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Abstract: The present paper talks about the free vibration analysis of simply supported
Single- and Double-Walled Carbon Nanotubes (SWCNTs and DWCNTs). Refined 2D
Generalized Differential Quadrature (GDQ) shell methods and an exact 3D shell model are
compared. A continuum approach (based on an elastic three-dimensional shell model) is
used for natural frequency investigation of SWCNTs and DWCNTs. SWCNTs are defined as
isotropic cylinders with an equivalent thickness and Young modulus. DWCNTs are defined
as two concentric isotropic cylinders (with an equivalent thickness and Young modulus)
which can be linked by means of the interlaminar continuity conditions or by means of
van der Waals interactions. Layer wise approaches are mandatory for the analysis of van der
Waals forces in DWCNTs. The effect of van der Waals interaction between the two cylinders
is shown for different DWCNT lengths, diameters and vibration modes. The accuracy of
beam models and classical 2D shell models in the free vibration analysis of SWCNTs and
DWCNTs is also investigated.
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1. Introduction

Research about Carbon NanoTubes (CNTs) has demonstrated their exceptional mechanical
properties [1]. In view of these exceptional mechanical properties (the elastic modulus has been shown
to be greater than 1 TPa and the tensile strength exceeds that of steel by over one order of magnitude),
CNTs are considered to be ideal reinforcements in composite structures [2]. CNTs are closed graphene
sheets with a cylindrical shape, they were discovered in Japan by Iijma [3] in 1991. When a continuum
elastic model is applied to CNT analysis, it is of central importance to accurately quantify the elastic
properties of Single-Walled CNTs (SWCNTs) and Double-Walled CNTs (DWCNTs) [4].

The behavior of CNTs can be simulated by means of three different basic methods [5]: Molecular
Dynamic (MD) simulations, atomistic-based modelling approaches and continuum approaches. In the
MD approaches, the simulations are based on the definition of an appropriate potential energy function
(e.g., Tersoff-Brenner or Lennard-Jones functions) [6–15]. In the atomistic-based modelling approaches,
CNTs are investigated by means of an atomistic finite element model with beam elements and
concentrated masses. The beams simulate the interatomic covalent forces and the masses (which
are located at the ends of the beams) represent the carbon positions [16–21]. The continuum
approaches are based on the assumption that carbon nanotubes (which have a discrete molecular
structure) are continuum isotropic elastic cylinders which can be analyzed via beam or shell models.
When a continuum elastic model is applied to CNT analysis, it is of central importance to accurately
quantify the elastic properties of SWCNTs and DWCNTs [22,23].

The high computational cost of the MD simulations and the atomistic-based modelling approaches in
the case of complex CNT networks does not allow fast analyses. Continuum approaches are preferred
to MD and atomistic-based models because of their better computational cost. In order to apply a
continuum model, it is necessary to correctly define effective CNT wall thickness, Young modulus and
Poisson ratio even if a carbon nanotube has a discrete molecular structure. Extensive studies have been
conducted to analyze this feature [24–27]. A final conclusion has not yet been reached, as demonstrated
by the different thickness and Young modulus values shown in the papers analyzed in this contribution.
The equivalent properties discussed in the papers proposed in the following review are not always the
same for a given elastic stiffness.

Continuum approaches to analyze free vibrations of single-walled and multi-walled carbon nanotubes
can use beam or shell models. The most important investigations about beam models for Single-Walled
Carbon Nanotubes (SWCNTs) can be found in [28–41]. Further works about Double-Walled Carbon
Nanotube (DWCNT) simulations via beam models can be found in [42–50]. Shell models are used for
the analysis of SWCNTs and DWCNTs in [51–58] and [58–65], respectively.

The use of shell models for the vibration analysis of CNTs is usually more complicated than the
use of beam models, but shell models allow the analysis of CNTs with small length/diameter ratios.



Technologies 2015, 3 261

For these structures, the use of 1D beam models gives significant errors because short CNTs are not
one-dimensional structures. Refined 2D or 3D shell models are suitable for the correct vibration analysis
of short CNTs, as demonstrated in [51,58], in particular when “the radius of curvature/thickness” ratio
is small.

The present paper proposes an exact three-dimensional elastic shell model and several classical
and refined two-dimensional elastic shell models solved by means of the Generalized Differential
Quadrature (GDQ) method for free vibration analysis of simply supported SWCNTs and DWCNTs.
The 3D exact shell model has been developed for the free vibration analysis of SWCNTs and DWCNTs
in [51,59], respectively. The equilibrium equations in general orthogonal curvilinear coordinates
(see [66–69]) are adapted to the case of a cylinder giving an infinite value for one of the two radii of
curvature. The equilibrium equations in rectilinear orthogonal coordinates and in cylindrical coordinates
were exactly solved by Messina [70] and Soldatos and Ye [71], respectively. Classical and refined
two-dimensional GDQ methods for the free vibration analysis of shell structures have been developed
in [72–81] where several benchmarks related to doubly-curved multilayered composite shells and
higher-order theories have been proposed. The present GDQ method has been tested in [72–81] using
3D, 2D Finite Element Method (FEM) and semi-analytical solutions. In the present study, 2D GDQ
models have been extended to the free vibration analysis of CNTs. Refined 2D GDQ models are based
on the well-known unified formulation [82].

In order to apply the 3D or 2D shell continuum models, SWCNTs are defined as isotropic cylinders
and DWCNTs are defined as two concentric isotropic cylinders (each cylinder in SWCNT or in DWCNT
has an equivalent thickness and Young modulus). In DWCNTs, each cylinder can be linked by means of
the interlaminar continuity conditions (first choice) or by means of an infinitesimal fictitious layer which
represents the van der Waals interaction (second choice). The comparisons between these two choices
show the effects of van der Waals interactions between the two concentric cylinders for different CNT
lengths, diameters and vibration modes. Results show the van der Waals interaction effects in terms of
frequency value. Shell and beam models, and 3D exact and 2D numerical shell models are compared for
different SWCNT and DWCNT geometries.

2. 3D Exact Shell Model

Free vibration analysis of multilayered spherical shells with constant radii of curvature Rα and Rβ

has been proposed by Brischetto in [66–69] using three differential equations of equilibrium in general
orthogonal curvilinear coordinates. The equations have been solved in exact form in analogy with the
exponential matrix method proposed by Messina [70] and Soldatos and Ye [71] for orthogonal rectilinear
coordinates and cylindrical coordinates, respectively. In the present paper, the equations in general
orthogonal curvilinear coordinates are rewritten for the cylindrical case imposing an infinite value for
the radius of curvature Rβ (see Figure 1). The general form proposed in [66–69] remains valid for both
plate and constant radius shell geometries (spherical and cylindrical shells).
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Figure 1. Reference system, notation and continuum approach for a SWCNT and a DWCNT.

The strain-displacement relations of the three-dimensional theory of elasticity in orthogonal
curvilinear coordinates are written for the generic k layer of the multilayered cylindrical shell of Figure 1
(the general form for spherical shells with constant radii of curvature Rα and Rβ has already been given
in [66–69]):

εkαα =
1

Hα

uk,α +
wk

HαRα

(1)

εkββ = vk,β (2)

εkzz = wk,z (3)

γkβz = wk,β + vk,z (4)

γkαz =
1

Hα

wk,α + uk,z −
uk

HαRα

(5)

γkαβ =
1

Hα

vk,α + uk,β (6)

The parametric coefficients for cylindrical shells are:

Hα = (1 +
z

Rα

) , Hβ = 1 , Hz = 1 (7)

The strain components are εαα, εββ , εzz, γβz, γαz and γαβ for each k isotropic layer. The displacement
components for each k isotropic layer are u, v and w along orthogonal curvilinear coordinates α, β and
z, respectively. Partial derivatives ∂

∂α
, ∂
∂β

and ∂
∂z

are indicated with subscripts ,α, ,β and ,z, respectively.
Hα depends on the z coordinate. Hβ = 1 and Hz = 1 because β and z are rectilinear coordinates. Rα is
the principal radius of curvature along the α coordinate. Rβ is infinite for a cylinder (see Figure 1).
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Three-dimensional linear elastic constitutive equations in orthogonal curvilinear coordinates (α, β, z)
(see Figure 1) are given for a generic k isotropic layer. The stress components (σαα, σββ , σzz, σβz, σαz,
σαβ) are linked with the strain components (εαα, εββ , εzz, γβz, γαz, γαβ) for each k isotropic layer as:

σkαα = Ck
11ε

k
αα + Ck

12ε
k
ββ + Ck

13ε
k
zz (8)

σkββ = Ck
12ε

k
αα + Ck

22ε
k
ββ + Ck

23ε
k
zz (9)

σkzz = Ck
13ε

k
αα + Ck

23ε
k
ββ + Ck

33ε
k
zz (10)

σkβz = Ck
44γ

k
βz (11)

σkαz = Ck
55γ

k
αz (12)

σkαβ = Ck
66γ

k
αβ (13)

The most general form of differential equations of equilibrium for spherical shells with constant radii
of curvature can be found in [66–69]. These equations rewritten for the case of free vibration analysis of
cylindrical shells are:

σkαα,α +Hασ
k
αβ,β +Hασ

k
αz,z +

2

Rα

σkαz = ρkHαü
k (14)

σkαβ,α +Hασ
k
ββ,β +Hασ

k
βz,z +

1

Rα

σkβz = ρkHαv̈
k (15)

σkαz,α +Hασ
k
βz,β +Hασ

k
zz,z −

1

Rα

σkαα +
1

Rα

σkzz = ρkHαẅ
k (16)

where ρk is the mass density. ük, v̈k and ẅk indicate the second temporal derivative of the three
displacement components uk, vk and wk, respectively. Each quantity depends on the k layer. Rα is
referred to the mid-surface Ω0 of the whole multilayered shell. Hα continuously varies through the
thickness of the multilayered shell and it depends on the z thickness coordinate. Equations (14)–(16)
have constant coefficients (even if a shell geometry is considered) when the shell is divided in NL

mathematical layers where the parametric coefficient Hα can easily be calculated in the middle of each
k mathematical layer.

The closed form of Equations (14)–(16) is obtained for simply supported cylindrical shells. The three
displacement components have the following harmonic form:

uk(α, β, z, t) = Uk(z)eiωtcos(ᾱα)sin(β̄β) (17)

vk(α, β, z, t) = V k(z)eiωtsin(ᾱα)cos(β̄β) (18)

wk(α, β, z, t) = W k(z)eiωtsin(ᾱα)sin(β̄β) (19)

where Uk(z), V k(z) and W k(z) are the displacement amplitudes in α, β and z directions, respectively.
i is the coefficient of the imaginary unit. ω = 2πf is the circular frequency where f is the frequency
value, t is the time. In coefficients ᾱ = pπ

a
and β̄ = qπ

b
, p and q are the half-wave numbers and a

and b are the shell dimensions in α and β directions, respectively (they are calculated in the reference
mid-surface Ω0).
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Equations (1)–(6), (8)–(13) and (17)–(19) are substituted in Equations (14)–(16) to obtain a system
of equations for each k mathematical layer:

Ak1U
k + Ak2V

k + Ak3W
k + Ak4U

k
,z + Ak5W

k
,z + Ak6U

k
,zz = 0 (20)

Ak7U
k + Ak8V

k + Ak9W
k + Ak10V

k
,z + Ak11W

k
,z + Ak12V

k
,zz = 0 (21)

Ak13U
k + Ak14V

k + Ak15W
k + Ak16U

k
,z + Ak17V

k
,z + Ak18W

k
,z + Ak19W

k
,zz = 0 (22)

Coefficients Aks are constant in each k mathematical layer because parametric coefficient Hα is
calculated in the middle of each k layer.

Equations (20)–(22) are a system of three second order differential equations in z. This system can
be reduced to a system of first order differential equations using the method already seen in [66–71].
In compact form, it can be written as:

Dk ∂U
k

∂z
= AkU k (23)

where ∂Uk

∂z
= U k ′ and U k = [Uk V k W k Uk ′ V k ′ W k ′]. Equation (23) can be rewritten as:

U k ′ = Ak∗ U k (24)

with Ak∗ = Dk−1
Ak. The solution of Equation (24) is obtained by means of the exponential matrix

solution:
U k(zk) = exp(Ak∗zk)U k(0) with zk ε [0, hk] (25)

where zk is the thickness coordinate of each k layer from 0 at the bottom to hk at the top.
If we consider NL layers, NL − 1 transfer matrices T k−1,k must be calculated using for

each interface the following conditions for interlaminar continuity of displacements and transverse
shear/normal stresses:

ukb = uk−1
t , vkb = vk−1

t , wkb = wk−1
t (26)

σkzzb = σk−1
zzt , σ

k
αzb = σk−1

αzt , σ
k
βzb = σk−1

βzt (27)

each displacement and transverse stress component at the top (t) of the k − 1 layer is equal to each
displacement and transverse stress component at the bottom (b) of the k layer. Equations (26) and (27)
in compact form are:

U k
b = T k−1,kU k−1

t . (28)

The calculated T k−1,k matrices allow vector U at the bottom (b) of the k layer with vector U at the
top (t) of the k − 1 layer to be linked. The structures are simply supported and free stressed at the top
and at the bottom, this feature means:

σzz = σαz = σβz = 0 for z = 0, h (29)

w = v = 0, σαα = 0 for α = 0, a (30)

w = u = 0, σββ = 0 for β = 0, b (31)
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The combination of Equations (24), (25), (28) and (29)–(31) leads to the following system (details
can be found in [66–69]):

E U 1
b = 0 (32)

Matrix E always has (6× 6) dimension, independently from the number NL of mathematical layers,
even if the method uses a layer-wise approach. The free vibration analysis means to find the non-trivial
solution of U 1

b (displacement at the bottom of the layer 1) in Equation (32) imposing the determinant of
matrix E equals zero:

det[E] = 0 (33)

Equation (33) means to find the roots of an higher order polynomial in λ = ω2. For each pair
of half-wave numbers (p, q), a certain number of circular frequencies (from I to ∞) are obtained
depending on the order N chosen for the exponential matrix in Equation (25) and the number NL of
mathematical layers.

3. 2D GDQ Shell Models

The 2D GDQ models proposed in this manuscript consider an Equivalent Single Layer (ESL)
and a Layer Wise (LW) approach, both developed in the framework of the well-known unified
formulation [82]. The ESL models have the following displacement field:

U =
Nc+1∑
τ=0

Fτu
(τ) (34)

where U indicates the 3D displacement components and u stands for the vector of the τ th generalized
displacements of the points on the middle surface of the shell [72]. Fτ(ij) = δijFτ (for i, j = 1, 2, 3) is the
thickness function matrix and δ is the Kronecker delta function. A first order shear deformation theory,
based on the Reissner-Mindlin model and called RM-GDQ, is obtained for Nc = 0, and a higher-order
model named ESL-GDQ is obtained with a fourth order expansion (Nc = 4). From the displacement
field in Equation (34), the relation between generalized strains ε(τ) and displacements u(τ) is:

ε(τ) = DΩu(τ) for τ = 0, 1, 2, . . . , Nc, Nc + 1 (35)

where DΩ is given in explicit form in [72]. The relationship between the τ th order stress resultants and
the generalized strains is:

S(τ) =
Nc+1∑
s=0

A(τs)ε(s) for τ = 0, 1, 2, . . . , Nc, Nc + 1 (36)

where

A(τs) =

NL∑
k=1

∫ zk+1

zk

(
Z(τ)

)T
C̄(k)Z(s)HαHβdz (37)

The elastic coefficients of the constitutive matrix are given in extended form in [72]. The governing
equations of motion and their boundary conditions can be obtained via the Hamilton’s Principle. In the
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present generalized approach, each order τ includes a set of three motion equations, that are a function
of the internal actions and assume the following compact matrix form:

D?
ΩS(τ) =

Nc+1∑
s=0

M(τs)ü(s) for τ = 0, 1, 2, . . . , Nc, Nc + 1 , (38)

where D?
Ω is the equilibrium operator and M(τs) is the inertial matrix, they are given in explicit form

in [72]. The mass matrix M
(τs)
(ij) = δijI

(τs)
0 contains the inertial mass terms I(τs)

0 for i, j = 1, 2, 3:

I
(τs)
0 =

NL∑
k=1

∫ zk+1

zk

ρ(k)FτFsHαHβdz for τ, s = 0, 1, 2, . . . , Nc, Nc + 1 (39)

where ρ(k) represents the mass density of the material per unit of volume of the kth ply. Combining
the kinematic Equation (35), constitutive Equation (36) and the motion Equation (38), the fundamental
system of equations in terms of displacement parameters can be found:

Nc+1∑
s=0

L(τs)u(s) =
Nc+1∑
s=0

M(τs)ü(s) for τ = 0, 1, 2, . . . , Nc, Nc + 1 (40)

where L(τs) = D?
ΩA(τs)DΩ is the fundamental operator [72]. Boundary conditions must be introduced

to solve the differential problem in Equation (40). The GDQ method works with any kind of boundary
condition, in the present study only simply-supported edge boundary conditions (S) are taken into
account in order to make comparisons with the 3D exact model:

u(τ)
α = 0, N

(τ)
β = 0, u(τ)

z = 0 for τ = 0, 1, 2, . . . , Nc, Nc + 1 at β = β0

or β = β1 α0 ≤ α ≤ α1
(41)

Along two edges, the simply-supported external boundary conditions are considered, whereas
compatibility equations have been set on the other two edges in order to have a closed cylinder:

u(τ)
α (0, β, t) = u(τ)

α (2π, β, t); u
(τ)
β (0, β, t) = u

(τ)
β (2π, β, t); u(τ)

z (0, β, t) = u(τ)
z (2π, β, t) ;

N
(τ)
αβ (0, β, t) = N

(τ)
αβ (2π, β, t); N (τ)

α (0, β, t) = N (τ)
α (2π, β, t); T (τ)

α (0, β, t) = T (τ)
α (2π, β, t)

for τ = 0, 1, 2, . . . , Nc, Nc + 1 at β0 ≤ β ≤ β1

(42)

The higher-order layer-wise model (LW-GDQ) has an approach similar to the ESL scheme.
The displacement field takes the following form with Nc = 4 [73]:

U(k) =
Nc+1∑
τ=0

F(k)
τ u(kτ) for k = 1, 2, . . . , NL (43)

From Equations (43) and (34), it is clear that each quantity is referred to each single layer k. In the
present case, the thickness functions are a combination of Legendre polynomials recursively defined
in [73]. The generalized displacements u(k0)

α , u(k0)
β , u(k0)

z for τ = 0 are the displacements at the bottom
of the kth layer (z(k) = −hk/2), whereas u(k(Nc+1))

α , u(k(Nc+1))
β , u(k(Nc+1))

z for τ = Nc + 1 are the
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displacements at the top of the kth layer (z(k) = +hk/2). Using the displacement field in Equation (43),
the kinematic equations are:

ε(kτ) = D
(k)
Ω u(kτ) for τ = 0, 1, 2, . . . , Nc, Nc + 1, k = 1, 2, . . . , NL (44)

A linear and elastic material constitutes the CNTs; thus, the present internal actions take the form:

S(kτ) =
Nc+1∑
s=0

A(kτs)ε(ks) for τ = 0, 1, 2, . . . , Nc, Nc + 1, k = 1, 2, . . . , NL (45)

where

A(kτs) =

NL∑
k=1

∫ +hk/2

−hk/2

(
Z(kτ)

)T
C̄(k)Z(ks)H(k)

α H
(k)
β dz(k) (46)

The τ th order generalized internal action is indicated as S(kτ) and the elastic coefficients are A(kτs),
both computed as given in [73].

For the present layer-wise shell model, a set of three equilibrium equations for each order τ can
be written:

D
?(k)
Ω S(kτ) =

Nc+1∑
s=0

M(kτs)ü(ks) for τ = 0, 1, 2, . . . , Nc, Nc + 1, k = 1, 2, . . . , NL (47)

where the equilibrium operator D
?(k)
Ω S(kτ) and the inertial matrix M(kτs) have been explicitly shown

in [73]. The inertial terms take place into the inertial matrix as M(kτs) = δijI
(kτs)
0 for i, j = 1, 2, 3 and

they are defined by the following expression:

I
(kτs)
0 =

∫ +hk/2

−hk/2
ρ(k)F (k)

τ F (k)
s H(k)

α H
(k)
β dz(k) for τ, s = 0, 1, 2, . . . , Nc, Nc + 1, k = 1, 2, . . . , NL (48)

where ρ(k) is the mass density of the material per unit of volume of the kth lamina. Finally, the
fundamental equations in terms of generalized displacements are:

Nc+1∑
s=0

L(kτs)u(ks) =
Nc+1∑
s=0

M(kτs)ü(ks) for τ = 0, 1, 2, . . . , Nc, Nc + 1, k = 1, 2, . . . , NL (49)

where L(kτs) = D
?(k)
Ω A(kτs)D

(k)
Ω is the fundamental operator [73]. Since the approach is based on a

layer-by-layer structure, the compatibility conditions between the layers must be defined. In detail, the
top displacements of the kth ply at each interface must be equal to the bottom displacements of the
(k + 1)th layer, as:u

(k top)
α

u
(k top)
β

u
(k top)
z

 =

u
((k+1)bottom)
α

u
((k+1)bottom)
β

u
((k+1)bottom)
z

→
u

(k(Nc+1))
α

u
(k(Nc+1))
β

u
(k(Nc+1))
z

 =

u
((k+1)0)
α

u
((k+1)0)
β

u
((k+1)0)
z

 for
τ = 0, 1, 2, . . . , Nc, Nc + 1

k = 1, 2, . . . , NL − 1
(50)

Finally, boundary conditions must be included to solve the equations. In the present study, only
simply-supported boundary conditions have been applied because of the comparison with the 3D
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exact solution (even though GDQ method based on the LW approach can work with any kind of
boundary condition):

u(kτ)
α = 0, N

(kτ)
β = 0, u(kτ)

z = 0 for
τ = 0, 1, 2, . . . , Nc, Nc + 1

k = 1, 2, . . . , NL

at
β = β0 or β = β1

α0 ≤ α ≤ α1
(51)

Since a closed cylinder has been investigated, compatibility conditions must be considered, they are
given in the following form:

u(kτ)
α (0, β, t) = u(kτ)

α (2π, β, t); u
(kτ)
β (0, β, t) = u

(kτ)
β (2π, β, t); u(τ)

z (0, β, t) = u(τ)
z (2π, β, t) ;

N
(kτ)
αβ (0, β, t) = N

(kτ)
αβ (2π, β, t); N (kτ)

α (0, β, t) = N (kτ)
α (2π, β, t); T (kτ)

α (0, β, t) = T (kτ)
α (2π, β, t)

for τ = 0, 1, 2, . . . , Nc, Nc + 1 at β0 ≤ β ≤ β1

(52)

4. Results and Discussion

This section proposes results for free vibration analysis of simply supported SWCNTs and DWCNTs.
The exact 3D solution described in Section 2 will be compared with two beam models proposed in the
literature by Simsek [39] and Aydogdu [20], and with the 2D GDQ solutions described in Section 3
(in particular a Reissner-Mindlin model (RM-GDQ), a refined Equivalent Single Layer model
(ESL-GDQ) and a refined Layer Wise model (LW-GDQ)). A preliminary assessment is given to validate
the 3D exact and the 2D GDQ models; in this case, several SWCNTs are analyzed. The length L

of the investigated SWCNTs is changed to understand the approximation of the beam models.
These preliminary assessments have been used to understand the order N for the exponential matrix and
the number of mathematical layers NL to use in the 3D exact model, and the number of grid points to
use in 2D GDQ models. In the benchmarks for SWCNTs and DWCNTs, 2D GDQ models are compared
with the 3D exact model for circumferential half-wave number p = 2 and longitudinal half-wave numbers
q = 1, 2, 3 (the first mode (I) for each pair (p,q) is always indicated in the tables). The comparison
between the 3D exact model and the 2D GDQ models is possible by means of an appropriate vibration
mode analysis which allows to select the appropriate frequencies and half-wave numbers. The effects of
the van der Waals forces have been evaluated by means of the 3D exact model which is based on a layer
wise approach.

4.1. Preliminary Assessment

This assessment has been proposed by Simsek [39] and Aydogdu [20] where an Euler-Bernoulli Beam
Model (EBM) and a Timoshenko Beam Model (TBM) have been used. The SWCNT is simply supported,
the equivalent elastic cylinder has properties as indicated in Simsek [39]. The equivalent Young modulus
is E = 1 TPa with Poisson ratio ν = 0.3, the effective thickness considered for this Young modulus
value is h = 0.35 nm. The mass density is ρ = 2300 kg/m3. The external diameter of the cylinder is
de = 1 nm, this value means a “radius of curvature/thickness” ratio Rα/h = 0.929 (very thick shell)
which requests the use of beam models or 3D/refined 2D shell models. Some difficulties may arise when
classical 2D shell models (e.g., RM-GDQ) are used for the analysis of such cylinders. The use of very
refined 2D shell models (see [58]) or 3D exact shell models (see [51,59]) overcomes this problem. The
radius of curvature in α direction, referred to the mid-surface, is Rα = de/2 − h/2 = 0.325 nm. The
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dimension in α direction is a = 2πRα, and the b dimension is L = 5 nm, 10 nm, 20 nm, 50 nm and 100

nm for ratios L/de = 5, 10, 20, 50 and 100, respectively. Table 1 gives the non-dimensional circular

frequency ω̄ = ωL2
√

ρA
EI

(where A = π(r2
e − r2

i ) is the area of the ring and I = π
64

(d4
e − d4

i ) is the
moment of inertia of the ring) for short and long simply supported cylinders with different L/de ratios.
The three non-dimensional circular frequencies are obtained with an imposed half-wave number p = 2 in
α direction and half-wave numbers q in β direction equal to 1,2 and 3 (the first mode (I) is considered for
each pair (p,q)). Beam models correctly work for long and moderately long cylinders. However, shell
models give correct results for both long and short cylinders. The Euler-Bernoulli Beam Model (EBM)
was proposed in Simsek [39] and Aydogdu [20] for ratios L/de = 10, 20, 50. The same cases were also
investigated in [20] by means of the Timoshenko Beam Model (TBM). TBM gives more accurate results
than EBM because it includes the effects of transverse shear deformation and rotary inertia. However,
TBM shows some problems for second and third frequency in the case of short SWCNTs (L/de = 10).
The 3D shell model gives satisfactory results for both long and short SWCNTs, and it also allows for
the vibration analysis of cylinders with small “radius of curvature/thickness” ratios. For these small
ratios, classical 2D shell models could exhibit some difficulties. Table 1 shows that the TBM gives
similar results to the 3D shell model, while the EBM produces larger differences. The TBM has some
difficulties for short SWCNTs. Additional results for very short and very long SWCNTs via the 3D
shell model and 2D GDQ models are recorded in Table 1 (they were not obtained in [20,39] via beam
models). They show a complete overview of the SWCNT behavior, and they can be used as a benchmark
for the validation of future 1D beam and 2D shell models. 2D GDQ models propose both classical
(Reissner-Mindlin approach, RM-GDQ) and refined (higher order Equivalent Single Layer approach,
ESL-GDQ) models. ESL-GDQ model always gives the 3D exact solution for each L/de ratio (length
of SWCNT) and vibration mode. RM-GDQ exhibits some difficulties because the cylinder is very thick
(Rα/h = 0.929). The layer wise model (LW-GDQ) is not used in this assessment because only one layer
is embedded in the SWCNT. Scientists involved in beam and shell model analyses of SWCNTs can
try to complete this table. After this assessment, the 3D shell model and the 2D GDQ models can be
considered as validated and it can be used with confidence for future analyses. The 3D shell model used
NL = 228 mathematical layers for the approximation of the radius of curvature and N = 3 order for the
approximation of the exponential matrix. 2D GDQ models used a 41 × 15 Chebyshev-Gauss-Lobatto
grid. All these values are also used in the benchmark analysis of Section 4.2.
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Table 1. Preliminary assessment, simply supported single-walled carbon nanotubes
(SWCNT) with Rα/h = 0.929. Comparison between the 3D exact and 2D GDQ shell
models and beam models (Euler-Bernoulli Beam Model (EBM) and Timoshenko Beam
Model (TBM) proposed in [20,39]). Non-dimensional circular frequencies ω̄ for different
L/de ratios. p and q are the imposed half-wave numbers.

mode (p,q) 3D Exact RM-GDQ ESL-GDQ EBM [20,39] TBM[20]

L/de = 5

I (2,1) 9.3481 9.3672 9.3480 - -
I (2,2) 32.917 32.941 32.907 - -
I (2,3) 63.917 63.683 63.685 - -

L/de = 10

I (2,1) 9.7295 9.7525 9.7290 9.8696 9.7443
I (2,2) 37.392 37.469 37.392 39.478 36.841
I (2,3) 79.361 79.483 79.358 88.826 57.450

L/de = 20

I (2,1) 9.8356 9.8584 9.8337 9.8696 9.8381
I (2,2) 38.918 39.010 38.916 39.478 38.964
I (2,3) 86.072 86.264 86.070 88.826 85.748

L/de = 50

I (2,1) 9.8638 9.8888 9.8638 9.8696 9.8645
I (2,2) 39.392 39.485 39.386 39.478 39.398
I (2,3) 88.375 88.583 88.363 88.826 88.415

L/de = 100

I (2,1) 9.8487 9.8932 9.8682 - -
I (2,2) 39.488 39.555 39.455 - -
I (2,3) 88.752 88.934 88.710 - -

4.2. Benchmarks

The first benchmark considers a simply supported SWCNT with properties proposed in [6] and in
Table 2 and Figure 2. The SWCNTs can have different geometries depending on the chiral vector
−→
Ch = n−→a1 + m−→a2 which also gives different values of the radius of curvature (see Figure 2 and
Table 2 for further details about armachair, zigzag and general chirality CNTs). Chen and Cao [6]
proposed different continuum approaches for CNT analysis, they gave a completely different value for
the thickness wall h with respect to those usually proposed in the literature. This value was h = 0.08 nm
that means an effective Young modulus E = 6.85 TPa and Poisson ratio ν = 0.19. The mass density
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is ρ = 9517 kg/m3. The continuum models proposed in [6] used these mechanical properties for the
CNT analysis. The comparison of these results with those obtained via the Molecular Dynamic (MD)
analysis has always shown a difference which is less than 5%. For this reason, these properties have
been used for the SWCNT benchmark proposed in this section by means of the 3D exact model and
the 2D GDQ models. Table 2 shows the radius of curvature r and the number of atoms for several
SWCNT configurations (armachair with n = m, zigzag with (n,0) and general chirality with n 6= m).
Several “length/radius” ratios (L/r) are proposed for each SWCNT, r = Rα is considered as the radius
of curvature in the α direction with respect to the mid-surface. Tables 3–5 show the frequencies in GHz
for each SWCNT described in Table 2 and Figure 2 with “length/radius” ratios L/r = 20, 25, 30, 35.
The Rα/h ratio is bigger than the ratio proposed in the preliminary assessment (moderately thick shell),
for this reason the classical 2D GDQ model works as well as the refined 2D GDQ model and the 3D exact
model. Only SWCNTs are considered in this first benchmark, therefore the use of 2D LW models is not
necessary. The 3D exact model is compared with the 2D GDQ model based on the Reissner-Mindilin
approach (RM-GDQ) and the 2D GDQ model based on a fourth order Equivalent Single Layer model
(ESL-GDQ). 2D GDQ models give a number of frequencies equal to the number of degrees of freedom
of the employed model. In Tables 3–5, the comparisons are made with the frequencies given by the 3D
exact model when the circumferential half-wave number is p = 2 and the longitudinal half-wave number
q is equal to 1, 2 and 3 (always the first mode (I) for each pair (p,q)). This comparison is possible via
the visualization of the vibration modes of the 2D GDQ models, which allows one to understand the
values of p and q. In Tables 3–5, 3D exact frequencies are always very similar to frequencies obtained
by means of 2D GDQ models (both classical RM-GDQ and refined ESL-GDQ ones) for each L/r ratio
investigated, a couple of half-wave numbers (p,q) and SWCNT structure (armachair, zigzag and general
chirality). This feature is due to the fact that this SWCNT is a one-layered moderately thick isotropic
cylinder. For a smaller “radius of curvature/thickness” ratio (thick shells), the use of 3D or refined 2D
shell models will be mandatory.

Table 2. Geometry and properties (radius of curvature and number of atoms) for some of the
SWCNTs used in the present paper and in Chen and Cao work [6].

SWCNT (n,m) (5,5) (10,0) (8,4)

r(nm) 0.338 0.390 0.413
n. atoms 1040 1200 1200
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Figure 2. Notation of the chiral vector for armachair, zigzag and general chirality
single-walled carbon nanotubes.

Table 3. First benchmark, simply supported armachair SWCNT with Rα/h = 4.225.
Frequencies in GHz for 2D generalized differential quadrature (GDQ) and 3D exact shell
models.

Armachair (5,5)

mode (p,q) 3D Exact RM-GDQ ESL-GDQ

L/r = 20

I (2,1) 215.0 215.0 215.0
I (2,2) 791.7 791.8 791.7
I (2,3) 1595 1595 1595

L/r = 25

I (2,1) 139.1 139.1 139.2
I (2,2) 526.2 526.2 526.2
I (2,3) 1093 1093 1093

L/r = 30

I (2,1) 97.23 97.24 97.23
I (2,2) 373.5 373.5 373.5
I (2,3) 791.7 791.8 791.7

L/r = 35

I (2,1) 71.70 71.71 71.70
I (2,2) 278.2 278.3 278.2
I (2,3) 597.9 597.9 597.9
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Table 4. First benchmark, simply supported zigzag SWCNT with Rα/h = 4.875.
Frequencies in GHz for 2D GDQ and 3D exact shell models.

Zigzag (10,0)

Mode (p,q) 3D Exact RM-GDQ ESL-GDQ

L/r = 20

I (2,1) 186.0 186.0 186.0
I (2,2) 684.9 684.9 684.9
I (2,3) 1380 1380 1380

L/r = 25

I (2,1) 120.4 120.4 120.4
I (2,2) 455.2 455.2 455.2
I (2,3) 945.7 945.7 945.7

L/r = 30

I (2,1) 84.12 84.12 84.12
I (2,2) 323.1 323.2 323.1
I (2,3) 684.9 685.0 684.9

L/r = 35

I (2,1) 62.04 62.04 62.04
I (2,2) 240.7 240.7 240.7
I (2,3) 517.2 517.2 517.2

Table 5. First benchmark, simply supported SWCNT with general chirality and Rα/h = 5.1625.
Frequencies in GHz for 2D GDQ and 3D exact shell models.

General Chirality (8,4)

Mode (p,q) 3D Exact RM-GDQ ESL-GDQ

L/r = 20

I (2,1) 175.5 175.6 175.5
I (2,2) 646.4 646.4 646.4
I (2,3) 1302 1302 1302

L/r = 25

I (2,1) 113.6 113.6 113.6
I (2,2) 429.6 429.6 429.6
I (2,3) 892.4 892.5 892.4

L/r = 30

I (2,1) 79.39 79.39 79.39
I (2,2) 305.0 305.0 305.0
I (2,3) 646.4 646.4 646.4

L/r = 35

I (2,1) 58.55 58.55 58.55
I (2,2) 227.2 227.2 227.2
I (2,3) 488.1 488.1 488.1

The second benchmark considers four different DWCNTs. The DWCNT has two layers with the
same equivalent thickness hi = he = 0.35 nm (see Figures 1, 3 and 4). The equivalent elastic
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properties are Young modulus E = 1 TPa and Poisson ratio ν = 0.25. The mass density is
ρ = 2300 kg/m3. Four different DWCNT geometries are investigated (see Figures 1 and 4 for reference
values). The first nanotube has a reference diameter for the inner cylinder di = 0.7 nm and a reference
diameter for the external cylinder de = 1.4 nm. The mean radius of curvature for the DWCNT is
Rα = di/2 + hi/2 = 0.525 nm; this value means dimension a = 2πRα = 3.298672286 nm.
The second nanotube has a reference diameter for the inner cylinder di = 2.95 nm and a reference
diameter for the external cylinder de = 3.65 nm. The mean radius of curvature for the DWCNT is
Rα = di/2 + hi/2 = 1.65 nm; this value means dimension a = 2πRα = 10.367256 nm.
The third nanotube has a reference diameter for the inner cylinder di = 4.80 nm and a reference
diameter for the external cylinder de = 5.50 nm. The mean radius of curvature for the DWCNT
is Rα = di/2 + hi/2 = 2.575 nm; this value means dimension a = 2πRα = 16.1792022 nm.
The fourth nanotube has a reference diameter for the inner cylinder di = 7.0 nm and a reference
diameter for the external cylinder de = 7.70 nm. The mean radius of curvature for the DWCNT is
Rα = di/2 + hi/2 = 3.675 nm; this value means dimension a = 2πRα = 23.090706 nm. The four
DWCNTs have an infinity radius of curvature in β direction. The lengths L = b considered in the β
direction are obtained fromL/de = 5, 10, 15, 30 and 50. The DWCNT is analyzed in this paper by means
of an equivalent continuum model where the two cylinders have thickness values hi and he (see Figures 3
and 4). The first 3D exact model considers NL = 228 mathematical layers to correctly approximate the
curvature of the shell. The first cylinder (with thickness hi) is divided into 114 mathematical layers
(from k = 1 to k = 114) and the second cylinder (with thickness he) is also divided into 114 mathematical
layers (from k = 115 to k = 228). Mathematical layers are linked by means of the interlaminar continuity
conditions given in Equations (26) and (27). Such conditions are also used to link layer k = 114 to
layer k = 115, in this way the two cylinders are linked by means of interlaminar continuity conditions.
This model is indicated as the 3D model in the proposed results. ESL-GDQ and LW-GDQ models
consider the DWCNT as including two layers with thickness hi = he = 0.35 nm, ESL-GDQ is based
on an Equivalent Single Layer approach and LW-GDQ is based on a Layer Wise approach that links
the two cylinders by means of the interlaminar continuity conditions. The second 3D exact model
proposed in this paper is called the 3DvdW model because it allows van der Waals interactions to be
included in the 3D continuum shell model described in Section 2. The two cylinders have thickness
values hi and he. The first cylinder is divided into 114 fictitious layers (from k = 1 to k = 114) and the
second cylinder is also divided into 114 fictitious layers (from k = 116 to k = 229). An infinitesimal
layer (k = 115) is introduced between the two cylinders to simulate the van der Waals interaction (see
Figure 3). This infinitesimal fictitious layer has a negligible thickness (h115 = (hi + he)/1000) and
opportune elastic properties which represent the van der Waals interaction. Layers k = 114 and k = 115,
and layers k = 115 and k = 116 are linked by means of the interlaminar continuity conditions given in
Equations (26) and (27). The fictitious layer k = 115 has mass density ρ = 1.225 kg/m3 (air density).
The Poisson ratio is the same used for the other layers. The van der Waals interaction coefficient c,
estimated at the initial interlayer spacing can be given as:

c =
320erg/cm2

0.16d2
(53)
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see de Borbón and Ambrosini [48] for further details. d = 0.142 nm is the length of C–C bond
and 1erg = 10−7Joule. This coefficient has value c = 9.918667×1019 N/m3. Transverse displacements
for CNT analysis have values in the order of 10−12m. Therefore, the equivalent Young modulus for the
infinitesimal fictitious layer that simulates van der Waals interactions could be E = 9.918667× 107 Pa.
An alternative method could be the inclusion of van der Waals forces directly in Equations (14)–(16)
of the 3D exact model. The method of the fictitious layer has been preferred in the 3D exact model
because the direct inclusion of van der Waals forces gave numerical problems in the solution of the 3D
exact equations. The method including the van der Waals forces and their coefficients c has been used
by the first author in [58] in the case of refined 2D models. The method using the fictitious layer, that
represents the van der Waals forces, has been validated and tested in [59] by the first author for the
3D exact model. Tables 6–9 show results for the four different DWCNT geometries described in this
section. Comparisons are made between the 3D exact model and the refined 2D GDQ models for several
length-to-diameter ratio (from very short DWCNTs to very long DWCNTs). 2D GDQ models are used
to obtain the 3D exact frequencies (only the first mode I) when p = 2 and q = 1,2,3. 2D GDQ models
give several frequencies. In order to understand which are the frequencies to compare, a vibration mode
analysis must be performed as shown in the examples proposed in Figure 5. This analysis allows to
understand the values of half-wave numbers (p,q). In Tables 6–9, 3D exact frequencies are always very
similar to results obtained via refined 2D GDQ models. RM-GDQ model is not given because it shows
big errors for cylinders with small Rα/h values (in particular Tables 6 and 7) and it is coincident with
the refined 2D GDQ models with big Rα/h values (in particular Tables 8 and 9). Both refined 2D GDQ
models (the Equivalent Single Layer one and the Layer Wise one) give always the same results even if a
double-walled CNT is considered. This feature is due to the fact that the two cylinders are isotropic and
made of the same material, and, for these reasons, ESL and LW approaches are coincident. Refined 2D
GDQ models are always very accurate for each DWCNT geometry, “length/diameter” ratio, “radius of
curvature/thickness” ratio and vibration mode. In Tables 6–9, a 3DvdW exact model is also considered.
It allows to evaluate the van der Waals interaction effects by means of the frequency comparison between
the 3D exact model (which considers the interlaminar continuity conditions between the two cylinders)
and the 3DvdW exact model (which considers a fictitious layer between the two cylinders that represents
the van der Waals forces). From Tables 6–9, it is clear how the van der Waals effects are usually very
small (often negligible). These effects are quite zero for long DWCNTs and/or low frequencies (p = 2 and
q = 1), while they are more important for short cylinders and/or high frequencies (p = 2 and q = 2 or 3).
van der Waals interaction effects are bigger in Tables 6 and 7 because they consider cylinders with a
small Rα/h ratio. For cylinders in Tables 8 and 9 (bigger Rα/h ratios), van der Waals effects are always
negligible for each lenght (L/de ratio) and vibration mode.
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Figure 3. Continuum 3D shell model for DWCNT analysis. Interlaminar continuity between
the two cylinders (at the top) and van der Waals interaction between the two cylinders
(at the bottom).

Table 6. Second benchmark, simply supported double-walled carbon nanotubes (DWCNT)
(first geometry with Rα/h = 0.75). Frequencies in GHz for 2D GDQ and 3D exact
shell models.

Nanotube 1

Mode (p,q) 3D Exact 3DvdW Exact ESL-GDQ LW-GDQ

L/de = 5

I (2,1) 277.4 270.8 277.4 277.4
I (2,2) 946.2 892.3 946.2 946.2
I (2,3) 1785 1628 1785 1785

L/de = 10

I (2,1) 73.12 72.64 73.12 73.12
I (2,2) 277.4 270.8 277.4 277.4
I (2,3) 579.4 554.3 579.4 579.4

L/de = 15

I (2,1) 32.85 32.76 32.85 32.85
I (2,2) 128.1 126.6 128.1 128.1
I (2,3) 277.4 270.8 277.4 277.4

L/de = 30

I (2,1) 8.266 8.266 8.266 8.266
I (2,2) 32.85 32.76 32.85 32.85
I (2,3) 73.12 72.64 73.12 73.12

L/de = 50

I (2,1) 2.980 2.980 2.980 2.980
I (2,2) 11.89 11.89 11.89 11.89
I (2,3) 26.65 26.60 26.65 26.65
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Figure 4. Geometrical data for the equivalent continuum DWCNT analyzed in
the benchmark.

Figure 5. DWCNT benchmark: first geometry for L/de =5 on the left side and fourth
geometry for L/de = 30 on the right side. Vibration modes via the LW-GDQ model for
half-wave numbers p = 2 and q = 1,2,3.
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Table 7. Second benchmark, simply supported DWCNT (second geometry with Rα/h = 2.36).
Frequencies in GHz for 2D GDQ and 3D exact shell models.

Nanotube 2

Mode (p,q) 3D Exact 3DvdW Exact ESL-GDQ LW-GDQ

L/de = 5

I (2,1) 106.5 106.2 106.5 106.5
I (2,2) 347.7 346.1 347.7 347.7
I (2,3) 629.9 624.2 629.9 629.9

L/de = 10

I (2,1) 28.55 28.54 28.55 28.55
I (2,2) 106.5 106.2 106.5 106.5
I (2,3) 217.6 216.1 217.6 217.6

L/de = 15

I (2,1) 12.88 12.87 12.88 12.88
I (2,2) 49.79 49.74 49.79 49.79
I (2,3) 106.5 106.2 106.5 106.5

L/de = 30

I (2,1) 3.248 3.248 3.248 3.248
I (2,2) 12.88 12.87 12.88 12.88
I (2,3) 28.55 28.53 28.55 28.55

L/de = 50

I (2,1) 1.172 1.171 1.172 1.172
I (2,2) 4.671 4.671 4.671 4.671
I (2,3) 10.45 10.45 10.45 10.45

Table 8. Second benchmark, simply supported DWCNT (third geometry with Rα/h = 3.68).
Frequencies in GHz for 2D GDQ and 3D exact shell models.

Nanotube 3

mode (p,q) 3D Exact 3DvdW Exact ESL-GDQ LW-GDQ

L/de = 5

I (2,1) 71.74 71.70 71.74 71.74
I (2,2) 231.5 231.3 231.5 231.5
I (2,3) 414.6 414.4 414.6 414.6

L/de = 10

I (2,1) 19.34 19.33 19.34 19.34
I (2,2) 71.74 71.70 71.74 71.74
I (2,3) 145.8 145.6 145.8 145.8

L/de = 15

I (2,1) 8.729 8.729 8.729 8.729
I (2,2) 33.67 33.66 33.67 33.67
I (2,3) 71.74 71.70 71.74 71.74

L/de = 30

I (2,1) 2.203 2.203 2.203 2.203
I (2,2) 8.729 8.729 8.729 8.729
I (2,3) 19.34 19.33 19.34 19.34

L/de = 50

I (2,1) 0.7949 0.7946 0.7949 0.7949
I (2,2) 3.168 3.168 3.168 3.168
I (2,3) 7.088 7.087 7.088 7.088
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Table 9. Second benchmark, simply supported DWCNT (fourth geometry with Rα/h = 5.25).
Frequencies in GHz for 2D GDQ and 3D exact shell models.

Nanotube 4

mode (p,q) 3D exact 3DvdW exact ESL-GDQ LW-GDQ

L/de=5

I (2,1) 51.79 51.78 51.79 51.79
I (2,2) 166.1 166.1 166.1 166.1
I (2,3) 295.6 295.6 295.6 295.6

L/de=10

I (2,1) 14.00 14.00 14.00 14.00
I (2,2) 51.79 51.78 51.79 51.79
I (2,3) 104.9 104.9 104.9 104.9

L/de=15

I (2,1) 6.323 6.323 6.323 6.323
I (2,2) 24.35 24.35 24.35 24.35
I (2,3) 51.79 51.78 51.79 51.79

L/de=30

I (2,1) 1.597 1.597 1.597 1.597
I (2,2) 6.323 6.323 6.323 6.323
I (2,3) 14.00 14.00 14.00 14.00

L/de=50

I (2,1) 0.5761 0.5761 0.5761 0.5761
I (2,2) 2.296 2.296 2.296 2.296
I (2,3) 5.135 5.135 5.135 5.135

5. Conclusions

The paper proposed the free vibration analysis of simply supported SWCNTs and DWCNTs. A 3D
exact model and several 2D GDQ models have been used for such an analysis. Two-dimensional GDQ
models are the classical Reissner-Mindlin approach (RM-GDQ) and two refined fourth order models
(an equivalent single layer approach (ESL-GDQ) and a layer wise approach (LW-GDQ)). The 3D exact
model is a layer wise approach, and it uses the interlaminar continuity conditions between the two
cylinders which simulate the DWCNT. A second 3D exact model (3DvdW exact model) has also been
considered. In this case, the two isotropic cylinders, which represent the DWCNT, are linked by means of
the van der Waals forces. The van der Waals forces are indicated as an opportune fictitious layer between
the two cylinders. Comparisons in terms of frequencies between the 3D exact and the 3DvdW exact
model allow one to understand the van der Waals effects. These effects are very small (in general, they
can be neglected), but they become important for short DWCNTs, small “radius of curvature/thickness”
ratios and/or higher frequencies. ESL-GDQ and LW-GDQ models always give the same results in terms
of frequency for DWCNTs because these structures are made of two isotropic cylinders (without any
transverse anisotropy). In this case, an equivalent single layer approach is coincident with a layer wise
approach (for the same order of expansion used for the displacement components). For SWCNT analysis,
the use of beam models is inappropriate for short CNTs. In this case, refined 2D or 3D shell models
are mandatory (in particular, in the case of small “radius of curvature/thickness” ratios) for a correct
frequency evaluation.
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