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Abstract: The introduction of nanoparticles into the polymer matrix is a useful technique for creating
highly functional composite membranes. Our research focuses on the development of nanoparticle-
filled proton exchange membranes (PEMs). PEMs play a crucial role in efficiently controlling the
electrical energy conversion process by facilitating the movement of specific ions. This is achieved
by creating functionalized nanoparticles with polymer coatings on their surfaces, which are then
combined with resins to create proton-conducting membranes. In this study, we prepared PEMs by
coating the surfaces of silica nanoparticles with acidic polymers and integrating them into a basic
matrix. This process resulted in the formation of a direct bond between the nanoparticles and the
matrix, leading to composite membranes with a high dispersion and densely packed nanoparticles.
This fabrication technique significantly improved mechanical strength and retention stability, resulting
in high-performance membranes. Moreover, the proton conductivity of these membranes showed
a remarkable enhancement of more than two orders of magnitude compared to the pristine basic
matrix, reaching 4.2 × 10−4 S/cm at 80 ◦C and 95% relative humidity.

Keywords: RAFT PwP; core–shell nanoparticles; MMMs; acid-base interaction; proton exchange
membranes

1. Introduction

Mixed matrix membranes (MMMs) [1,2] are composite structures composed of nanopar-
ticles and a polymer matrix, which exhibit features of both materials. Consequently, MMMs
find applications in various fields, including gas separation [3,4], antimicrobial [5,6], and
proton exchange membranes (PEMs) [7,8]. In particular, PEMs selectively conduct protons
from anode to cathode for converting chemical energy to electrical energy, and this is
employed in proton exchange membrane fuel cells (PEMFCs) [9–12]. PEMFCs are one
of the most attractive energy generation systems due to their cleanliness as it uses only
hydrogen as fuel, high energy conversion efficiency, low-temperature operation, and com-
pact cell design. In several decades, the functionalization of PEMs has been reported by
incorporating nanoparticles. Metal-organic frameworks (MOFs) have been introduced to
sulfonated poly (ether ketone) to establish continuous proton-conductive channels through
the pores, resulting in improved proton conductivity [7]. Furthermore, sulfonated titanium
dioxide nanoparticles have been added to the sulfonated polyethersulfone to improve water
absorption and proton conductivity [8]. As evidenced by studies of microphase-separated
structures, it has been attributed to the construction of proton-conductive channels that
allows for fast proton conduction by introducing nanoparticles [13]. As mentioned earlier,
the homogeneous dispersion of nanomaterials in the matrix enhances various functional-
ities compared to the neat matrix. However, the dispersibility of nanoparticles tends to
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decrease with increasing particle concentration due to the aggregation of nanomaterials,
resulting in the meandering or blocking of ion-conductive channels [14]. This causes a
decrease in proton conductivity and other physical properties.

Previously, we prepared core–shell nanoparticles coated with a block copolymer in
order to efficiently disperse them in thermoplastic resins as a matrix [15,16]. The block
copolymer was composed of acidic polymer with an affinity for core nanoparticles and
hydrophobic polymer that ensures compatibility with the matrix. Specifically, we coated
a block copolymer of poly(vinylphosphonic acid)-b-polystyrene (PVPA-b-PS) for the sur-
face of a cellulose nanocrystal by using a unique polymer coating method named RAFT
PwP [17,18]. The obtained core–shell nanomaterials were mixed with polycarbonate to
fabricate a free-standing membrane. Compared to only PVPA-coated cellulose nanocrystals,
the block copolymer-coated cellulose nanocrystals successfully suppressed aggregation,
owing to the affinity of PS and polycarbonate. In addition, the proton conductivity of
the membrane was 1.8 × 10−2 S/cm at 60 ◦C and at 95% relative humidity (RH) by the
contribution of PVPA.

In this study, we fabricated a nanoparticle-filled membrane that not only integrates the
dispersibility of nanoparticles and proton conductivity but also incorporates mechanical
strength and retention stability. We have employed acid-base interaction between the
surface of nanoparticles and matrices, to achieve well dispersibility and retention stability
of nanoparticles (Scheme 1). Specifically, poly(styrenesulfonic acid) (PSSA) was coated onto
the surface of SiO2 (silica) nanoparticles by using RAFT PwP (silica@PSSA); also, the basic
matrix consists of poly(1-vinyl imidazole)-co-poly(butyl acrylate) (P1VIm-co-PBA) which
was polymerized via free radical polymerization. P1VIm indicated basicity and acted as
a proton acceptor from acidic PSSA, resulting in the hydrogen bond being formed. The
acid-base interaction based on proton transfer from the PSSA to P1VIm provided an affinity
between the silica@PSSA and the P1Vim-co-PBA, and the immobilization of silica@PSSA in
the matrix that enabled the formation of a free-standing membrane.
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2. Experimental Section
2.1. Materials

N,N-dimethylformamide (DMF, >99.5%), 1-vinylimidazole (1VIm, >98.0%) and butyl
acrylate (BA, >99.0%) were purchased from Tokyo Chemical Industry Co., Ltd (Tokyo,
Japan). p-styrenesulfonic acid sodium salt (SSNa), 2,2′-azobis (isobutylnitrile) (AIBN,
>98.0%) and 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid (CDSSP,
>97.0%) were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan).
Pristine silica nanoparticles (SEAHOSTAR KE-P10, 100 nm in diameter) were purchased
from Nippon Shokubai Co., Ltd. (Osaka, Japan). Cation exchange resin (DIAIONTM,
SK1BH) was purchased from Mitsubishi Chemical Group Corporation (Tokyo, Japan)
(Figure S1).
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2.2. Synthesis of Silica@PSSNa and Silica@PSSA

Pristine silica (0.500 g), SSNa (0.300 g, 1.54 mmol), AIBN (2.50 mg, 1.52 × 10−2 mmol),
CDSSP (17.5 mg, 4.34 × 10−2 mmol), and DMF (5.00 g, 5.25 mL) were added into the test
tube and irradiated with ultrasonic waves to disperse. Subsequently, silica@PSSNa was
synthesized at 80 ◦C with stirring for 24 h in the glovebox by the RAFT PwP method. After
the polymerization, obtained silica@PSSNa which PSSNa is coated on the silica surface
were dispersed in methanol which removed monomers and polymers that remained in the
DMF. This process was carried out three times and the samples were dried overnight in a
vacuum oven. Silica@PSSNa (0.300 g) and DIAION (1.50 g) were added to the methanol
and cation exchange was performed by stirring at room temperature for 2 h. Then, DIAION
and nanoparticles were separated by a sieve with a mesh size of 160 µm and silica@PSSA
was obtained.

2.3. Preparation of P1VIm-co-PBA

1VIm (1.20 g, 1.28 × 10−2 mol) and BA (1.10 g, 8.58 × 10−3 mol) were copolymerized
in DMF (7.00 g, 7.35 mL) by free radical polymerization to generate a copolymer P1VIm-
co-PBA. After the polymerization, obtained P1VIm-co-PBA were dispersed in water and
acetone to remove monomers that remained in the DMF.

2.4. Fabrication of Silica@PSSNa/P1VIm-co-PBA and Silica@PSSA/P1VIm-co-PBA

Composite membrane was fabricated by the simple method of compounding core–
shell nanoparticles and P1VIm-co-PBA and casting them in a Teflon Petri dish. Silica@PSSA
(0.200 g) was dispersed in methanol and P1VIm-co-PBA (0.300 g) was dissolved in methanol
(3.00 mL). The dispersion and solution were mixed with stirring for 30 min at room
temperature to be a 40 wt% of particle concentration. Finally, the resulting dispersion was
cast on a Teflon Petri dish and dried at 60 ◦C for 3 h and silica@PSSNa/P1VIm-co-PBA and
silica@PSSA/P1VIm-co-PBA was obtained.

2.5. Characterization
1H nuclear magnetic resonance (1H NMR; JEOL, Tokyo, Japan) was used to determine

the progress of copolymerization and calculation of the molar ratio of P1VIm-co-PBA.
Ultraviolet-visible spectroscopy (UV-vis JASCO V-670) was used to identify the CTA, which
was coated onto the surface of silica nanoparticles. Scanning electron microscopy (SEM,
JSMIT800, JEOL) and SEM-energy dispersive X-ray spectrometry (SEM-EDX, SU-8000,
Hitachi High-Tech Corp., Tokyo, Japan) measurements were performed to observe the
surface morphology. Fourier transform infrared spectroscopy (FT-IR, FT/IR-4700, JASCO,
Tokyo, Japan) was measured by the KBr method for nanoparticles and the ATR method
for membranes.

2.6. Retention Stability of Nanoparticles

The retention stability of the nanoparticles was calculated from the weight differ-
ence of the composite membrane after immersion in distilled water for 5 days by using
Formula (1), where W (%) is the weight of the membrane. Wdry1 (g) is the weight of its
original membranes dried. Wdry2 (g) is the weight of the membrane after immersing it in
distilled water and drying it.

W =
Wdry2

Wdry1
× 100 (1)

2.7. Proton Conductivity

The proton conductivities were measured for pellet state and membrane state samples
under different relative humidities (RH: 65–95% RH) at 80 ◦C and 85% RH at different
temperatures (40–80 ◦C) in an environment control machine (SH-241, ESPEC, Osaka, Japan)
using ac impedance measurements (IM 3570, HIOKI Corp, Nagano, Japan); frequency,
4.6–4.6 × 106 Hz; four terminal method). The proton conductivity was calculated using
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Formula (2), where σ is the proton conductivity (S/cm), Rs (Ω) is the resistance obtained
from the Cole–Cole plots, d (cm) is the electrode distance, and S (cm2) is the sectional area
of sample.

σ =
1

Rs
× d

s
(2)

3. Results and Discussion
3.1. Characterization of Core-Shell Nanoparticles, Basic Matrix, and Composite Membrane

SEM-EDX mappings targeting silicon (Si), sulfur (S), and sodium (Na) of silica, sil-
ica@PSSNa, and silica@PSSA were shown in Figure 1a. Silica@PSSA exhibited mappings of
S derived from PSSA at the same position as the Si derived from silica nanoparticles and
also did not show the mapping of sodium (Na) originated from PSSNa, meaning that the
cation exchange at the surface of the nanoparticle was successfully progressed. Additionally,
the UV-vis absorption of the RAFT agent (CDSSP) from the core–shell nanoparticles was
evident in the progression of RAFT PwP (Figure 1b). The polymerization of P1VIm-co-PBA
was determined by 1H NMR (Figure 1c). The copolymer exhibited a broad signal of the
main chain at 0.96–2.2 ppm, heterocyclic ring at 6.7–7.7 ppm, and the methylene protons
and methyl protons of BA at 3.5–4.1 ppm and 0.60–0.89 ppm [19,20]. Moreover, based on
the integral calculations of the peak areas of a, b, c, and d, the molar content of the imidazole
group was found to be 40%. From the FTIR spectra of each nanoparticle, peaks of Si-O-Si
and Si-O attributed to silica nanoparticles were observed at 1000 and 800 cm−1 [21,22],
(Figure 1d). The broad absorption of PSSA was observed at 1046 and 830 cm−1 [23–25],
stretching vibrations of the imidazole rings were assigned to 3114 cm−1 [26,27], and C=O
and C-O-C stretching vibrations of BA were observed in 1732 and 1111 cm−1 [28]. Further-
more, the protonated imidazole (ImH+) peak was observed at approximately 1580 cm−1 [29]
from only silica@PSSA/P1VIm-co-PBA and it was evidence of the proton transfer from the
PSSA to P1VIm on the surface of the silica nanoparticles.

3.2. Effects of Acid-Base Interaction

To investigate the dispersibility of nanoparticles, photographs and SEM images of
silica@PSSNa/P1VIm-co-PBA and silica@PSSA/P1VIm-co-PBA are shown in Figure 2.
According to the SEM image of silica@PSSNa/P1VIm-co-PBA, aggregations and voids were
clearly observed from the surface of the membrane. This is attributed to the inability of
silica@PSSNa/P1VIm-co-PBA to form acid-base interactions between the nanoparticles and
the matrix. In contrast, silica@PSSA/P1VIm-co-PBA showed a smooth surface in which
nanoparticles are uniformly dispersed with no aggregations and voids. It was due to the
acid-base interaction that enabled the nanoparticles to disperse throughout the matrix rather
than aggregate with each other. Furthermore, the membrane densities were calculated from
the weights and volumes of the membrane; silica@PSSNa/P1VIm-co-PBA was 0.871 g/cm3

and silica@PSSA/P1VIm-co-PBA was 1.06 g/cm3 (Table 1). The cross-section SEM image
of silica@PSSA/P1VIm-co-PBA also confirmed the high dispersion of nanoparticles, as
did the surface SEM images (Figure S2). Based on the density of the membrane, the
silica@PSSA/P1VIm-co-PBA achieved a higher density packing of core–shell nanoparticles.

Table 1. Summary of membrane properties of silica@PSSA/P1VIm-co-PBA and silica@PSSNa/P1VIm-
co-PBA.

Density Stress Strain Weight of Membrane
[g/cm3] [MPa] [%] [%]

silica@PSSA/P1VIm-co-PBA 1.06 17.0 73.5 97.1
silica@PSSNa/P1VIm-co-PBA 0.871 7.26 58.6 71.1
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ica@PSSA, and (c) 1H NMR spectrum of P1VIm-co-PBA. The peaks a−e are corresponded to the hy-
drogen atoms of P1VIm and PBA. (d) FT-IR spectra of the silica@PSSNa, and silica@PSSA, P1VIm-
co-PBA, silica@PSSNa/P1VIm-co-PBA, and silica@PSSA/P1VIm-co-PBA. 
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PBA.

To evaluate the mechanical properties of each membrane, stress–strain curves were
formulated, as shown in Figure 3a. Silica@PSSA/P1VIm-co-PBA achieved 17.0 MPa of
strength, twice as high than that of silica@PSSNa/P1VIm-co-PBA, which is almost the same
as that of the membranes in practical use [30,31]. The substantial increase can be attributed
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to the robust acid-base interaction. The pKa values of SSA and 1VIm are 1.2–1.5 [32,33] and
6.0–6.5 [34], respectively, and the acid-base interaction attracts nanoparticles to the matrix,
resulting in the suppression of voids which plays a crucial role; the direct connective net-
work between nanoparticles and the matrix prohibits the formation of voids, which could
act as potential breaking points [35]. Consequently, the stresses on the matrix are dispersed
at the silica-matrix interface, resulting in a significant increase in mechanical strength.
Therefore, the acid-base interaction significantly influences stress, proving beneficial for
the fabrication of composite membranes with outstanding mechanical strength.
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Generally, the isolated materials packed in the matrix leach from the membrane,
affecting its long-term retention stability. Previous studies have reported a decrease in
proton conductivity due to the excessive leaching of ionic liquid [36] and phosphoric
acid [37] introduced into the matrix. Similarly, silica@PSSNa/P1VIm-co-PBA showed low-
retention stability in the matrix, which does not form interactions between the nanoparticles
and the matrix resulting in the leaching of the nanoparticles over time by soaking in water.
The weight remaining rate of silica@PSSNa/P1VIm-co-PBA was 71.1 wt% after 5 days.
On the other hand, silica@PSSA/P1VIm-co-PBA exhibited only a small amount of weight
loss and the weight remaining after 5 days was 97.1 wt% (Figure 3b). Thus, the acid-base
interaction suppressed the elution of nanoparticles, confirming their excellent long-term
retention stability.

3.3. Proton Conductivities of Silica@PSSA, P1VIm-co-PBA and Silica@PSSA/P1VIm-co-PBA

Proton conductivities were calculated based on the obtained Cole–Cole plots shown in
Figures S3–S5 The proton conductivities of silica@PSSA, P1VIm-co-PBA, and silica@PSSA/
P1VIm-co-PBA at different temperatures (85% RH, 40–80 ◦C) are shown in Figure 4a and
Table 2. The proton conductivity of silica@PSSA was measured in a pelletized state by
compressing core–shell nanoparticles, and the proton conductivity was 1.54 × 10−1 S/cm
(80 ◦C, 85% RH). The results reveal a significant increase in the conductivity of silica@PSSA/
P1VIm-co-PBA from 70 ◦C to 80 ◦C. This phenomenon was attributed to the glass transition
temperature (Tg) of the composite membrane, which was observed at 75 ◦C by DSC
measurement (Figure S6). For ion-conducting polymers, it has been reported that a lower
Tg is required for better performance [28,38]. The Tg indicates that, as the temperature
increases, ions in the membrane become more easily transported. Moreover, we observed a
concurrent increase in water absorption within the same temperature range as the proton
conductivity (Figure S7). This suggests that proton conduction was activated due to the
heightened mobility of polymer chains and the enhanced movement of water.
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proton conductivity plots (80 ◦C) of the silica@PSSA (pellet), silica@PSSA/P1VIm-co-PBA (mem-
brane), and P1VIm-co-PBA (membrane). “X” means not measurable.

Table 2. Summary of proton conductivities of silica@PSSA, silica@PSSA/P1VIm-co-PBA, and P1VIm-
co-PBA.

85% RH [S/cm]

40 ◦C 50 ◦C 60 ◦C 70 ◦C 80 ◦C

silica@PSSA 6.74 × 10−2 8.05 × 10−2 9.99 × 10−2 1.15 × 10−1 1.54 × 10−1

silica@PSSA/P1VIm-co-PBA 2.77 × 10−5 3.38 × 10−5 3.88 × 10−5 1.31 × 10−4 2.11 × 10−4

P1VIm-co-PBA - - - - 9.82 × 10−7

80 ◦C [S/cm]

55% RH 65% RH 75% RH 85% RH 95% RH

silica@PSSA 2.50 × 10−2 5.10 × 10−2 8.65 × 10−2 1.54 × 10−1 -
silica@PSSA/P1VIm-co-PBA 1.38 × 10−5 4.37 × 10−5 8.16 × 10−5 2.11 × 10−4 4.20 × 10−4

P1VIm-co-PBA - - - 9.82 × 10−7 2.26 × 10−6

In addition, relative-humidity-dependent proton conductivities are shown in Figure 4b
(55–95% RH). Based on Figure 4a, the humidity-dependent measurement was performed at
80 ◦C, due to the fact that the temperature was above Tg and high proton conductivity can
be expected. However, the silica@PSSA pellet collapsed with increasing humidity due to
moisture adsorption for the PSSA, and proton conductivity under 95% RH was not available
(Figure S8). In contrast, silica@PSSA/P1VIm-co-PBA exhibited proton conductivity across
all humidity ranges and achieved 4.20 × 10−4 S/cm at 95% RH. Notably, this value was
two orders of magnitude higher than that of bare P1VIm-co-PBA membrane. However, the
proton conductivity of silica@PSSA/P1VIm-co-PBA was lower than that of silica@PSSA.
This discrepancy is attributed to the sulfonic acid on the surface of silica@PSSA forming a
bond with P1VIm, leading to a loss of proton-conducting performance and decreased water
absorption [39]. Therefore, the sulfonic acid on the nanoparticle side acts as the proton
conductor, and the contact points between the nanoparticles enhance proton conduction.
The value of 40 wt% for silica@PSSA/P1VIm-co-PBA was optimized in a preliminary study.
At 50 wt%, nanoparticle aggregations were observed and conductivity decreased. There
is a possibility that aggregations inhibited proton conduction. Therefore, 40 wt% was
determined to be the optimal ratio in this study (Table S1).
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4. Conclusions

We have successfully fabricated a uniform composite membrane with high-density
packing and high dispersibility of core–shell nanoparticles by applying acid-base interac-
tions between the surface of nanoparticles and the matrix. Moreover, silica@PSSA/P1VIm-
co-PBA demonstrated excellent mechanical strength, and the value matched well with
that of the currently used membranes. Regarding proton conductivity, we achieved a
substantial improvement by introducing nanoparticles to the P1VIm-co-PBA matrix, and
the results in the proton conductivity were two orders of magnitude higher than that of the
bare matrix. These outcomes were achieved by the contribution of the acid-base interaction
of PSSA which was coated onto the surface of silica nanoparticles and basic P1VIm which
was used as a matrix, by a simple mixing of core–shell nanoparticles and matrix. Therefore,
these results indicate that the acid-base interaction at the surface of nanoparticles is one
of the important factors for uniformly introducing nanoparticles for the membranes and
providing the retention stability of nanoparticles for advancing applications in MMMs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/technologies12020024/s1, Figure S1: Chemical structure of DIAIONTM;
Figure S2: Cross-section SEM images (a) silica@PSSNa/P1VIm-co-PBA, and (b) silica@PSSA/P1VIm-
co-PBA; Figure S3: Cole-Cole plots of silica@PSSA pellet at the (a) different temperature and (b)
different relative humidity; Figure S4: Cole-Cole plots of silica@PSSA/P1VIm-co-PBA membrane at
the (a) different temperature and (b) different relative humidity; Figure S5: Cole-Cole plots of P1VIm-
co-PBA membrane at the different relative humidity; Figure S6: DSC curve of silica@PSSA/P1VIm-co-
PBA; Figure S7: Water uptake of silica@PSSA/P1VIm-co-PBA; Figure S8: Photographs of silica@PSSA
pellet at 55% RH and 95% RH; Table S1: SEM images and proton conductivities of different particle
concentrations of silica@PSSA/P1VIm-co-PBA.
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