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Abstract: Recently, the application of Artificial Intelligence (AI) in many areas of life has allowed
raising the efficiency of systems and converting them into smart ones, especially in the field of energy.
Integrating AI with power systems allows electrical grids to be smart enough to predict the future
load, which is known as Intelligent Load Forecasting (ILF). Hence, suitable decisions for power
system planning and operation procedures can be taken accordingly. Moreover, ILF can play a
vital role in electrical demand response, which guarantees a reliable transitioning of power systems.
This paper introduces an Optimum Load Forecasting Strategy (OLFS) for predicting future load in
smart electrical grids based on AI techniques. The proposed OLFS consists of two sequential phases,
which are: Data Preprocessing Phase (DPP) and Load Forecasting Phase (LFP). In the former phase,
an input electrical load dataset is prepared before the actual forecasting takes place through two
essential tasks, namely feature selection and outlier rejection. Feature selection is carried out using
Advanced Leopard Seal Optimization (ALSO) as a new nature-inspired optimization technique, while
outlier rejection is accomplished through the Interquartile Range (IQR) as a measure of statistical
dispersion. On the other hand, actual load forecasting takes place in LFP using a new predictor called
the Weighted K-Nearest Neighbor (WKNN) algorithm. The proposed OLFS has been tested through
extensive experiments. Results have shown that OLFS outperforms recent load forecasting techniques
as it introduces the maximum prediction accuracy with the minimum root mean square error.

Keywords: artificial intelligence; load forecasting; feature selection; outlier rejection

1. Introduction

Electrical load forecasting is an important process in Smart Electrical Grids (SEGs) [1–3].
That is because it can improve the performance of SEGs, stability, reliability, and safety and
can reduce the power costs. In SEGs, load forecasting plays an instrumental role in other
sectors such as customer demand forecasting and power generation sectors as it provides
them with information about the amount of energy needed in the future [4,5]. Electrical
companies pay attention to provide continuous and reliable service to their customers [1].
Indeed, higher electrical loads increase the complexity in designing SEGs. Hence, load
forecasting is an important process to accurately determine the amount of energy needed
in the future. Traditional load forecasting models cannot provide quick and perfect results,
therefore, it is important to find a fast and accurate load forecasting model based on artificial
intelligence techniques [6–8].

Artificial Intelligence (AI) technology plays a major role in many different sectors such
as the civil sector, medical sector, telecommunication sector, electricity sector, etc. In SEGs,
AI can be used to introduce an improved load forecasting model that gives quick and more
accurate results [4,5,9]. There are several AI techniques that can be used to estimate how
much power will be required in the future such as Artificial Neural Networks (ANNs),
K-Nearest Neighbors (KNNs), Fuzzy Logic (FL), Support Vector Machine (SVM), Naïve
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Bayes (NB), and Decision Tree (DT) [6]. Despite the effectiveness of these techniques in
current research, these techniques cannot reach optimal results in the least possible time for
short-term load forecasting. Hence, it is essential to improve these techniques to give fast
and accurate predictions. To provide perfect results, preprocessing processes called outlier
rejection and feature selection should be performed before using the forecasting model
to enable the forecasting model to provide fast and accurate results [6]. That is because
irrelevant features and bad items may prevent the load forecasting model from providing
accurate results and also may prolong training.

The feature selection process selects the most important features that have an effect
on the load and removes irrelevant features [4,5]. It reduces overfitting and gives the
load forecasting model the ability to give fast and more accurate results. Feature selection
methods are categorized as wrapper, filter, and hybrid [6]. Filter methods are fast but
less accurate methods while wrapper methods are accurate but slow methods. Hybrid
methods combine filter and wrapper methods to quickly and accurately select the best
features. The outlier rejection process eliminates bad items that have a bad effect on the
load forecasting model. It enables the load forecasting model to correctly learn and provide
accurate results. There are three main categories to classify outlier rejection methods:
distance-based methods, cluster-based methods, and statistical-based methods [4,6].

In this paper, a new load forecasting strategy called Optimum Load Forecasting
Strategy (OLFS) has been introduced to accurately and quickly forecast loads. OLFS
contains two main phases called the Data Preprocessing Phase (DPP) and Load Forecasting
Phase (LFP). In the DPP, two main processes called feature selection and outlier rejection are
applied to prepare the input electrical dataset before learning the load forecasting model.
The feature selection process is performed using a new optimization technique named
Advanced Leopard Seal Optimization (ALSO). On the other hand, the outlier rejection
process is performed using a statistical-based method called Interquartile Range (IQR). In
the LFP, a new load forecasting algorithm called Weighted K-Nearest Neighbor (WKNN)
is applied to provide perfect predictions based on the prepared dataset after removing
outliers and irrelevant features. Results showed that the proposed OLFS outperforms
recent techniques according to accuracy, error, and execution time metrics.

The structure of this paper is arranged as follows: Section 2 introduces the previous
work about recent load forecasting techniques. Section 3 discusses the proposed perfect
load forecasting strategy in detail and Section 4 provides the experimental results. Finally,
conclusions and future works are presented in Section 5.

2. Related Work

In this section, the most recent load forecasting techniques are described. As presented
in [1], three deep learning models called Gated Recurrent Unit (GRU), Long Short-Term
Memory (LSTM), and Recurrent Neural Network (RNN) algorithms were applied as load
forecasting models. Experimental results showed that GRU outperformed LSTM and RNN
in terms of R-squared, mean square error, and mean absolute error. GRU is effective and it
should be able to predict loads based on new features. Additionally, it should be trained on
online datasets collected from smart meters. Feature selection and outlier rejection methods
were not used before applying the prediction model. In [2], the Hybrid Forecasting Model
(HFM) was proposed to forecast loads and prices. In fact, the HFM consists of two main
methods called the Bidirectional Long Short-Term Memory with Attention Mechanism
(BiLSTM-AM) technique and Ensemble Empirical Mode Decomposition (EEMD) technique.
Results showed that the proposed HFM is suitable, reliable, and has a high performance.
On the other hand, the HFM should be tested on many datasets of different size and
diversity. Feature selection and outlier rejection methods were not used before applying
the prediction model.

According to [3], two load forecasting methods called Artificial Neural Network
(ANN) and Auto-Regressive Integrated Moving Average (ARIMA) were used. Results
showed that ANN can handle non-linear load data but ARIMA cannot. Hence, ANN is
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better than ARIMA for predicting loads. Although the ANN is accurate, it takes a long
time to be trained. Feature selection and outlier rejection methods were not used before
applying the prediction model. In [10], four prediction methods were used after preparing
data by selecting the best features. These methods are called support vector regression
based on polynomial function, Support Vector Regression based on Radial Basis (SVR-RB)
function, support vector regression based on linear function, and ANN. Experimental
results proved that SVR-RB results were better than those of the other three methods based
on six features. Although SVR-RB provides high accuracy, it should be combined with
other machine learning algorithms such as deep learning to provide more accurate results.
Additionally, the outlier rejection method should be used before using the prediction model
to provide more accurate results.

Related to [11], the Hybrid Prediction Technique (HPT) was introduced to accurately
provide short-term load predictions. HPT consists of three techniques called thermal
exchange optimization algorithm, radial basis function network, and wavelet transform
decomposition. Results illustrated that HPT outperformed other load prediction techniques
as it can provide accurate results. However, HPT took a large amount of execution time
to be implemented. As shown in [12], six AI techniques were used in parallel to predict
the loads. These techniques are LSTM, support vector regression, multilayer perceptron,
random forest, temporal convolutional network, and extreme gradient boosting. Through
experimental results, it is proved that LSTM can provide the best results compared to the
other five techniques. Although these techniques are effective, there are many drawbacks
such as the implementation of techniques taking a long amount of time and also the
techniques depended on a limited number of hyperparameters. Additionally, feature
selection and outlier rejection methods were not used before applying the prediction
method to give more accurate results.

In [13], the Auto-Regressive Integrated Moving Average (ARIMA) technique was ap-
plied after the preprocessing process was applied to provide accurate predictions. ARIMA
provides the best results after applying the preprocessing process. On the other hand,
ARIMA is sensitive to noise. As presented in [14], a new load forecasting method called
Deep Ensemble Learning (DEL) was used to accurately predict loads. DEL can provide
accurate results but still suffers from long execution time. A comparison between these
recent load forecasting techniques is presented in Table 1.

Table 1. A comparison between the recent load forecasting techniques.

Technique Advantages Disadvantages

Gated Recurrent Unit (GRU) [1] GRU is an accurate method.

• It cannot predict loads based on new features.
• It is not trained on online datasets collected from

smart meters.
• Feature selection and outlier rejection methods

were not used before applying prediction model.

Hybrid Forecasting Model
(HFM) [2]

HFM is suitable, reliable, and has
a high performance.

• HFM was not tested on many datasets of different
size and diversity.

• Feature selection and outlier rejection methods
were not used before applying prediction model.

Artificial Neural Network
(ANN) [3] ANN is an accurate method.

• ANN takes a long time to be trained.
• Feature selection and outlier rejection methods

were not used before applying prediction model.

Support Vector Regression based
on Radial Basis (SVR-RB)

function [10]
SVR-RB provides high accuracy. Outlier rejection method should be used before using

prediction model to provide more accurate results.
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Table 1. Cont.

Technique Advantages Disadvantages

Hybrid Prediction Technique
(HPT) [11] HPT provides accurate results. HPT took a large amount of execution time to be

implemented.

Long Short-Term Memory
(LSTM) [12]

LSTM is an accurate method.

• LSTM depended on a limited number of
hyperparameters.

• Feature selection and outlier rejection methods
were not used before applying the prediction
method to give more accurate results.

Auto-Regressive Integrated
Moving Average (ARIMA)

technique [13]

ARIMA provides accurate
predictions after applying
preprocessing phase.

ARIMA is affected by noise.

Deep Ensemble Learning (DEL)
method [14] DEL is an accurate model. DEL takes a long execution time.

3. The Proposed Optimum Load Forecasting Strategy (OLFS)

In this section, the Optimum Load Forecasting Strategy (OLFS) as a new forecasting
strategy is introduced to accurately estimate the amount of electricity required in the
future. OLFS consists of two sequential phases called the Data Preprocessing Phase (DPP)
and Load Forecasting Phase (LFP) as presented in Figure 1. DPP aims to filter irrelevant
features and outliers from a dataset to obtain valid data. Then, LFP aims to provide a
perfect load forecasting based on the valid dataset passed from DPP. In DPP, two main
processes called feature selection and outlier rejection are applied to filter the electrical
dataset before learning the load forecasting model in LFP to provide perfect results. While
feature selection removes non-informative features, outlier rejection removes invalid items
from the dataset to prevent overfitting problems and to enable the forecasting model to
provide accurate results. At the end, the proposed load forecasting model in LFP is used
to give perfect results. In this work, the feature selection process has been performed
using a new selection method called Advanced Leopard Seal Optimization (ALSO). Then,
Interquartile Range (IQR) was used to detect outliers. Finally, the Weighted K-Nearest
Neighbor (WKNN) algorithm has been used to provide fast and accurate forecasts.

3.1. The Advanced Leopard Seal Optimization (ALSO)

In this subsection, a new feature selection method called Advanced Leopard Seal
Optimization (ALSO) that combines both filter and wrapper approaches is discussed in
detail. While filter approaches can quickly select a set of features, wrapper approaches can
accurately select the best features. Hence, ALSO includes chi-square as a filter method [15]
and Binary Leopard Seal Optimization (BLSO) as a wrapper method [16]. While chi-square
is a fast but inaccurate method, BLSO is an accurate but slow method. Accordingly, ALSO
contains both methods, so that each of them compensates for the problems of the other
to determine the optimal set of features. The implementation of ALSO is represented
in many steps as shown in Figure 2. At first, the collected dataset from smart electrical
grids is subjected to chi-square to quickly select a set of informative features. Then, this
set of features is subjected to BLSO to accurately select the most significant features in
electrical load forecasting. BLSO begins with creating an initial population (P) including
many leopard seals called search agents. It is assumed that P includes ‘n’ leopard seals
(LS); LS = {LS1, LS2, . . .. . ., LSn}. Each LS in P is represented in binary form where zero
denotes a useless feature while one denotes a useful feature. After creating search agents
in P, these agents are evaluated using the average accuracy value from ‘c’ classifiers as a
fitness function to prove that the set of features selected can enable any classifier to give the
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best load forecasting. According to ‘c’ classifiers, the fitness function for the ith leopard seal
(LSi) can be measured by (1).

F(LSi) =
∑c

j=1 Aj(LSi)

c
(1)

where the fitness value for the ith leopard seal is F(LSi), the classifier number that is used to
calculate the fitness value of the selected features in each seal is c, and the accuracy of the jth
classification according to the chosen features in the ith leopard seal is Aj(LSi). To illustrate
the idea, it is supposed that there are two seals in P, n = 2, and three classifiers, c = 3, applied
to measure the fitness value of the selected features in every seal as illustrated in Table 2.
Related to Table 2, it is supposed that the applied classifiers are Support Vector Machine
(SVM) [6,16], K-Nearest Neighbor (KNN) [4,17], and Naïve Bayes (NB) [4,5]. According to
the accuracy of these classifiers, SVM and NB provide that the best seal is LS2 while KNN
provides that LS1 is the best seal. Finally, the average accuracy value proved that the best
seal is LS2. Hence, evaluating seals based on a single classifier cannot give the best set of
features that can enable any classifier to give the best results.
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Table 2. Identification of the best seal according to every classifier and average accuracy.

Classifier
Accuracy of Every Seal

The Best Seal
LS1 LS2

C1 = SVM 0.75 0.75 LS2

C2 = KNN 0.9 0.8 LS1

C3 = NB 0.7 0.9 LS2

Average accuracy 0.767 0.816 LS2

According to the fitness values, the highest fitness value indicates the best solution
(seal) where the essential aim of the selection process is to provide the maximum average
accuracy value. In fact, it is necessary to assign the iteration number (Y) and also the
position vector number of the agents through its movement according to each iteration
(£). Accordingly, the number of iterations for three phases called searching, encircling, and
attacking based on the Y values have been calculated by (2)–(4) [2].

YSr =

⌊
Y
3

⌋
(2)

YEn =

⌊
Y
3

⌋
(3)

YAt =

(
Y − 2 ∗

⌊
Y
3

⌋)
(4)

where YSr, YEn, and YAt are the number of iterations for the searching, encircling, and
attacking phases, respectively. To execute BLSO, the three phases have been sequentially
implemented based on YSr, YEn, and YAt as shown in Figure 2. Initially, the steps of the
searching phase are executed until the iterations (YSr) are terminated. In the case of the YSr
not being met, the position vectors of each agent are modified using (5).

→
X

j

σ(LSu)|∀σ{2,3,4,...,β−1} =
→
D

j
(LSu).eb fσ cos(2π fσ) +

→
X

j

β(LSu) (5)

where the modified σ’s position of LSu at the jth iteration is
→
X

j

σ(LSu), positions of LSu from

2 to β − 1 are σ, σ{2, 3, 4,. . ..,β − 1}, and
→
D

j
(LSu) is the distance between the search agent

and the prey that can be computed by (6). b is the logarithmic spiral shape, the angle scaling
factor for the σ’s position of the agent is fσ, computed by (7), and the modification of the

last position (β’s position) of LSu at the jth iteration is
→
X

j

σ(LSu).

→
D

j
(LSu) =

∣∣∣∣→X j

β(LSu)−
→
X

j

1(LSu)

∣∣∣∣ (6)

fσ = 1 − 2 ∗ σ

β
(7)

where the modified 1st position of LSu at the jth iteration is
→
X

j

1(LSu), the total position
number is β, and the current position of LSu is σ. After updating the positions of agents,
these new positions should be changed to a binary value by using a function called a
sigmoid function (8) [16].

LSi
b_u(£ + 1) =


1 i f r(0, 1) ≥ sig

(
LSi

u

)
0 otherwise

(8)
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where LSi
b_u(£ + 1) is the binary value of the uth agent at the ith iteration in £ + 1 that

represents the next iteration, i = 1, 2, ..., f, and sig
(

LSi
u

)
is the sigmoid function that has

been calculated by (9) [15,16]. Furthermore, r(0, 1) is a random value between 0 and 1.

sig(LSi
u) =

1

1 + e−Li
u

(9)

where the base of the natural logarithm is e. In P, the new position of each seal LSi
b_u(£ + 1)

has been evaluated by (1). Through searching for a prey, each agent in P will keep updated
position and fitness values. In fact, the procedures of the searching phase are continued
until the YSr is terminated. Then, the best position in P for each agent is assigned based
on the maximum evaluation value through their search for prey after the searching phase
is completed. Related to the best agents in P generated by the searching phase, the steps
of the encircling phase are implemented until the iterations (YEn) are terminated. At first,
the best leaders are determined based on the calculations of the evaluation function. Then,
the Weighted Leaders Prey Allocation (WLPA) method is used for prey allocation [16]. The
leopard seals update their positions depending on the prey’s position using (10)–(14).

→
D

j

LSu =

∣∣∣∣→C.
→
X

j

prey −
→
X

j

LSu

∣∣∣∣ (10)

→
X

j+1

LSu =
→
X

j

prey −
→
A.

→
D

j

LSu (11)

→
A = 2.

→
a .

→
r1 −

→
a (12)

→
C = 2.

→
r2 (13)

a = 2 − j ∗ 2
YEn

(14)

where the uth agent’s position at iteration j is
→
X

j

LSu , the forecasted position of the prey

at the jth iteration is
→
X

j

prey, and the distance between the uth agent and the prey is
→
D

j

LSu .

Additionally, random vectors belonging to [0, 1] are
→
r1 and

→
r2, coefficient vectors are

→
A

and
→
C calculated by (12) and (13), the number of iterations in the encircling phase is YEn

calculated by (3). A vector that decrements linearly from two to zero over the iterations is
→
a

computed by (14). In the encircling phase, the new position of a leopard seal is between the

current position of the leopard seal and the prey’s position depending on
→
A that includes

a random value in [−1, 1]. If the YEn is not met, leopard seals will update their positions
based on the prey’s position by (10)–(14). At the end of the encircling phase, each leopard
seal in P will be assigned its new position by calculating the distance between the leopard
seal and prey by applying (10). After that, the new position of a leopard seal is calculated by
applying (11) and then is evaluated using the evaluation (fitness) function for determining
the best solutions (leaders). Then, the sigmoid function is applied to change all positions to
be in binary form using (8).

The last phase, called the attacking phase, receives the last information from the
previous encircling phase. Initially, the best leopard seals (alpha) are determined and

their positions are used for determining the location of the target prey
→
Xprey(£). Then, the

positions of leopard seals are converted into binary using the sigmoid function. If YAt is
not terminated, the leopard seals will modify their positions and then will test them by
using the fitness function. At the end, the optimal solution is the fittest leopard seal that
contains the best set of features.
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3.2. Interquartile Range (IQR) Method

In this section, the Interquartile Range (IQR) method is used as an outlier rejection
method to detect and then remove outliers. To use IQR, the dataset is divided into four
equal parts or segments. To define the IQR, the distances between the quartiles are used. If
a data point is more than 1.5 × IQR below the first segment or above the third segment,
this data point is considered as an outlier. Multiplying the upper and lower IQR by 1.5
(1.5 × IQR) is a common method for detecting outliers where the value for controlling the
sensitivity of the range is 1.5. Accordingly, all data points that are above Q3 + 1.5 × IQR
and below Q1 − 1.5 × IQR are outliers, where Q3 is the third segment and Q1 is the first
segment as shown in Figure 3. To calculate IQR, the first segment is subtracted from the
third segment; IQR = Q3 − Q1.Then, IQR can be used to determine outliers by using
many sequential steps: (i) the Interquartile Range (IQR) is calculated for the data, (ii) the
Interquartile Range (IQR) is multiplied by 1.5, (iii) the maximum allowed normal value is
determined; H = Q3 + 1.5 × (IQR). Accordingly, outliers are points that are greater than H,
(vi) the minimum allowed normal value is determined; L = Q1 − 1.5 × (IQR). Accordingly,
outliers are points that are lower than L.
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3.3. The Proposed Weighted K-Nearest Neighbor (WKNN) Algorithm

In this section, a new forecasting model called Weighted K-Nearest Neighbor (WKNN)
is explained in detail. WKNN consists of two main methods called Naïve Bayes (NB)
as a feature weighting method [6] and K-Nearest Neighbor (KNN) as a load forecasting
method based on the weighted features [4,6]. In fact, the traditional KNN is a simple and
straightforward method that can be easily implemented. On the other hand, KNN is based
on measuring the distance between the features of each testing item and every training
item separately without taking the impact of features on the class categories. Hence, NB is
used as a weighting method to measure the impact of features on the class categories. Thus,
a feature space is converted into a weight space. Then, KNN is implemented in weight
space instead of feature space. In other words, the distance between any testing item and
every training item is implemented in a weight space using the Euclidean distance [6].

Let a testing item be E = { f 1
E, f 2

E,. . ..., f v
E} and a training item be Q = { f 1

Q, f 2
Q,. . ..., f v

Q},
where f i

E is the ith feature value of the E testing item and f i
Q is the ith feature value of the Q

training item; i = {1, 2, . . ., v}. Then, WKNN starts with calculating the Euclidean distance
between each testing item in the testing dataset and every training item in the training
dataset in v-dimension weight space using (15).

D(E, Q)|class=c =

√
∑v

i=1 (( f i
E)

1

w f i
cE − ( f i

Q)

1

w f i
cQ )

2

(15)
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where D(E, Q)|class=c is the Euclidean distance between E and Q items in class category c
in a weight space. w f i

cE is the weight of the ith feature of the E item that belongs to c class

while w f i
cE is the weight of the ith feature of the Q item that belongs to c class using (16).

w f i
cE = P(cE| fi) = P(cE).P( fi|cE) (16)

w f i
cQ = P(cQ| fi) = P(cQ).P( fi|cQ) (17)

where the probability that feature fi is in class cE is P(cE| fi) and the probability that feature
fi is in class cQ is P(cQ| fi). Also, P(cE) is the probability of the occurrence of class cE
and P(cQ) is the probability of the occurrence of class cQ. P( fi|cE) is the probability of
generating the feature fi given the class cE and P( fi|cQ) is the probability of generating
the feature fi given the class cQ. After calculating the distance (D) between each testing
item and every training item separately using (15), distances should be in ascending order.
Then, the k items that have the lowest distance values should be determined to take the
average of their loads as a predicted load value for the testing or new item using (17).

Predicted_Load (E) =
∑k

j=1 load
(
Qj

)
k

(18)

where Predicted_Load(E) is the predicted load of testing item E, load
(
Qj

)
is the load of the

jth nearest training item, and k is the number of nearest neighbors. Figure 4 presents an
example to illustrate the idea of implementing the WKNN algorithm.
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As illustrated in step 2, considering
“High Space” and “Low Space”, we find
that the 7-Nearest Neighbors are
distributed as follows: 

• Three neighbors in the “High Space”,
which are; A, B, and C. 

• Four neighbors in the “Low Space”,
which are; D, E, F, and G. 

Load table 

The 7 nearest neighbors are illustrated in the shown load table (in KW),
so the predicted load of the testing example will be: 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝑳𝒐𝒂𝒅 = ෍ 𝑳𝒐𝒂𝒅 (𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓)∀𝟕ି𝑵𝒆𝒊𝒈𝒉𝒃 𝟕ൗ , 
 
Predicted load = (2300+2530+2460+1490+1245+1080+1130)/7 
Predicted load = 1747.8 KW. 

3 Load Forecasting 

Y(W1l,W2l)= (𝑭𝟏𝟏𝐖𝟏𝐘𝐥, 𝑭𝟏𝟏𝐖𝟐𝐘𝐥) 

Figure 4. Load forecasting using WKNN algorithm. 1: Feature Space; 2: Weight Spaces; 3: Load Forecasting.
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4. Experimental Results

In this section, the proposed Optimum Load Forecasting Strategy (OLFS) that consists
of two phases called the Data Preprocessing Phase (DPP) and Load Forecasting Phase
(LFP) is executed. In DPP, the feature selection process using Advanced Leopard Seal
Optimization (ALSO) and outlier rejection process using Interquartile Range (IQR) are
implemented. Then, the filtered dataset is passed to the Weighted K-Nearest Neighbor
(WKNN) algorithm in LFP to provide fast and accurate predictions. The proposed OLFS
is implemented using an electricity load forecast dataset. Confusion matrix performance
metrics are used to test the effectiveness of the proposed OLFS [4,6,16]. These metrics are
accuracy, error, precision, and recall. Additionally, execution time is measured to test the
speed of the proposed OLFS. The used parameters values are presented in Table 3. Actually,
the K value is determined experimentally. To execute the KNN algorithm, many different
values are applied using 1000 samples in the electricity load forecast dataset. The training
dataset has 800 samples and the testing dataset has 200 samples. According to the K value,
error value of KNN is assigned to find the optimal value of K that can give KNN the ability
to introduce the minimum error values. In this work, the K value is between 1 and 40;
K ∈ [1, 40]. The minimum error value is assigned at K = 13. Accordingly, the optimal value
of K is 13 as shown in Figure 5. In the next experiments, the used value of K is 13.

Table 3. The used parameter values in experiments.

Parameter Description Applied Value

b A number that defines the movement shape of
logarithmic spiral in the encircling phase 3

u No. of alpha leopard seals 7

R The maximum number of iterations 100

r Random value that is needed in the sigmoid function Random in [0, 1]

K The number of nearest neighbors used in KNN method 1 ≤ K ≤ 40
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Figure 5. Error rate vs. K value.

4.1. Electricity Load Forecast Dataset Description

The electricity dataset is an internet dataset that consists of 16 features and
48,048 samples [17]. It is a short-term electricity load forecasting dataset that records
data every hour. This dataset is from 3 January 2015 (01:00:00 a.m.) to 27 June 2020
(12:00:00 a.m.). The dataset contains historical electricity loads that are available in daily
postdispatch reports and collected from the grid operator (CND). Additionally, this dataset
includes calendar information that is related to school periods, from Panama’s Ministry
of Education, and also includes calendar information that is related to holidays, from the
‘When on Earth?’ website. The dataset also includes weather variables such as relative
humidity, temperature, wind speed, and precipitation. This dataset is divided into training
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and testing sets with 70% and 30% of the data, respectively. Hence, the training dataset
includes 33,634 samples and the testing dataset includes 14.414 samples.

4.2. Testing the Proposed Optimum Load Forecasting Strategy (OLFS)

In this section, the proposed OLFS is tested against other load forecasting methods.
These methods are GRU [1], HFM [2], ANN [3], SVR-RB [10], HPT [11], and LSTM [12] as
presented in Table 1. Figures 6–9 and Table 4 illustrate the accuracy, error, precision, and
recall of OLFS against other load forecasting methods. Additionally, Figure 10 and Table 4
show the execution time of OLFS against other load forecasting methods. Figures 6–10 and
Table 4 show that OLFS can provide accurate results in the minimum execution time.
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Figure 6. Accuracy of load forecasting methods.
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Figure 7. Error of load forecasting methods.

Technologies 2024, 12, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 6. Accuracy of load forecasting methods. 

 
Figure 7. Error of load forecasting methods. 

 
Figure 8. Precision of load forecasting methods. 

 

Figure 9. Recall of load forecasting methods. 

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

 (%
) 

No. of training samples in dataset

GRU
HFM
ANN
SVR-RB
HPT
LSTM
OLFS

0%

10%

20%

30%

40%

50%

60%

Er
ro

r (
%

)

No. of training samples in dataset

GRU
HFM
ANN
SVR-RB
HPT
LSTM
OLFS

0%

20%

40%

60%

80%

100%

Pr
ec

is
io

n 
(%

)

No.of training samples in dataset

GRU
HFM
ANN
SVR-RB
HPT
LSTM
OLFS

0%

20%

40%

60%

80%

R
ec

al
l (

%
)

No.of  training samples in dataset 

GRU
HFM
ANN
SVR-RB
HPT
LSTM
OLFS

Figure 8. Precision of load forecasting methods.
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Figure 9. Recall of load forecasting methods.

Table 4. The results of prediction methods at the maximum training sample number.

Prediction Methods GRU HFM ANN SVR-RB HPT LSTM OLFS

Accuracy (%) 60 65 75 78 81 84 93

Error (%) 40 35 25 22 19 16 7

Precision (%) 58 60 64 69 74 79 82

Recall (%) 80 55 59 63 68 73 75

Implementation time (s) 7.88 7.5 7 6.6 6 5.7 5.1
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Figures 6–9 and Table 4 show that OLFS provides the maximum accuracy, precision,
and recall values and it provides the minimum error and execution time values according
to the number of training samples. Related to Figure 6 and Table 4, the accuracies of GRU,
HFM, ANN, SVR-RB, HPT, LSTM, and OLFS are 60%, 65%, 75%, 78%, 81%, 84%, and 93%,
respectively, at the maximum training sample number. Figure 7 and Table 4 show that
the errors of GRU, HFM, ANN, SVR-RB, HPT, LSTM, and OLFS are 40%, 35%, 25%, 22%,
19%, 16%, and 7%s respectively, at the maximum training sample number. Accordingly,
OLFS provides the best accuracy and error values while GRU provides the worst values.
According to Figure 8 and Table 4, the precisions of GRU, HFM, ANN, SVR-RB, HPT, LSTM,
and OLFS are 58%, 60%, 64%, 69%, 74%, 79%, and 82%, respectively, at the maximum
training sample number. Hence, the maximum precision value is provided by OLFS and
the minimum value is provided by GRU.

Figure 9 and Table 4 illustrate that the recall of OLFS is better than that of GRU, HFM,
ANN, SVR-RB, HPT, and LSTM with values of 80%, 55%, 59%, 63%, 68%, 73%, and 75%,
respectively, at the maximum training sample number. According to Figure 10 and Table 4,
the minimum execution time is provided by OLFS and the maximum execution time is
provided by GRU with values of 5.1 s and 7.88 s, respectively, at the maximum training
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sample number. The execution times of HFM, ANN, SVR-RB, HPT, and LSTM are 7.5, 7,
6.6, 6, and 5.7 s, respectively, at the maximum training sample number. Thus, Figures 6–10
and Table 4 proved that the proposed OLFS can provide the best results compared to other
load forecasting methods (GRU, HFM, ANN, SVR-RB, HPT, and LSTM). From these results,
it is noted that OLFS outperforms the other methods (GRU, HFM, ANN, SVR-RB, HPT, and
LSTM) as it depended on using two main processes, feature selection and outlier rejection,
before using the prediction model. Hence, the prediction model has accurately been learned
based on the filtered dataset.

5. Conclusions and Future Works

In this paper, a new load forecasting strategy called the Optimum Load Forecasting
Strategy (OLFS) has been introduced to provide fast and accurate results. OLFS consists
of two phases called the Data Preprocessing Phase (DPP) and Load Forecasting Phase
(LFP). Two main processes called feature selection and outlier rejection have been used
in DPP to prepare and filter irrelevant features and outliers from the dataset. Feature
selection has been performed using Advanced Leopard Seal Optimization (ALSO) while
outlier rejection has been performed using Interquartile Range (IQR). Next, the Weighted
K-Nearest Neighbor (WKNN) algorithm has been used as load forecasting method in LFP
based on the prepared dataset to quickly provide accurate results. Experimental results
showed that the proposed OLFS provides the maximum accuracy, precision, and recall
values but the minimum error and execution time with values equal to 93%, 82%, 80%, 7%,
and 5.1 s, respectively, at the maximum training sample number. Finally, the proposed
OLFS can provide fast and accurate predictions. In the future, a new outlier rejection
method using an optimization algorithm such as the red piranha optimization algorithm
will be used to provide more accurate predictions. Additionally, a classification model
based on a deep learning algorithm will be applied to enhance the results.
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