed. The experimental and the numerical analyses are in a very good agreement. The results
show that it is possible to associate an experimental procedure and a theoretical model in order to
reproduce and predict the behaviour of FRP joints. In the future, we want to extend this preliminary
study, accounting for many geometric configurations, and to improve the theoretical model considering
failure criteria and friction, in order to perform the analysis of the post-failure behaviour, too.
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