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Abstract: Magnetic Resonance Imaging (MRI) plays a significant role in the current 

characterization and diagnosis of multiple sclerosis (MS) in radiological imaging. 

However, early detection of MS lesions from MRI still remains a challenging problem. In 

the present work, an information theoretic approach to cluster the voxels in MS lesions for 

automatic segmentation of lesions of various sizes in multi-contrast (T1, T2, PD-weighted) 

MR images, is applied. For accurate detection of MS lesions of various sizes, the  

skull-stripped brain data are rescaled and histogram manipulated prior to mapping the 

multi-contrast data to pseudo-color images. For automated segmentation of multiple 

sclerosis (MS) lesions in multi-contrast MRI, the improved jump method (IJM) clustering 

method has been enhanced via edge suppression for improved segmentation of white 

matter (WM), gray matter (GM), cerebrospinal fluid (CSF) and MS lesions if present. 

From this preliminary clustering, a pseudo-color to grayscale conversion is designed to 

equalize the intensities of the normal brain tissues, leaving the MS lesions as outliers. 

Binary discrete and 8-bit fuzzy labels are then assigned to segment the MS lesions 

throughout the full brain. For validation of the proposed method, three brains, with mild, 

moderate and severe hyperintense MS lesions labeled as ground truth, were selected. The 

MS lesions of mild, moderate and severe categories were detected with a sensitivity of 

80%, and 96%, and 94%, and with the corresponding Dice similarity coefficient (DSC) of 
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0.5175, 0.8739, and 0.8266 respectively. The MS lesions can also be clearly visualized in a 

transparent pseudo-color computer rendered 3D brain. 

Keywords: segmentation; unsupervised learning; information theoretic clustering; contrast 

transformations; magnetic resonance images; multiple sclerosis lesions 

 

1. Introduction 

Automated segmentation of brain pathologies, such as multiple sclerosis (MS) lesions, from 

Magnetic Resonance (MR) images with high accuracy remains a challenging problem [1]. For clinical 

purposes, a simple dual-echo T2-weighted image may allow the assessment of the type, number, 

position and shape of MS lesions in the brain. Some MS lesions are better seen on T1-weighted images 

after contrast agents have been injected [2]. However, labor intensive manual segmentation of MS 

lesions is clinically done most commonly by outlining the boundary of the lesions slice-by-slice on a 

computer display. Such manual segmentation is prone to not only variability among radiologists, 

however, even variability with the same radiologist analyzing the same study at different times. Hence, 

there is a need to reduce the amount of operator time and to improve the reproducibility of the 

measurement of MS lesion volumes [3]. The most widely used computer assisted method involves 

contour following aided by edge detection [4]. Fully-automated computerized methods include  

multi-parametric image analysis [5–8], probabilistic, or atlas template-driven segmentation [9–11], 

fuzzy connectedness [12,13], and deep learning [14]. A thorough review of automated methods can be 

found in Reference [15]. Automated methods applied to real data yield sensitivities between 65%–88% 

against manual segmentation, with DSC’s ranging from 0.47 to 0.808 [3,15]. Automated segmentation 

of the synthetic BrainWeb data give Dice similarity coefficients (DSCs) between 0.73 and 0.87 for 

moderate MS lesions with 3% noise and no field inhomogeneity [15]. Automated segmentation could 

potentially improve the diagnosis and clinical follow-up of MS patients. Unfortunately, these fully 

automated approaches are plagued with the lack of an acceptable in vivo ground truth, due to the 

variability in expert segmented results.  

We have attempted to deal with these issues by applying an information theoretic clustering approach 

with edge detection and suppression to three labeled brains with MS lesions. This information theoretic 

approach, i.e., the Improved “Jump” Method (IJM) has been recently developed, validated and applied 

to medical image segmentation [1,16–18] where the a priori number of relevant clusters may be 

unknown. IJM was validated by the segmentation of normal human brain multi-contrast MR images 

and subsequently applied to the segmentation of MS lesions in a preliminary study [16]. These 

segmentation results can be significantly improved by suppressing the edge voxels from the sampling 

process that determines the clusters. In this paper, a more accurate and automated MS lesion 

segmentation method has been developed, based on edge suppression and contrast equalization of 

white matter (WM), gray matter (GM), and cerebrospinal fuild (CSF) via an appropriate transformation 

leading to fast detection of MS lesions as outliers.  
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2. Methodology  

2.1. Preprocessing: A Pseudo-Color Image of MRI Data  

T1-, T2-, and PD-weighted MRI data of the human brain with MS lesions were obtained from 

McGill University’s BrainWeb [19], where discrete and fuzzy tissue labels are also available for 

benchmarking. This dataset contains co-registered MRI brain volumes with 1-mm3 voxels and no field 

inhomogeneity with selected noise levels [19]. Preprocessing involves rescaling the 12-bit data to 

smoothly spanned unsigned 8-bit integers across all three weighted skull-stripped brain images, such 

that the non-outlier global minimum and maximum is set to 0 and 255 respectively for the entire 

volume. To avoid an undue influence of the outliers on the image histograms, the histogram is 

examined inward from the outmost bins until a bin is reached that has a bin count, greater than some 

threshold (e.g., 10 for noise free images), which is used to back calculate the non-outlier extrema. The 

12-bit to 8-bit spanning transformation is then repeated with the non-outlier global extrema. The three 

contrast-weighted images are then used to generate a pseudo-RGB image with high contrast for each 

slice, while maintaining good correspondence across slices [20]. The “red” component is derived  

from the T1-weighted data, the “green” component from the T2-weighted data, and the “blue” from the 

PD-weighted data. We prefer not to use the term multi-spectral for these multi-contrast pseudo-color 

mapped images. 

2.2. Preliminary Segmentation: The Improved “Jump” Method 

Normal brain MRI data has been segmented using an information theoretic approach known as the 

improved jump method (IJM) [21,22]. IJM estimates the distortion rate curve, D(R), which is then 

transformed to reveal a distinct signature of the cluster configuration studied. In practice, the 

distortion, dK, of p-dimensional data with n data vectors, over a target number of clusters, K, is defined 

by the average Euclidean distance of every data vector to its nearest cluster centroid. The distortion 

curve is a monotonically decreasing curve generated by gradually increasing the value of K, and  

re-estimating the distortion at each step, i.e., {dK=1 … dK=Kmax}. Sugar and James [21] developed a 

simple information theoretic approach where k-means can be used to generate a curve of the number  

of clusters, K, versus an estimate of the associated distortion, dK. The jump statistic is defined by  

the difference: = −  (1)

where Y > 0 is a suitable power transformation acting on dK (Y = p/2 for Gaussian clusters in the limit 

of p → ∞). Finally, the number of clusters where the largest jump occurs represents the estimate of the 

number of clusters in the dataset, i.e.:  ∗ = max  (2)

The number of clusters is indicated by a jump discontinuity in the jump statistic curve, hence the name. 

IJM works by first specifying a finite range of cluster numbers, then searching for the best 

associated transformation, allowing Y = peff/2, where peff is called the effective dimension and can be 

any positive real number. The more pronounced the jump in the jump statistics curve, the better the 
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associated transformation generated by peff will be. Sugar and James [21] also define the margin 

operator as:  =  (3)

The larger the value of the margin operator becomes, the better (or more obvious) the cluster 

configuration, see Figure 1. Thus, by maximizing the margin value with respect to Y as in: ∗ = max  (4)

the margin operator will quantify the quality of a clustering configuration with K partitions in terms of 

cluster compactness and the degree of de-correlation of its variables. Hence, the best Y can be 

automatically estimated. 

In the improved jump method [17], non-linearity is addressed by a Spectral Clustering (SC) 

technique, based on kernel Principal Component Analysis (kPCA) that maps the input data to a new 

space where the points belonging to the same cluster are collinear if the tuning parameter, σ2, of a 

Radial Basis Function (RBF) kernel is adequately selected. The SC algorithm is trained by sampled 

points and solves an eigenvalue problem. The eigenvectors, along with the extended kernel matrix, are 

used to expand the solution to the rest of the points [23]. After projecting all points onto a unit  

hyper-sphere, spherical k-means [24] can be used to construct the d*
K curve. Using this estimated 

distortion curve one can calculate the corresponding M*
K for each configuration tested (i.e., M*

K=1 ... 

M*
K=Kmax). The largest margin estimates the number of clusters, K* (see Figure 1), and the appropriate 

tuning parameter, σ2, for the construction of the kernel matrix (i.e., model selection). The clustering is 

readily obtained from the parameters thus found. 

 

Figure 1. An illustration of the selection of K* = 5 from the largest margin operator. The 

jump statistics are generated from five 3D Gaussian clusters, where Y = 2.5. Figure from 

Reference [17]. 

Applying this information theoretic approach to image segmentation requires the use of feature 

vectors based on the local histogram of each pixel in an image. First, the color levels of a preprocessed 

= > 1 
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image are quantized to only Nq levels using the criterion of minimum variance. Next, for training 

purposes, the color-quantized image is sampled within windows centered at each sample pixel, and a 

normalized histogram is computed for each window. These histograms become the feature vectors for 

further analysis and encode information about local texture as well as color. A χ2 score is then used to 

compare the pixels as computed from these histograms [25]. The χ2 score is defined as:  = ∑ ( ) ( )( ) ( )  (5)

where hi and hj are histograms for the windows located on the ith and jth pixels, and hi(b) indicates the 

repetition frequency of the bth bin (out of Nq bins) in the corresponding histogram for the ith pixel. 

Finally, a χ2-RBF kernel and its kernel matrix can be computed from k(hi,hj) = exp(−χ2
ij/σχ2), where 

k(hi, hj) is the element in the ith row and jth column of the kernel matrix, and σχ is the kernel standard 

deviation, the tuning parameter which is varied systematically across a specified range of values during 

model selection. After the target cluster number, K*, and RBF tuning parameter, σ2, are determined via 

model selection, an accurate image segmentation can be accomplished. 

2.3. Edge Suppression and Adaptive Window Sampling 

The histogram based χ2 scores are computed for a sample of the image pixels due to the memory 

constraints of solving the subsequent eigenvalue problem. Sometimes it is advantageous to control the 

image sampling by rigorously excluding partial volumes. The Canny edge detector is a good choice for 

outlining edges with low error. A modified Canny edge detector that morphologically thins the edge 

outline to two pixels as the last step is used. Edge detection is done on all pseudo-color channels and 

their combinations. Furthermore, simple edge detection in the slice-direction is carried out by 

thresholding the RGB Euclidean distance between nearest neighbor voxel intensities in the slice  

(z)-direction, i.e., involving adjacent slices. Experiments with IJM segmentation of labeled normal 

brain data suggest that a threshold of 100 is optimal for segmentation of the BrainWeb data. The union 

of all of these edge outlines produces a wider edge mask; see, for example, Figure 3c. With this mask 

the partial volumes can be efficiently excluded from the sampling process.  

Adaptive windows are also used in concert with the edge suppression mask in the sampling and 

feature generation process for improved statistical representation. The sample windows are also 

dynamically enlarged when the local neighborhood is too small (we do this whenever it is smaller than 

the number of quantization levels, Nq), e.g., see Figure 2. Histograms of isolated points can be 

removed from the sampling process (we use a minimum requirement of Nq/2). Thus, a pixel near an 

edge can be more reliably clustered. For large bulky clusters with smooth boundaries this process is 

generally not necessary, but for difficult to separate segments (e.g., GM and CSF) edge suppression 

can yield much more stable and accurate segmentation results.   
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(a) (b) (c) 

Figure 2. Adaptive window example with 3 × 3 window and Nq = 8 showing (a) the seed 

pixel (light green) and the initial window outlined in turquoise (b) The local neighborhood 

within the initial window has only 5 pixels, therefore (c) grow the local neighborhood until 

it has more than Nq pixels, restricted by the edge mask (black). 

2.4. Post-Processing: Contrast Equalization and Enhancement via a Pseudo-Grayscale Conversion  

This contrast equalization and enhancement are done by deriving an appropriate pseudo-grayscale 

conversion that is applied to each image. Consider the 3 RGB triples of the average values for normal 

tissues types 1, 2 and 3:  	 =	 =	 =  (6)

where 0 is the target background intensity, and the coefficients a, b and c can be automatically 

computed by Cramer’s rule. Now, the pseudo-grayscale conversion:  =  (7)

for the ith pixel will result in nearly complete suppression of distinctions between the three normal 

tissue types and effective separation of outliers, possibly an additional tissue type, as theoretically 

justified by Ref. [9]. The pseudo-greyscale transformation provides no control over the absolute 

contrast of any fourth tissue type, but its contrast is equalized against the other three, hence setting it 

distinctly apart and effectively segmenting it to a foreground. Note also that noise is reduced by a 

factor of √3. To enhance the contrast further, we determine the effective upper and lower intensity 

bounds for each slice. The low bound of the pseudo-grayscale image can be taken to be the 

predominant background intensity, the mode of which is Ib. The upper bound is taken to be the 

weighted maximum of all the grayscale image intensity maxima, Vmax, selected based on a weighting 

with the brain ROI size for each slice, over the whole brain volume. This weighting ensures that outlier 

maxima in the smaller slices do not affect the overall contrast. This enhanced grayscale conversion is 

represented by: = 255− ( − ) (8)

Such transformation in Equation (8) allows us to construct global thresholds for all of the slices in  

the volume. 
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The segmentation of the full brain volume can now be automated, involving intensity-based and 

statistical techniques. Firstly, the maximum intensity for every slice is recorded and the global 

maximum is determined for the entire volume. The number of brain ROI voxels in each slice is also 

recorded. The global maximum intensity, Vmax, for the grayscale images is thus found.  

Secondly, the grayscale images are further contrast enhanced by Equation (8). The brain ROI is first 

morphologically filled and then eroded by diamond-shaped structural element, with six pixels between 

the central pixel and its edge, creating a brain boundary mask. Because the MS lesions are typically 

embedded in the WM they are usually not expected to be near the boundary of the brain ROI, but  

non-MS lesion outliers of the pseudo-grayscale transform can be there. One source of these other 

outliers is the proximity of non-brain tissues distorting the brain tissue intensity distributions [16]. 

Therefore, the brain boundary is always included with the background regardless of threshold.  

The preliminarily segmentation of the foreground and background for each slice using the initial 

discrete threshold θd is carried out to hard cluster the grayscale pixels. Not every slice will have a 

foreground. An edge-suppressed mask, such as that applied to Figure 3c, is then applied to the 

foreground to develop a preliminary discrete mask. This discrete mask is then applied to the original 

pseudo-color image, and the pseudo-RGB average values are computed for the assumed MS lesions in 

that slice. Next, we update the segmentation of foreground and background for all slices using the  

slice-wise discrete threshold θd(s). The preliminary 0% fuzzy threshold, θ0%(s), and the 100% fuzzy 

threshold, θ100%(s) can then be determined via Otsu’s multi-threshold method [26] for each slice. Since 

MS lesions come in various sizes, they can be partially or fully saturated, thus, one would expect the 

histograms of the foreground to have three sub-clusters (fully saturated MS lesions, partially saturated 

MS lesions, partial volumes with surrounding tissues). The background will also have three sub-clusters 

due to non-MS lesion outliers near the boundary. Hence, Otsu’s method assuming two thresholds is 

applied on the foreground and background. The lower threshold is taken as θ0%(s), of the slice, while 

the higher threshold is taken as θ100%(s). 

 
(a) (b) (c) 

Figure 3. (a) The pseudo-color MR image encoding all major weightings for slice 105 of a 

BrainWeb brain volume with moderate MS lesions. Hyperintense MS lesions stand out as 

whitish spots; (b) the pseudo-color for slice 95 used to estimate tissue averages; (c) the 3D 

edge suppressed image of (a) that can be used as a sampling mask for further segmentation 

of non-WM tissues and again to estimate average tissue values. 



Technologies 2015, 3 149 

 

 

The overall discrete mask maximum intensity, Dmax, and the standard deviation of the discrete mask 

maximum intensities, σmax, for all relevant slices are determined. The global discrete and 0% fuzzy 

thresholds will then simply be taken as the median values of the thresholds for only the slices with 

maximum intensities Imax(s) > Dmax − σmax. Due to partial volume effects, such a median value for the 

100% fuzzy threshold would be greatly underestimated. Instead the global 100% fuzzy threshold is 

computed by the average θ100% = [Dmax + max(θ100%)]/2. Finally, the foreground and background are 

re-segmented using the corrected universal discrete threshold, θd.  

Lastly, even in brains with MS lesions, usually not every slice will contain a lesion. Therefore we 

need to validate the clustering with the test: ( ) >  (9)

If the slice passes the test, then save the foreground binary image mask as the MS lesion discrete label 

for that slice. These binary images are further enhanced by morphological operations, e.g., filling 

holes. The global fuzzy thresholds, θ0% and θ100%, are used to define fuzzy labels for validated slices in 

a piecewise fashion, as well as using θd as the effective 50% fuzzy threshold. For intensity values 

below θd, the fuzzy label of the ith voxel is computed as: 127.5 %% (10)

and for intensity values above θd, the fuzzy label of the ith voxel is computed as: 127.5 %  (11)

where the labels are rounded to the nearest 8-bit non-negative integer. 

3. Results and Discussion 

Pre-processed pseudo-color image of a slice derived from an MRI brain volume of a moderate case 

of MS lesion is shown in Figure 3. The MS lesions are strikingly brighter than the normal tissue types; 

this slice 95 is one of the overall brightest slices. This suggests that the grayscale image, derived from the 

proposed transformation of the pseudo-RGB image, ultimately might be adequate to segment the MS 

lesions from the rest of the brain. The grayscale transformation is built on top of the IJM pre-clustering, 

see the flowchart in Figure 4. It serves to simply segment any MS lesions from everything else. 
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Figure 4. Flowchart of the MS lesion segmentation process. Steps involving the pseudo-RGB 

images are highlighted in cyan. The subsequent steps using the transformed pseudo-grayscale 

image are highlighted in light gray. 

3.1. Segmentation of MS Lesions in a Slice 

3.1.1. Estimation of Pseudo-Color Tissue Intensity Averages via IJM Image Segmentation 

IJM model selection consistently returns the most obvious clustering at K = 2 (WM separated from 

the rest of the brain) with RBF tuning parameter, σ2 ≈ 5.5. The WM segment is identified as the 

segment as having the lower average grayscale intensity. Next, the non-WM segment is further 

segmented (K = 2 from IJM) into GM and CSF+ with σ2 ≈ 0.2, where CSF+ denotes the CSF plus any 

other tissues. The GM segment is assumed to have the lower average grayscale intensity of the two 

resulting segments. Finally, the CSF+ segment is separated into CSF and MS lesions using a threshold 

of 185 in the “red” component, which is the average center of the gap in the “red” histograms of the 

CSF+ segment as shown in Reference [16]. It should be noted that no MS lesions are found in the 

normal brain at this point of the analysis.  

For the segmentation of normal brain MR images, a 3 × 3 window with number of quantization 

levels Nq = 8 is sufficient [1]. The segmentation results are made more stable by using a sample size of 

5000 pixels in addition to the use of the edge suppression masked image of Figure 3c in the sampling 

process for the non-WM segmentation. For the moderate MS lesion brain, slices 82–90 and 95 are 

selected to estimate the normal tissue RGB values, and the segmentation of slice 95 via IJM is shown 

in Figure 5. The accuracy and reliability of this clustering are reported in Table 1, where the overall 

accuracy is 88.64%. The RGB histogram of slice 95 is shown in Figure 6. The average pseudo-RGB 

triples are estimated to be (253, 11, 2) for WM; (169.2, 74, 150) for GM; and (31, 250.1, 212.4) for CSF.  
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(a) (b) (c) (d) 

Figure 5. (a) Slice 95: IJM derived segmentation of the WM; (b) of the GM; (c) of the 

CSF; (d) of the MS lesions. 

Table 1. Confusion matrix for slice 95 using IJM image segmentation in Reference [16] 

with edge mask. 

Predicted/True White Matter Grey Matter CSF MS lesion Reliability 
Segment 1 8564 240 0 1 97.26% 
Segment 2 676 5789 312 59 82.58% 
Segment 3 1 616 1920 9 75.41% 
Segment 4 21 1 0 98 81.86% 
Accuracy 92.46% 87.11% 86.02% 58.68% - 

 

Figure 6. RGB histogram for slice 95 of moderate MS lesion data after the 12-bit to 8-bit 

pre-processing. The positions of the peaks for the main tissue types are indicated, and are 

consistent across the different slices due to pre-processing. 
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3.1.2. Contrast Equalization via a Pseudo-Grayscale Conversion 

Setting the initial background to middle gray level value, Ib = 128, yields the pseudo-grayscale 

coefficients of Equation (6) as a = 0.4902, b = 0.3363, and c = 0.1351. Applying this pseudo-grayscale 

conversion to slice 105 in Figure 3a yields Figure 7a, which has background intensity mode of 128 and 

a maximum intensity of 207. Indeed, all three normal tissue types have very similar gray levels. Next, 

contrast enhancement takes the gray level values of 128 and 206 (the globally weighted maximum) as 

the bounds. Subsequent automated thresholding yields the global hard clustering threshold, θd = 110.14 

for this volume. Both the discrete and fuzzy clusterings of this slice’s MS lesions are shown in Figure 7. 

The discrete ground truth for this slice is 112 MS lesion voxels, which are all found along with 12 WM 

voxels above the discrete threshold for this slice; yielding a sensitivity of 100%, while the reliability is 

90.32%. The global 0% fuzzy bound is automatically determined to be 9.3176, where the background 

standard deviation, σb, for this slice is 12.5622. 100% fuzzy bound is found to be 237.4, and the 

foreground standard deviation is σf = 43.0250 for this slice. Fuzzy values are assigned in a piece-wise 

linear mapping between these two bounds and the discrete threshold. The 8-bit fuzzy ground truth total 

is 42817/255 ≈ 167.91, and the estimated fuzzy ground truth total is 42333/255 ≈ 166.01. Indeed, a 

visual inspection shows no visible difference and the image quality measures yield a mean-squared 

error (MSE) of only 1.9121, a signal-to-noise ratio (SNR) of 19.3297 dB, and a structural similarity 

(SSIM) index of 0.9965. 

 
(a) (b) (c) 

Figure 7. (a) Figure 3a after the initial pseudo-grayscale conversion by Equation (7)  

before contrast enhancement; (b) the result of the discrete clustering; (c) the result of 8-bit 

fuzzy clustering. 

3.2. Segmentation of MS Lesions in a Whole Brain Volume 

3.2.1. Brain Data with Mild MS Lesions  

First, we examine the most challenging case of mild MS lesion brain data sets made available by 

BrainWeb. From IJM for the mild MS lesion data we find average modal pseudo-RGB triples as (251, 

9.1, 9.3) for WM, (177, 48.4, 120.4) for GM, and (46, 241, 221.1) for CSF. These values are reasonable 
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in spite of the small lesions. The pseudo-grayscale conversion is constructed by Equation (8) with 

coefficients: a = 0.4931, b = 0.2007, and c = 0.2575. 

Applying this pseudo-grayscale conversion now to slice 69 yields Figure 8a, which has a 

background standard deviation, σb = 8.9134 and σf = 38.4408, comparable to the moderate MS lesion 

case. Subsequent automated thresholding yields a lower global discrete threshold of θd = 83.7481 and 

produces acceptable discrete and fuzzy labels for the MS lesions in this slice, seen in Figure 8. Only 41 

voxels are above the discrete threshold, with ground truth labels of 19 MS lesions, 16 WM and 6 GM. 

The MS lesion total ground truth is 32 for this slice, so it only has a sensitivity of 59.38% and 

reliability of 46.34% for this slice. The method also struggles with the fuzzy segmentation as seen by 

the MSE = 12.2680, SNR = 4.9860 dB, and SSIM = 0.9877. 

Table 2. Results for the binary discretely labeled MS lesion voxels (foreground) across the 

entire brain ROI of the mild, moderate and severe MS lesion brain data from BrainWeb. 

 
True Positive 

(TP) 

True Negative 

(TN) 

False Positive 

(FP) 

False Negative 

(FN) 

Ground Truth 

(GT = TP + FP) 

Sensitivity 

TP/GT 

mild 340 1954051 552 82 422 80.57% 

moderate 3383 1951234 347 129 3512 96.33% 

severe 9496 1941702 3375 608 10104 93.98% 

The whole brain discrete confusion matrix is summarized in Table 2, where the discretely labeled 

ground truth is 422 and the overall sensitivity is 80.57%. This case is pushing the limits of this method 

as the discrete threshold was automatically determined from only 13 qualifying slices and in the end 

MS lesions are found in only 67 out of 145 slices. 

 
(a) (b) (c) 

Figure 8. (a) Slice 69 of the MS lesion data after the initial pseudo-grayscale conversion by 

Equation (7) before contrast enhancement; (b) the binary discrete labels; (c) the fuzzy labels. 

The estimated 8-bit fuzzy voxel total is 1305.5 compared to the fuzzy ground truth of 1162.4 

voxels; see Table 3 for more comparisons. A comparison of performance slice-by-slice is shown in 

Figure 9. The estimated discrete and fuzzy labels follow the fuzzy ground truth quite well, with some 

overestimation with both labels. Finally, the MSE and SSIM of the fuzzy masks are shown in Figure 10. 
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Figure 9. MS lesion cluster counts from discrete (solid) and fuzzy (dashes) estimations 

compared to ground truths slice by slice in the brain ROI of the brain data with mild  

MS lesions.  

(a) (b) 

Figure 10. (a) An MSE comparison of the estimated fuzzy label mask to the ground truth 

for mild MS lesion data. (b) An SSIM comparison of the same fuzzy masks. 

Table 3. Comparisons measures for the discrete and fuzzy labels of MS lesion voxels 

across the entire brain ROI of the mild, moderate and severe MS lesion brain data, based 

on the results in Table 2. 

 
Specificity 

TN/(TN+FP) 

Reliability  

TP/(TP+FP) 

Dice Similarity 

Coefficient 

2TP/(2TP+FP+FN) 

Under 

Estimation 

FN/(TN+FN) 

Over 

Estimation 

FP/(TN+FN) 

Average 

Fuzzy 

SSIM 

mild 99.97% 47.31% 0.5175 0.0042% 0.0282% 0.9029 

moderate 99.96% 90.70% 0.8739 0.0066% 0.0434% 0.9468 

severe 99.83% 73.78% 0.8266 0.0313% 0.1700% 0.9102 
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3.2.2. Brain Data with Moderate MS Lesions  

Next, we analyze the moderate MS lesion data. Applying this pseudo-grayscale conversion to all the 

slices containing the brain ROI (slices 10–154) yields a weighted global maximum intensity of 206. 

The variation of the foreground and background standard deviations by slice is shown in Figure 11. 

 

Figure 11. Background, foreground and boundary standard deviations in slices 10–154 in 

the moderate MS lesion brain data from BrainWeb after pre-processing. Slices with no 

foreground detected are assigned 0 foreground standard deviation. 

Our whole brain discrete segmentation results are shown in Table 2, where the discretely labeled 

ground truth is 3512 voxels. Our automated method estimates a fuzzy voxel total of 5903.8, compared 

to the fuzzy ground truth of 6697.5 voxels. A comparison of performance by slice is show in Figure 12, 

where the estimated discrete and fuzzy values almost always closely follow the ground truth values.  

  

Figure 12. Moderate MS lesion cluster counts from discrete (solid) and fuzzy (dashed) 

estimates compared to ground truths, slice by slice, in the brain ROI. 



Technologies 2015, 3 156 

 

 

Various comparative measures for the discrete and fuzzy segmentation of the foreground and 

background are shown in Table 3. Note that the accuracy here does not include how well the WM, GM 

and CSF are segmented. Finally, the slice-by-slice MSE and SSIM between the fuzzy masks are shown 

in Figure 13. 

(a) (b) 

Figure 13. (a) A comparison of MSE of the estimated fuzzy label mask to the ground truth 

for the moderate brain data. The spike at slice 23 is due to a segmentation failure of the 

fuzzy labels, see Figure 8. Figure 7 shows that this happens because these are anomalous 

MS lesions near the boundary of the brain. (b) An SSIM comparison of the estimated fuzzy 

label mask to the ground truth. 

3.2.3. Brain Data with Severe MS Lesions  

Finally, we apply our method of MS lesion segmentation to the severe MS lesion brain data sets 

made available by BrainWeb. The same steps were followed. For the severe MS lesion data we find 

average modal pseudo-RGB triples: (250.9, 8, 10) for WM; (176, 47.5, 120) for GM; and (46.8, 239.9, 

218.9) for CSF. Similarly, the pseudo-grayscale conversion is constructed from coefficients: a = 0.4934, 

b = 0.1945 and c = 0.2661. These numbers are very similar to those found with the mild case. 

Applying this pseudo-grayscale conversion again to slice 105 yields Figure 14a, which has a 

background standard deviation, σb = 13.9411 and foreground standard deviation, σf = 47.2179, which 

are both slightly larger when compared to the moderate lesion case. The severe case has a larger 

variance because the estimated pseudo-RGB tissue averages are not as accurate as the moderate case 

due to the larger percentage of MS lesion voxels. Indeed, the presence of more lesions acts as an 

additive noise, causing the image histogram peaks to spread out. Subsequent automated thresholding 

finds θd = 97.9403 and still yields acceptable discrete and fuzzy labels for the MS lesions in this slice, 

as shown in Figure 14b,c, where the MSE = 36.5372, SNR = 12.4492 dB, and SSIM = 0.9838. The 

discrete ground truth for this slice is 523 MS lesion voxels, and our method finds 623, where 502 are 

actually ground truth labeled as MS lesion (95.98% sensitivity), 118 as WM, and 3 as GM (80.58% 

reliability). Our whole brain discrete segmentation results are shown in Table 2, where the discretely 

labeled ground truth is 10,104 voxels and the sensitivity is 93.98%. Our automated method estimates a 
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fuzzy voxel total of 12,334, compared to the fuzzy ground truth of 12,855 voxels, see Table 3 for more 

details. A comparison of performance by slice is show in Figure 15, where we find that the estimated 

fuzzy labels almost always closely follow the fuzzy ground truth values. Finally, the MSE and SSIM 

of the fuzzy masks are shown in Figure 16. 

 
(a) (b) (c) 

Figure 14. (a) Slice 105 of the severe MS lesion data after the initial pseudo-grayscale 

conversion by Equation (7) before contrast enhancement; (b) the result of the discrete 

clustering; (c) the result of fuzzy clustering. 

 

Figure 15. MS lesion cluster counts from discrete (solid) and fuzzy (dashed) estimates 

compared to ground truths, slice by slice, in the ROI of the brain data with severe MS lesions. 
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(a) (b) 

Figure 16. (a) An MSE comparison of the estimated fuzzy label mask to the ground truth 

for severe MS lesion brain data. The profile follows Figure 9 due to consistent underestimation 

of the fuzzy labels. (b) An SSIM comparison of the same fuzzy label masks. 

4. Conclusions 

Three brains with MS lesions of different severities have been automatically segmented. We report 

a sensitivity (DSC) of 80% (0.5175) for the mild MS lesions, 96% (0.8739) for the moderate case, and 

94% (0.8266) for the severe case; these are competitive with existing methods [15]. No MS lesions are 

found in the noiseless normal brain data from BrainWeb. The sensitivity of the severe case is reduced 

due to the larger volume of MS lesions slightly degrading the contrast equalization of normal tissues. 

The mild case has lower sensitivity due to the relatively small number of voxels that are fully within 

the lesion. Lesion voxels on or near an edge are, of course, suppressed by partial volume effects. 

Indeed, a Canny-based edge detector shows that only about 50% of the lesion voxels in the mild case 

are not on an edge, while the moderate and severe cases have over 70% of their lesion voxels inside 

the bulk. The discrete labels consistently perform well, and false positives/negatives are rather well 

balanced and limited to pixels neighboring the lesion. Furthermore, the algorithm gives a stable and 

reliable estimation of the MS lesion volumes for both discrete and fuzzy labels. The percentage 

differences of the overall fuzzy volumes are +12.31%, −11.85% and −4.05% for mild, moderate and 

severe, respectively. The robustness of the fuzzy labeling suggests the feasibility of this approach for 

clinical tracking of MS lesion volumes over the course of the disease [27]. The fuzzy labels can be also 

used to make a detailed three-dimensional visualization of the MS lesions; see Figure 17. Future work 

will deal with the effect of noise on the accuracy of detection of MS lesions of various severities as 

well as exploring the use of fluid-attenuated inversion recovery (FLAIR) and diffusion tensor imaging 

(DTI) MR data for detection of MS lesions. 
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(a) (b) 

Figure 17. 3D visualization of the moderate MS lesion brain: brain ROI indicated by a 

transparent ruby color, (a) only the fuzzy labeled ground truth (light green), (b) the 

estimated fuzzy labels (light blue) derived from our method superimposed over the ground 

truth (light green) from similar view points. Notice how small features are generally well 

captured. Used code is provided by [28]. 

The whole brain analysis is relatively computationally cost-effective when compared to tedious manual 

labeling. We executed our MATLAB code on a 64-bit Dell Optiplex 3020 with Intel Core i5-4570 

CPU and 4 GB of RAM. Pre-processing of 12-bit data to 8-bit format takes only 15 s. Determination 

of the RBF tuning parameter, σ2, takes about 4 min with 10 cross-validations (only required once). The 

segmentation and analysis of the “top ten” slices with IJM and a sample size of 5000 voxels takes 

about 3 min 20 s. The final step of intensity-based analysis of the complete brain executes in about  

28 s. Therefore, repeated post-processing of the whole brain analysis can be handled in about 4 min 

with the current implementation. This time could be reduced with speed-ups, compiled executables and 

parallel computing. 
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