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Abstract: Machine vision, an interdisciplinary field that aims to replicate human visual perception in
computers, has experienced rapid progress and significant contributions. This paper traces the origins
of machine vision, from early image processing algorithms to its convergence with computer science,
mathematics, and robotics, resulting in a distinct branch of artificial intelligence. The integration
of machine learning techniques, particularly deep learning, has driven its growth and adoption
in everyday devices. This study focuses on the objectives of computer vision systems: replicating
human visual capabilities including recognition, comprehension, and interpretation. Notably, image
classification, object detection, and image segmentation are crucial tasks requiring robust mathemati-
cal foundations. Despite the advancements, challenges persist, such as clarifying terminology related
to artificial intelligence, machine learning, and deep learning. Precise definitions and interpretations
are vital for establishing a solid research foundation. The evolution of machine vision reflects an
ambitious journey to emulate human visual perception. Interdisciplinary collaboration and the inte-
gration of deep learning techniques have propelled remarkable advancements in emulating human
behavior and perception. Through this research, the field of machine vision continues to shape the
future of computer systems and artificial intelligence applications.

Keywords: machine vision; computer vision; image processing; object classification; object detection;
object segmentation; pattern recognition; artificial intelligence; machine learning; deep learning;
robotics; mechatronics

1. Introduction

Computer vision, through digital image processing, empowers machines to map
surroundings, identify obstacles, and determine their positions with high precision [1,2].
This multidisciplinary field integrates computer science, artificial intelligence, and image
analysis to extract meaningful insights from the physical world, empowering computers
to make informed decisions [3]. Real-time vision algorithms, applied in domains like
robotics and mobile devices, have yielded significant results, leaving a lasting impact on
the scientific community [4].

The study of computer vision presents numerous complex challenges and inherent
limitations. Developing algorithms for tasks such as image classification, object detection,
and image segmentation requires a deep understanding of the underlying mathematics.
However, it is important to acknowledge that each computer vision task requires a unique
approach, which adds complexity to the study itself. Therefore, a combination of theoretical
knowledge and practical skills is crucial in this field, as it leads to advancements in artificial
intelligence and the creation of impactful real-world applications.
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The field of computer vision has been greatly influenced by earlier research efforts. In
the 1980s, significant advancements were made in digital image processing and the analysis
of algorithms related to image understanding. Prior to these breakthroughs, researchers
worked on mathematical models to replicate human vision and explored the possibilities
of integrating vision into autonomous robots. Initially, the term “machine vision” was
primarily associated with electrical engineering and industrial robotics. However, over
time, it merged with computer vision, giving rise to a unified scientific discipline. This
convergence of machine vision and computer vision has led to remarkable growth, with
machine learning techniques playing a pivotal role in accelerating progress. Today, real-time
vision algorithms have become ubiquitous, seamlessly integrated into everyday devices
like mobile phones equipped with cameras. This integration has transformed how we
perceive and interact with technology [4].

Machine vision has revolutionized computer systems, empowering them with ad-
vanced artificial intelligence techniques that surpass human capabilities in various specific
tasks. Through computer vision systems, computers have gained the ability to perceive
and comprehend the visual world [3].

The overarching goals of computer vision are to enable computers to see, recognize,
and comprehend the visual world in a manner analogous to human vision. Researchers
in machine vision have dedicated their efforts to developing algorithms that facilitate
these visual perception functions. These functions include image classification, which
determines the presence of specific objects in image data; object detection, which identifies
instances of semantic objects within predefined categories; and image segmentation, which
breaks down images into distinct segments for analysis. The complexity of each computer
vision task, coupled with the diverse mathematical foundations involved, poses significant
challenges to their study. However, understanding and addressing these challenges holds
great theoretical and practical importance in the field of computer vision.

The contribution of this work is a presentation of the literature that showcases the
current state of research of machine learning and deep learning methods for object detection,
semantic segmentation, and human action recognition in machine and robotic vision. In
this paper, we present a comprehensive overview of the key elements that constitute
machine vision and the technologies that enhance its performance. We discuss innovative
scientific methods extensively utilized in the broad field of machine and deep learning
in recent years, along with their advantages and limitations. This review not only adds
new insights into machine learning and deep learning methods in machine/robotic vision
but also features real-world applications of object detection, semantic segmentation, and
human action recognition. Additionally, it includes a critical discussion aimed at advancing
the field.

This paper’s organizational structure is as follows. Section 2 offers an overview of
machine learning/deep learning algorithms and methods. Section 3 comprehensively
covers object detection, image, and semantic segmentation algorithms and methods, with a
specific focus on human action recognition methods. Section 4 introduces detailed notions
regarding robotic vision. Section 5 presents Hubel and Wiesel’s electrophysiological in-
sights, Van Essen’s map of the brain, and their impact on machine/robotic vision. Section 6
presents a discussion regarding the aforementioned topics. Lastly, Section 7 addresses the
current challenges and future trends in the field.

2. Machine Learning/Deep Learning Algorithms

Various AI algorithms facilitate pattern recognition in machine vision and can be
broadly categorized into supervised and unsupervised types. Supervised algorithms,
which leverage labeled data to train models predicting the class of input images, can be
further divided into parametric (assuming data distribution) and non-parametric methods.
Examples include k-nearest neighbors, support vector machines, and neural networks.
Unsupervised algorithms, which lack labeled data, unveil patterns or structures and can be
categorized into clustering and dimensionality reduction methods. Comparative analyses
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assess technologies based on metrics like accuracy and scalability, with the optimal choice
dependent on the specific problem and resources. Initially met with skepticism, public
perception of AI’s benefits has shifted positively over time. Artificial intelligence aims to
replicate human intelligence, with vision being a crucial aspect. Exploring the link between
computer vision and AI, the latter comprises machine learning and deep learning subsets,
essential for understanding machine vision’s progress (see Figure 1).

Figure 1. Relationship between artificial intelligence, machine learning, and deep learning.

The terms artificial intelligence, machine learning, and deep learning are often mis-
takenly used interchangeably. To grasp their relationship, it is helpful to envision them
as concentric circles. The outermost circle represents artificial intelligence, which was
the initial concept. Machine learning, which emerged later, forms a smaller circle that is
encompassed by artificial intelligence. Deep learning, the driving force behind the ongoing
evolution of artificial intelligence, is represented by the smallest circle nested within the
other two.

2.1. Machine Learning

Human nature is marked by the innate ability to learn and progress through experi-
ences. Similarly, machines possess the capacity for improvement through data acquisition, a
concept known as machine learning (ML). ML, a subset of artificial intelligence, empowers
computers to autonomously detect patterns and make decisions with minimal human
intervention. Algorithms undergo training through exposure to diverse situations, refining
understanding with more data, leading to enhanced accuracy. Organizations adopt ML
for automated, efficient operations. Computer vision applications, like facial recognition
and image detection, showcase ML’s impact. Image analysis identifies facial features for
applications such as smartphone unlocking and security systems. In autonomous vehicles,
image detection recognizes objects in real time, enabling informed decisions. ML embraces
supervised learning, making inferences based on past data, and unsupervised learning,
identifying patterns without labeled guidance, offering versatility in various domains.

2.2. Deep Learning

Deep learning, an evolution of machine learning, surpasses shallow neural networks
by employing intricate algorithms that mirror human cognitive processes. These algo-
rithms, forming deep neural networks, emulate the logical structure of the human brain,
enabling them to draw conclusions by analyzing data. Unlike traditional machine learning,
which relies on manually extracted features, deep learning operates on an end-to-end
learning framework, minimizing human intervention. The architecture of deep neural
networks consists of multiple interconnected layers with non-linearity, enhancing their
capacity to learn complex patterns. In contrast, traditional machine learning, represented by
shallow neural networks, involves step-by-step feature extraction and model construction
with human-designed features. Computer vision utilizes “manual features” for precise
identification within images, a process distinct from the automatic feature learning of deep
neural networks. The comparison presented in Figures 2 and 3 underscores the automatic
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nature of deep learning, driven by data and minimal user involvement, whereas traditional
machine learning relies on human-crafted features and a more manual, stepwise process.

Figure 2. Comparison between a shallow neural network (first image above) and deep learning
(second image below).

Figure 3. Supervised machine learning vs. supervised deep learning.

2.3. Vision Applications Using Deep Learning Methods

Although the term “deep learning” initially referred to the depth of the neural network
(number of hidden layers), it has evolved to encompass a broader class of machine learning
techniques that utilize neural networks with multiple layers to model and solve complex
problems. The relevance of deep learning spans various domains and applications. Here are
some of the most relevant problems and applications where deep learning has demonstrated
a significant impact:

• Image Recognition and Classification: Deep learning, especially convolutional neural
networks (CNNs), excels in tasks like image classification, object recognition, facial
recognition, and medical image analysis [4].

• Autonomous Vehicles: Deep learning, particularly CNNs, plays a crucial role in
perception tasks for autonomous vehicles, enabling object detection, segmentation,
and recognition [5].

• Medical Image Analysis: Deep learning, especially CNNs, is applied in tasks such as
tumor detection, pathology recognition, and organ segmentation in medical image
analysis [6].

• Generative Modeling: Generative models like GANs and VAEs are used for image
synthesis, style transfer, and the generation of realistic data samples [7].

• Reinforcement Learning: Deep reinforcement learning successfully trains agents for
game playing, robotic control, and optimizing complex systems through interaction
with the environment [8].

• Human Activity Recognition: Deep learning models, especially RNNs and 3D CNNs,
recognize and classify human activities from video or sensor data, with applications
in healthcare, surveillance, and sports analytics [9].

These are just a few examples, and the versatility of deep learning continues to expand
as researchers and practitioners explore new applications and architectures. The success of
deep learning in these domains is attributed to its ability to automatically learn hierarchical
representations from data, capturing complex patterns and relationships.

3. Object Detection, Semantic Segmentation, and Human Action Recognition Methods

Digital image processing algorithms have been transformative in machine vision and
computer vision, reshaping visual perception and enabling machines to comprehend and
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analyze images [10,11]. Originating from image processing, these algorithms have driven
progress in pattern recognition, object detection, and image classification, ushering in a
paradigm shift. Machine vision leverages intricate techniques and mathematical models,
bridging the gap between human visual systems and machine intelligence. By extracting
meaning from visual stimuli, computer vision has transformed our understanding of
artificial intelligence’s visual realms. Images convey diverse information, including colors,
shapes, and recognizable objects, analogous to how the human brain interprets emotions
and states. In machine vision, algorithms analyze digital images to extract information
based on user-defined criteria. Object detection, face detection, and color recognition are
some examples, illustrating the system’s dependence on specific patterns for information
extraction [12]. The process involves detecting patterns representing objects, with the
detailed steps outlined in Figure 4.

Figure 4. Steps in machine vision.

3.1. Image Preprocessing

Image preprocessing plays a vital role in refining images before applying pattern
recognition algorithms, aiming to enhance quality, reduce noise, correct illumination, and
extract relevant features [13]. Common techniques include filtering, histogram equalization,
edge detection, and morphological operations. A robust mathematical foundation is
essential for effective image analysis, laying the groundwork for the subsequent steps.
This foundation determines the color space and model, representing colors mathematically.
Color models like RGB, HSI, and HSV define colors precisely using variables, forming color
spaces. The RGB model is composed of red, green, and blue components. It combines the
intensity levels of these components to create colors. The full strength of all three yields
white, whereas their absence results in black [14,15]. The process ensures a comprehensive
understanding of image content and sets the stage for employing algorithms in image
analysis. Figures 5 and 6 illustrate the RGB color model’s primary colors, their combinations,
and a sample RGB model color space.

Figure 5. An RGB image, its red , green and blue component [15].

The HSI and HSV models aim to approximate human perception by considering
characteristics such as hue (H), saturation (S), intensity (I), brightness (B), and value (V).
In the HSI model, the hue component ranges from 0◦ to 360◦, determining the color’s
hue, whereas saturation (S) expresses the mixing degree of a primary color with white
(Figure 7). The intensity (I) component denotes light intensity without conveying color
information [16]. The HSI model, depicted as a double cone, exhibits upper and lower
peaks corresponding to white (I = 1) and black (I = 0), with maximum purity (S = 1) at
I = 0.5 (Figure 8).

Figure 9 showcases the HSI model in a real photo, depicting HSV channels as grayscale
images, revealing color saturation and modified color intensity for a clearer representa-
tion. The HSV model calculates the brightness component differently from HSI, primarily
managing hue and chromatic clarity components for digital tasks like histogram balancing.

The HSV color space positions black at the inverted cone’s top (V = 0) and white
at the base (V = 1). The hue component (hue) for red is 0◦, differing by 180◦ from the
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complementary colors. Saturation (S) is determined by the distance from the cone’s base,
simplifying color representation and extraction in object detection compared to the RGB
color space [14,17].

Figure 6. RGB model’s color space in a pepper image.

Figure 7. Color components of the HSI model on a face: hue, saturation, and intensity.

Figure 8. HSI model’s color space [18].
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Figure 9. Color components of the HSI model.

3.2. Image Segmentation

Image segmentation is the pivotal process of partitioning an image into segments or
regions with similar characteristics, aiding in foreground-background separation, object
grouping, boundary location, and more. The mathematical methods usually used in image
segmentation are given in Table 1. Techniques such as thresholding, clustering, region
growing, and watershed are common for this purpose. The segmentation’s primary aim
is to simplify image information, thereby facilitating subsequent analyses and reducing
complexity. Successful segmentation, crucial for efficient image analysis, involves dividing
the image into homogeneous regions, ideally corresponding to objects like faces. It plays
a vital role in object identification and boundary delineation, assigning labels to pixels
with common visual characteristics. The algorithms for image segmentation fall into
two groups: boundary-based (edge and object detection) and region-based (thresholding,
expansion, division, merging, watershed) algorithms (see Table 2 for main algorithms) .
Robust mathematical foundations, incorporating clustering, edge detection, and graph-
based algorithms, are imperative for successful image segmentation, object detection, and
image classification [19].

Table 1. Mathematical methods used in image segmentation.

Mathematical Method Application in Image Segmentation

Graph Theory [20] Graph cuts: partitions images into segments by minimizing an energy function.

Probability and statistics [21,22]
Bayesian methods: model pixel likelihood based on statistical properties.
Gaussian Mixture Models (GMMs): represent pixel intensity distribution.

Partial Differential Equations (PDEs) [23,24]

Chan–Vese model: level-set method for segmentation, particularly for smooth
object boundaries.

Active contour models (Snakes): PDE-based models that evolve contours for
boundary identification.

Clustering algorithms [25]
K-means clustering: unsupervised clustering for grouping pixels based

on similarity.
Mean-shift clustering: adaptive clustering method for image segmentation.

Fourier transform [26] Frequency domain segmentation: transforms images for segmentation based on
frequency characteristics.

Markov Random Fields (MRFs) [27] MRF-based segmentation: models pixel dependencies for improved segmentation.

Distance metrics [28] Watershed algorithm: segments images into regions based on distance metrics.

Convolutional neural networks (CNNs) [29]
Fully Convolutional Network (FCN): adapts CNNs for pixel-wise classification.

U-Net: specialized architecture for biomedical image segmentation.

Level-set methods [30] Geodesic active contour: combines level-set methods with geodesic active contours
for accurate segmentation.

Fuzzy logic [31] Fuzzy c-means clustering: fuzzy logic-based algorithm for uncertain
boundary images.
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Table 2. Image segmentation algorithms.

Image Segmentation Algorithms

Area Boundary Detection Algorithms Algorithms Based on Regions

Edge detection [32] Downgrading [33]

Detection of objects [34] Expansion of areas [35]

Division and merging of areas [36]

Segmentation based on Watershed [28]

Image segmentation, crucial for analyzing objects through mathematical models, re-
sults in a binary image based on features like texture and color. The process can utilize
color or color intensities, and the histogram-based method, which constructs a histogram
from all pixels, aids in identifying common pixels in the image. In medical applications,
such as chest X-rays, histogram-based segmentation is prevalent [37]. When segmenting
based on color, one-dimensional histograms are obtained for monochrome images, whereas
color images require three histograms for each channel. Peaks or valleys in the histogram
assist in identifying objects and backgrounds. Multicolor images involve processing in-
dividual RGB histograms, combining results to select a robust segmentation hypothesis.
Segmentation based on pixel intensity is less complex, as evidenced in black-and-white
images where relatively large-sized objects create pixel distributions around their average
intensity values [38].

3.2.1. Feature Extraction

In machine learning, pattern recognition, and image processing, feature extraction is
vital. Following image segmentation, this process transforms a large input dataset into
a reduced set of features or a feature vector. Distinct image components, like lines and
shapes, are identified, each of which is assigned a normalized value (e.g., perimeter, pixel
coverage). Algorithms consider that each pixel has an 8-bit value, reducing information
in a 640 × 320 image to a focused feature vector. Feature extraction facilitates generalized
learning by isolating relevant information and describing the image in a structured manner
(Figure 10) [39,40].

Figure 10. Original image (left); representation of the boundaries of the regions on the original image
(top-right image); segmentation result, where each uniform region is described by an integer and all
pixels in the region have this value (bottom-right image).
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Some algorithms commonly used for feature extraction include:

• Histogram of Oriented Gradients (HOG);
• Scale-Invariant Feature Transform (SIFT);
• Speeded-Up Robust Features (SURF) ([39,41]).

3.2.2. Image Classification

Humans effortlessly perceive the three-dimensional world, distinguishing objects and
recognizing emotions. In computer vision, recognition tasks involve feature extraction, such
as identifying a cat. However, distinguishing between a cat and a dog requires a database
and specific classification mechanisms. Learning is crucial, with algorithms like Learning
and Classification Algorithms (LCAs) being employed based on the application domain.
Image classification categorizes images into predefined classes by utilizing mathematical
techniques and neural networks. Challenges persist in emulating human visual system
complexities, and LCAs can adapt to factors like class linearity. Image classification relies
on a multidisciplinary approach, integrating feature extraction, data representation, and
model training (see Table 3).

Some commonly used classification algorithms include [42]:

• Naive Bayes classifier;
• Decision trees;
• Random forests;
• Neural networks;
• Nearest neighbor or k-means.

Table 3. Mathematical methods used in image classification.

Mathematical Method Application in Image Classification

Linear algebra [43]

Vectors and matrices: represent images and perform matrix
operations for pixel manipulation.

Eigenvalue decomposition: dimensionality reduction
(e.g., PCA, SVD).

Statistics [44]
Probability and statistics: model feature distributions,

probabilistic models (e.g., Naive Bayes, Gaussian
Mixture Models).

Calculus [45] Gradient descent: Optimization during machine learning
model training.

Machine learning algorithms [46]

Support vector machine (SVM): Finds hyperplanes in
feature space.

Decision trees and random forests: use mathematical
decision rules for classification.

Neural networks [47]

Backpropagation: updates weights during neural
network training.

Activation functions: introduce non-linearity in
neural networks.

Signal processing [48]
Fourier transform: extracts features in the frequency domain.

Wavelet transform: captures high- and
low-frequency components.

Distance metrics [49]

Euclidean distance: measures similarity between
feature vectors.

Mahalanobis distance: considers correlations
between features.

3.2.3. Object Detection

Object detection in computer vision identifies and labels objects in images or videos,
employing algorithms that extract and process information, with an emphasis on specific
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aspects. This technique enables the counting, tracking, and precise labeling of objects. The
process, termed ‘object detection’ or ‘recognition’, employs mathematical techniques like
convolution, spatial transformations, and machine learning algorithms. Specific instances,
such as ‘face detection’ or ‘car detection’, focus on extracting information related to faces
or cars. Mathematical concepts essential for object detection include convolutions, spa-
tial transformations, and machine learning algorithms like support vector machines and
decision trees (see Table 4) [39,50] (Figure 11).

Figure 11. Example of detecting objects in an image [51].

Table 4. Mathematical methods used in object detection.

Mathematical Method Application in Object Detection

Linear algebra [52]

Vectors and matrices: represent images and use linear
algebra operations for processing.

Geometric transformations: perform translation, rotation,
and scaling for object manipulation.

Calculus [53]

Gradient descent: used for optimization during
model training.

Partial derivatives: used for position determination in
localization tasks.

Statistics [54]

Probability and statistics: employ probabilistic models and
statistical methods for feature analysis.

Non-maximum suppression: removes duplicate or
low-confidence bounding boxes.

Machine learning algorithms [55]

Region-based CNNs (R-CNNs): propose and classify
bounding boxes.

Fast R-CNN, Faster R-CNN: enhance speed and accuracy.

Geometry and trigonometry [56]

Trigonometric functions: use geometric calculations for
object poses and orientations.

Homography: uses transformations for image rectification or
feature matching.

Optimization techniques [57] Integer Linear Programming (ILP): refines
bounding-box selection.

Deep learning architectures [58]

Feature Pyramid Networks (FPNs): capture features at
multiple scales.

Single-Shot Multibox Detector (SSD), You Only Look Once
(YOLO): efficiently detect objects in real time.
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3.2.4. Object Tracking

Following object detection, visual object tracking involves recognizing and estimating
the states of moving objects within a visual scene. It plays a vital role in machine vision ap-
plications, tracking entities like people and faces. Despite recent advancements, challenges
persist due to factors like environmental conditions, object characteristics, and non-linear
motion. Challenges include variations in background, lighting conditions, rigid object
parts, and interactions with other objects. Effectively predicting future trajectories requires
assessing and determining the most suitable tracking algorithms (see Figure 12) [59,60].

Figure 12. Example of tracking objects in an image.

3.3. Human Action Recognition

Human action recognition in computer vision, crucial for surveillance, human–computer
interaction, and sports analysis, benefits from advanced deep learning techniques. By
leveraging CNNs and RNNs like LSTM, these models can effectively capture spatial and
temporal information from video sequences. By extracting features representing motion
and appearance patterns, they can enhance accuracy. The fusion of modalities like RGB
and depth information further refines recognition. Recent strides in attention mechanisms
and metaheuristic algorithms have optimized network architectures, emphasizing relevant
regions for improved performance [9,61–72].

There are also various other approaches regarding HAR.
In [73], a two-stream attention-based LSTM network was proposed for deep learning

models, enhancing feature distinction determination. The model integrates a spatiotem-
poral saliency-based multi-stream network with an attention-aware LSTM, utilizing a
saliency-based approach to extract crucial features and incorporating an attention mecha-
nism to prioritize relevance. By introducing an LSTM network, temporal information and
long-term dependencies are captured, improving accuracy in distinguishing features and
enhancing action differentiation. In [74], a hybrid deep learning model for human action
recognition was introduced, achieving 96.3% accuracy on the KTH dataset. The model
focuses on precise classification through robust feature extraction and effective learning,
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leveraging the success of deep learning in various contexts. The authors of [75] proposed
a framework for action recognition, utilizing multiple models to capture both global and
local motion features. A 3D CNN captures overall body motion, whereas a 2D CNN focuses
on individual body parts, enhancing recognition by incorporating both global and local
motion information. Furthermore, [76] drew inspiration from deep learning achievements,
proposing a CNN-Bi-LSTM model for human activity recognition. Through end-to-end
training, the model refines pre-trained CNN features, demonstrating exceptional accuracy
in recognizing single- and multiple-person activities on RGB-D datasets. In [77], a novel
hybrid architecture for human action recognition was introduced, combining four pre-
trained network models through an optimized metaheuristic algorithm. The architecture
involves dataset creation, a deep neural network (DNN) design, training optimization, and
performance evaluation. The results demonstrate its superiority over existing architectures
in accurately predicting human actions. The authors of [78] presented a key contribution
with temporal-spatial mapping, capturing video frame evolution. The proposed temporal
attention model within a convolutional neural network achieved remarkable performance,
surpassing a competing baseline method by 4.2% in accuracy on the challenging HMDB51
dataset. In [79] authors tackled still image-based human action recognition challenges
using transfer learning and data augmentation and by fine-tuning CNN architectures. The
proposed model outperformed prior benchmarks on the Stanford 40 and PPMI datasets,
showcasing its robustness. Finally, [80] introduced the cooperative genetic algorithm (CGA)
for feature selection, employing a cooperative approach that enhances accuracy, reduces
overfitting, and improves resilience to noise and outliers. CGA offers superior feature
selection outcomes across various domains.

The main human action recognition methods are presented in Table 5, while their
characteristics, including their advantages, disadvantages/limitations, and complexities,
are given in Appendix A.

Table 5. Human action recognition methods.

Method References

Deep learning (CNNs and RNNs) addresses the critical task of human action
recognition in computer vision, enhancing accuracy and optimizing performance. [9,61–72]

Attention-based LSTM for feature distinctions, incorporating a spatiotemporal
saliency-based multi-stream network. [73]

A hybrid deep learning model for human action recognition. [74]

Utilizes multiple models to capture global and local motion features for
action recognition. [75]

Uses RGB frames, Bi-LSTM, and a CNN for action recognition. [76]

A novel hybrid architecture combining four pre-trained network models,
predicting human actions. [77]

Uses a temporal-spatial mapping operation for action recognition. [78]

Use of image-based HAR through transfer learning. [79]

A cooperative approach for feature selection. [80]

3.4. Semantic Segmentation

In computer vision, the fundamental challenges are image classification, object detec-
tion, and segmentation, each escalating in complexity [12,81–85]. Object detection involves
labeling objects and determining their locations, whereas image segmentation delves
deeper, precisely delineating object boundaries. Image segmentation can be classified
into two techniques: semantic segmentation, which assigns each pixel to a specific label,
and instance segmentation, which uniquely labels each instance of an object. Semantic
segmentation plays a vital role in perceiving and interpreting images, crucial for appli-



Technologies 2024, 12, 15 13 of 40

cations like autonomous driving and medical imaging. Convolutional neural networks,
especially in deep learning, have significantly advanced semantic segmentation, providing
high-resolution mapping for various applications, including YouTube stories and scene
understanding [86–92]. This technique finds applications in diverse areas, such as docu-
ment analysis, virtual makeup, self-driving cars, and background manipulation in images,
showcasing its versatility and importance. Semantic segmentation architectures typically
involve an encoder network, which utilizes pre-trained networks like VGG or ResNet, and
a decoder network, which projects learned features onto the pixel space, enabling dense
pixel-level classification [86–92].

The three main approaches are :
1. Region-Based Semantic Segmentation
Typically, region-based approaches use the “segmentation using recognition” pipeline.

In this method, free-form regions are extracted from an image and described before being
subjected to region-based classification. The region-based predictions are transformed into
pixel predictions during testing by giving each pixel a label based on the region with the
highest score to which it belongs [86,87,93–96].

2. Fully Convolutional Network-Based Semantic Segmentation
The original Fully Convolutional Network (FCN) does not require region proposals

because it learns a mapping from pixels to pixels. By enabling it to handle images of any
size, the FCN expands the capabilities of a conventional CNN. FCNs only use convolutional
and pooling layers, as opposed to traditional CNNs, which use fixed fully connected layers,
allowing predictions on inputs of any size [92,97–100].

3. Weakly Supervised Semantic Segmentation
Many semantic segmentation methods depend on pixel-wise segmentation masks, which

are laborious and costly to annotate. To address this challenge, weakly supervised methods
have emerged. These approaches leverage annotated bounding boxes to achieve semantic
segmentation, providing a more efficient and cost-effective solution [50,63,90–92,101–107].

Some other approaches are discussed below.
In [108], the authors discussed the application of deep learning for the semantic

segmentation of medical images. They outlined crucial steps for constructing an effective
model and addressing challenges in medical image analysis. Deep convolutional neural
networks (DCNNs) in semantic segmentation were explored in [109], where models like
UNet, DeepUNet, ResUNet, DenseNet, and RefineNet were reviewed. DCNNs proved
effective in semantic segmentation, following a three-phase procedure: preprocessing,
processing, and output generation. Ref. [110] introduced CGBNet, a segmentation network
that enhanced performance through context encoding and multi-path decoding. The
network intelligently selects relevant score maps and introduces a boundary delineation
module for competitive scene segmentation results.

The main semantic segmentation methods are presented in Table 6, while their char-
acteristics, including their advantages, disadvantages/limitations, and complexities, are
given in Appendix B.

Table 6. Semantic segmentation methods.

Summary References

Identify fundamental computer vision problems: image
classification, object detection, and segmentation. [12,81–85]

Semantic segmentation assigns labels to every pixel, significantly
enhanced by deep learning, particularly CNNs. [86–92]

Describe components of a semantic segmentation architecture and
three main approaches: region-based, FCN-based, and

weakly supervised.
[50,63,86,87,90–92,97–107]

Semantic segmentation, focusing on medical image analysis
and DCNNs. [108–110]
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3.5. Automatic Feature Extraction

Automatic feature extraction methods play a crucial role in robotic vision by helping
neural networks (NNs) effectively process and understand visual information. Following
is an overview of how these methods are used in conjunction with neural networks:

1. Preprocessing:Image Enhancement.Methods like histogram equalization and noise re-
duction improve image quality, aiding neural networks in extracting meaningful features.

2. Feature Extraction:

• Traditional Techniques: Edge and corner detection and texture analysis extract
relevant features, capturing crucial visual information.

• Deep Learning-Based Techniques: Convolutional neural networks (CNNs) learn
hierarchical features directly from raw pixel data, covering both low-level and
high-level features.

3. Data Augmentation: Automatic feature extraction is integrated into data augmenta-
tion, applying techniques like rotation and scaling to diversify the training dataset.

4. Hybrid Models: Hybrid models combine traditional computer vision methods with
neural networks, leveraging the strengths of both for feature extraction and classification.

5. Transfer Learning: Pre-trained neural networks, especially in computer vision tasks,
can be fine-tuned for specific robotic vision tasks, saving training time and resources.

6. Object Detection and Recognition: Automatic feature extraction contributes to object
detection, as seen in region-based CNNs (R-CNNs) using region proposal networks
and subsequent feature extraction for classification.

7. Semantic Segmentation: In tasks like semantic segmentation, automatic feature ex-
traction aids the neural network in understanding context and spatial relationships
within an image.

By integrating automatic feature extraction methods with neural networks, robotic
vision systems can efficiently process visual information, understand complex scenes, and
perform tasks such as object recognition, localization, and navigation. This combination of
techniques allows for more robust and accurate vision-based applications in robotics.

4. Robotic Vision Methods

Robotic vision algorithms serve three primary functions in visual perception. In this
subsection, we explore and examine examples of each of these functions [3].

4.1. Pattern Recognition—Object Classification

Pattern recognition in machine vision is the process of identifying and classifying
objects or patterns in images or videos using machine learning algorithms. Pattern recogni-
tion can be used for various applications, such as object detection, face recognition, optical
character recognition, biometric authentication, etc. [111,112]. Pattern recognition can also
be used for image preprocessing and image segmentation, which are essential steps for
many computer vision tasks [113–115].

Robotic vision is based on pattern recognition. It is necessary to classify the data into
different categories to make it easier to use appropriate algorithms to select the right decisions.

Originally, two approaches were founded for the implementation of a pattern recog-
nition system. Statistical pattern recognition is based on underlying statistical models
to describe the patterns and their classes. The first pattern is the theoretical decision. In
the second approach, the classes are represented by formal structures such as grammar
and strings. This approach is called syntactic pattern recognition, otherwise defined as a
structural approach. The third approach was developed later, and it has experienced rapid
development in recent years. It is called neural pattern recognition. In this approach, the
classifier is depicted as a network of small autonomous units that perform a small number
of specific actions, i.e., “cells” that mimic the neurons of the human brain.

Classifying objects belongs to a biological capacity of the human system that refers to
visual perception. It is a very important function in the field of computer vision, aiming
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to automatically classify images into predefined categories. For decades, researchers have
developed advanced techniques to improve the quality of classification. Traditionally,
classification models can only perform well on small datasets, such as CIFAR-10 [116] and
MNIST [117]. The biggest leap forward in the development of image classification occurred
when the large-scale image dataset “ImageNet” was created by Feifei Li in 2009 [106].

An equally important and challenging task in computer vision is object detection,
which involves identifying and localizing objects from either a large number of predefined
categories in natural images or for a specific object. Object detection and image classification
face a similar technological challenge: both need to handle a wide variety of objects.
However, object detection is more challenging compared to image classification because it
requires identifying the exact target object being searched for [19]. Most research efforts
have focused on detecting a single class of object data, such as pedestrians or faces, by
designing a set of suitable features. In these studies, objects are detected using a set
of predefined patterns, where the features correspond to a location in the image or a
feature pyramid.

Object classification identifies the objects present in the visual scene, whereas object
detection reveals their locations. Object segmentation is defined as the pixel-level catego-
rization of pixels, aiming to divide an image into significant regions by classifying each
pixel into a specific layer. In classical object segmentation, the method of uncontrolled
merging and region segmentation has been extensively investigated based on clustering,
general feature optimization, or user intervention. It is divided into two primary branches
based on object partitioning. In the first branch, semantic segmentation is employed, where
each pixel corresponds to a semantic object classification. In the second branch, instance
segmentation is utilized, providing different labels for different object instances as a further
improvement of semantic segmentation [19].

In [72], the authors presented a comprehensive survey of the literature on human ac-
tion recognition, with a specific focus on the fusion of vision and inertial sensing modalities.
The surveyed papers were categorized based on fusion approaches, features, classifiers,
and multimodality datasets. The authors also addressed challenges in real-world deploy-
ment and proposed future research directions. The work contributed a thorough overview,
categorization, and insightful discussions of the fusion-based approach for human ac-
tion recognition.

The authors of [118] evaluated some Kinect-based algorithms for human action recog-
nition using multiple benchmark datasets. Their findings revealed that most methods
excelled in cross-subject action recognition compared to cross-view action recognition.
Additionally, skeleton-based features exhibited greater resilience in cross-view recognition,
while deep learning features were well-suited for large datasets.

The authors of [119] offered a comprehensive review of recent advancements in
human action recognition systems. They introduced hand-crafted representation-based
methods, as well as deep learning-based approaches, for this task. A thorough analysis
and a comparison of these methods and datasets used in human action recognition were
presented. Furthermore, the authors suggested potential future research directions in
the field.

In [120], a comprehensive review of recent progress made in semantic segmentation
was presented. The authors specifically examined and compared three categories of meth-
ods: those relying on hand-engineered features, those leveraging learned features, and
those utilizing weakly supervised learning. The authors presented the descriptions, as
well as a comparison, of prominent datasets used in semantic segmentation. Furthermore,
they conducted a series of comparisons between various semantic segmentation models to
showcase their respective strengths and limitations.

In [121], a comprehensive examination of semantic segmentation techniques employ-
ing deep neural networks was presented. The authors thoroughly analyzed the leading
approaches in this field, highlighting their strengths, weaknesses, and key challenges.
They concluded that deep convolutional neural networks have demonstrated remarkable
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effectiveness in semantic segmentation. The review encompassed an in-depth assessment
of the top methods employed for semantic segmentation using deep neural networks.
The strengths, weaknesses, and significant challenges associated with these approaches
were carefully summarized. Semantic segmentation has played a vital role in enhancing
and expanding our understanding of visual data, providing valuable insights for various
computer vision applications.

The authors of [122] presented a comprehensive review of deep learning-based meth-
ods for semantic segmentation. They explored the common challenges faced in current
research and highlighted emerging areas of interest in this field. Deep learning techniques
have played a pivotal role in enhancing the performance of semantic segmentation tasks.
Research on semantic segmentation can be categorized based on the level of supervision,
namely fully supervised, weakly supervised, and semi-supervised approaches. The current
research faces challenges such as limited data availability and class imbalance, which
necessitate further exploration and innovation.

In [123], the latest advancements in semantic image segmentation were explored.
The authors conducted a comparative analysis of different models and concluded by
discussing the model that exhibited the best performance. They suggested that semantic
image segmentation is a rapidly evolving field that has involved the development and
application of numerous models across various domains. A performance evaluation of each
semantic image segmentation model was carried out using the Intersection-over-Union
(IoU) method. The results of the IoU were used to facilitate a comprehensive comparison
of the different semantic image segmentation models.

Key deep learning architectures in robotic vision include CNNs, RNNs, and Genera-
tive Adversarial Networks (GANs). These innovations have wide-ranging applications in
robotic vision, encompassing tasks such as object detection, pose estimation, and semantic
segmentation. Convolutional neural networks (CNNs) play a central role in tasks like
object detection, image classification, and scene segmentation. They excel in extracting
intricate features from raw image data, enabling precise object identification and tracking.
In situations demanding temporal insights, recurrent neural networks (RNNs), especially
Long Short-Term Memory (LSTM) networks, are essential. They excel in tracking moving
objects and predicting future actions based on historical data. Some deep learning applica-
tions in robotic vision include object grasping and pick-and-place operations [124]. Offline
reinforcement learning algorithms have also surfaced, facilitating continuous learning
in robots without erasing previous knowledge [125]. In flower removal and pollination,
a 3D perception module rooted in deep learning has emerged, elevating detection and
positioning precision for robotic systems [126]. Additionally, deep learning has found
utility in fastener detection within computer vision-based robotic disassembly and servic-
ing, excelling in performance and generalization [127]. Neural networks have wielded a
pivotal influence in robot vision, making strides in image segmentation, drug detection,
and military applications. Deep learning methods, as demonstrated [128], stand as versatile
and potent tools for augmenting robotic vision capabilities.

Semantic segmentation entails delineating a specific object or region within an image.
This task finds applications in diverse industries, including filmmaking and augmented
reality. In the era of deep learning, the convolutional neural network (CNN) has emerged
as the main method for semantic segmentation. Rather than attempting to discern object
boundaries through traditional visual cues like contrast and sharpness, deep CNNs reframe
the challenge as a classification problem. By assigning a class to each pixel in the image,
the network inherently identifies object boundaries. This transformation involves adapting
the final layers of a conventional CNN classification network to produce H*W values,
representing pixel classes, in lieu of a single value representing the entire image’s class. The
DeepLab series, following the FCN paradigm, spans four iterations: V1, V2, V3, and V3+,
developed from 2015 to 2018. DeepLab V1 laid the foundation, while subsequent versions
introduced incremental improvements. These iterations harnessed innovations from recent
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image classification advancements to enhance semantic segmentation, thereby serving as a
catalyst for research endeavors in the field [92,129,130].

4.2. Mathematical Foundations of Deep Learning Methods in Robotic Vision

Deep learning in robotic vision reveals a plethora of promising approaches, each with
its own unique strengths and characteristics. To utilize the full potential of this technology,
it is crucial to identify the most promising methods and consider several combinations to
tackle specific challenges.

Convolutional neural networks (CNNs): Among the most promising approaches are
CNNs, which excel in image recognition tasks. They have revolutionized object detec-
tion, image segmentation, and scene understanding in robotic vision. Their ability to
automatically learn hierarchical features from raw pixel data is a game-changer.

Recurrent neural networks (RNNs): RNNs are vital for tasks requiring temporal
understanding. They are used in applications like video analysis, human motion tracking,
and gesture recognition. Combining CNNs and RNNs can address complex tasks by
leveraging spatial and temporal information.

Reinforcement learning (RL) in robotic vision involves algorithms for robots to learn
and decide via environmental interaction, utilizing a Markov Decision Process (MDP)
framework. RL algorithms like Deep Q-Networks (DQN) and Proximal Policy Optimization
(PPO) use neural networks to approximate mappings between states, actions, and rewards,
improving robots’ understanding and navigation. The integration of RL and robotic vision
is promising for applications like autonomous navigation and human–robot collaboration,
which rely on well-designed reward functions.

Generative Adversarial Networks (GANs): GANs offer transformative potential in
generating synthetic data and enhancing data augmentation. This is especially valuable
when dealing with limited real-world data. Their combination with other models can
enhance training robustness.

Transfer Learning: Using pre-trained models is a promising strategy. By fine-tuning
models on robotic vision data, we can benefit from knowledge transfer and accelerate
model convergence. This approach is particularly useful when data are scarce.

Multi-Modal Fusion: Combining information from various sensors, such as cameras,
LiDARS, and depth sensors, is crucial for comprehensive perception. Techniques like sensor
fusion, including vision and LiDAR or radar data, are increasingly promising.

The convergence of these approaches holds tremendous potential. For instance, com-
bining CNNs, RNNs, and GANs for real-time video analysis or fusing multi-modal data
with transfer learning can address complex robotic vision challenges. The promise lies in
the thoughtful integration of these approaches to create holistic solutions that can empower
robots to effectively perceive, understand, and interact with their environments.

The main deep learning methods are presented in Table 7.

Table 7. Deep learning methods in robotic vision.

Method Key Features

CNNs [131] CNNs revolutionize robotic vision by automatically learning hierarchical features from raw pixel data.

RNNs [132] RNNs are essential for temporal tasks like video analysis and gesture recognition.

RL [133] RL uses neural networks to approximate mappings between states, actions, and rewards, improving
robots’ understanding and navigation.

GANs [134] GANs generate synthetic data and enhance data augmentation, especially beneficial for limited
real-world data.

Transfer learning [135] Transfer learning accelerates model convergence in robotic vision by leveraging pre-trained models.

Multi-modal fusion [136] Multi-modal fusion combines information from various sensors through sensor fusion, including
vision and LiDAR or radar data.
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4.2.1. Convolutional Neural Networks (CNNs)

1. Convolution Operation: The convolution operation in CNNs involves the element-
wise multiplication of a filter (kernel) with a portion of the input image, followed by
summing the results to produce an output feature map. Mathematically, it can be
represented as:

(I ∗ K)(x, y) = ∑
i

∑
j

I(x + i, y + j) · K(i, j)

where I is the input image, K is the convolutional kernel, (x, y) represents the spatial
position in the output feature map, and (i, j) iterates over the kernel dimensions.

2. Activation Functions: Activation functions, such as the Rectified Linear Unit (ReLU),
introduce non-linearity into the network. The ReLU function is defined as:

f (x) = max(0, x)

and is applied to the output of the convolutional and fully connected layers.
3. Pooling: Pooling layers reduce the spatial dimensions of feature maps. Max pooling,

for example, retains the maximum value in a specified window. Mathematically, it
can be represented as:

P(x, y) = max(I(x, y))

where P is the pooled output and I(x, y) is the input.
4. Fully Connected Layers: In the final layers of a CNN, fully connected layers perform

traditional neural network operations. A fully connected layer computes the weighted
sum of all inputs and passes it through an activation function, often a softmax, for
classification tasks.

5. Backpropagation: The training of CNNs relies on backpropagation, a mathematical
process for adjusting network weights and biases to minimize a loss function. This
process involves the chain rule to compute gradients and update model parameters.

4.2.2. Recurrent Neural Networks (RNNs)

RNNs are a type of neural network designed for processing sequences of data. They
have a dynamic and recurrent structure that allows them to maintain hidden states and
process sequential information. The core mathematical components of RNNs include:

1. Hidden State Update: At each time step t , the hidden state ht is updated using the
current input xt and the previous hidden state ht−1 through a set of weights and activation
functions. Mathematically, this can be expressed as:

ht = f (Wh · ht−1 + Wx · xt + bh)

where ht is the hidden state at time step t; f is the activation function, typically the
hyperbolic tangent (tanh) or sigmoid; Wh and Wx are the weight matrices; and bh is the
bias term.

2. Output Calculation: The output at each time step can be computed based on the
current hidden state. For regression tasks, the output yt is often calculated as:

yt = Wy · ht + by

where yt is the output at time step t, Wy is the weight matrix for the output, and by is the
bias term.

3. Backpropagation Through Time (BPTT): RNNs are trained using the backpropa-
gation through time (BPTT) algorithm, which is an extension of backpropagation. BPTT
calculates gradients for each time step and updates the network’s weights and biases
accordingly.
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RNNs are well-suited for sequence data, time-series analysis, and natural language
processing tasks. They can capture dependencies and contexts in sequential information,
making them a valuable tool in machine learning and deep learning.

4.2.3. Reinforcement Neural Networks (RNNs)

Reinforcement learning (RL) is a machine learning paradigm focused on training
agents to make sequential decisions in an environment to maximize cumulative rewards.
The fundamental mathematical components of RL include:

1. Markov Decision Process (MDP): RL problems are often formalized as MDPs. An
MDP consists of a tuple (S, A, P, R), where S is the state space representing the possible
environmental states; A is the action space consisting of the possible actions the agent can
take; P is the transition probability function, defining the probability of transitioning from
one state to another after taking a specific action; and R is the reward function, which
provides a scalar reward signal to the agent for each state-action pair.

2. Policy (π): A policy defines the agent’s strategy for selecting actions in different
states. It can be deterministic or stochastic. Mathematically, a policy π maps states to
actions: π : S → A.

3. Value Functions: Value functions evaluate the desirability of states or state-action
pairs. The most common value functions are:

- State-Value Function (V): Vπ(s) estimates the expected cumulative reward when
starting from a state s and following policy π.

- Action-Value Function (Q): Qπ(s, a) estimates the expected cumulative reward when
starting from a state s, taking action a, and following policy π.

4. Bellman Equations: The Bellman equations express the relationship between the
value of a state or state-action pair and the values of the possible successor states. They are
crucial for updating the value functions during RL training.

5. Optimality: RL aims to find an optimal policy π∗ that maximizes the expected
cumulative reward. This can be achieved by maximizing the value functions:

V∗(s) = max
π

Vπ(s)

Q∗(s, a) = max
π

Qπ(s, a)

Reinforcement learning algorithms, such as Q-learning, SARSA, and various policy
gradient methods, use these mathematical foundations to train agents in a wide range of
applications, from game playing to robotics and autonomous systems.

4.2.4. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a class of deep learning models that
consist of two neural networks: a generator (G) and a discriminator (D). The mathematical
foundations of GANs include:

1. Generator (G): The generator maps random noise z from a prior distribution (p(z))
to generate data samples. This process can be represented as G(z).

2. Discriminator (D): The discriminator evaluates whether a given data sample is
real (x) or generated by the generator (G(z)). It produces a scalar value representing the
probability that the input is real (D(x)).

3. Objective Function: GANs are trained using a minimax game between G and D.
The objective function to be minimized by G and maximized by D is defined as:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(D(x))] +Ez∼p(z)[log(1 − D(G(z)))]

where pdata(x) is the real data distribution, p(z) is the prior distribution of noise, and E
represents the expectation.
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4. Optimal Generator: At optimality, the generator produces samples that are indistin-
guishable from real data, meaning D(G(z)) = 0.5. This occurs when the objective function
V(D, G) reaches its global minimum.

5. Training: GANs are trained using techniques like stochastic gradient descent.
The generator updates its parameters to minimize the objective function, whereas the
discriminator updates its parameters to maximize it.

6. Generated Data: The generator produces synthetic data samples G(z) that closely
resemble real data.

GANs are widely used in various applications, including image generation, style
transfer, and data augmentation.

4.2.5. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) [137] is a type of recurrent neural network (RNN)
architecture designed to overcome the vanishing gradient problem and capture long-range
dependencies in sequential data. The key equations and components of LSTM include:

1. Gates: LSTMs have three gates: the forget gate ( ft), the input gate (it), and the
output gate (ot). These gates regulate the flow of information within a cell.

2. Cell State (Ct): LSTMs maintain a cell state, which serves as a memory unit. The cell
state is updated using the following equations:

ft = σ(W f · [ht−1, xt] + b f )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

where σ is the sigmoid activation function and ⊙ represents the element-wise multiplica-
tion.

3. Hidden State (ht): The hidden state is derived from the cell state and is updated
using the output gate:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ⊙ tanh(Ct)

4. Training: LSTMs are trained using the backpropagation through time (BPTT) and
gradient descent algorithms. The gradients are computed with respect to the cell state,
hidden state, and parameters.

LSTMs are known for their ability to capture long-term dependencies and are widely
used in natural language processing, speech recognition, and various sequential data tasks.

In Table 8, we can see a detailed comparison of deep learning algorithms and methods
and their integration in robotic vision.

Table 8. Comparison of deep learning algorithms and methods in robotic vision.

Neural Network Details

Convolutional neural network (CNN) [87]

Mathematical model:
– Utilizes convolutional layers for feature extraction.
– Applies pooling layers for downsampling and spatial hierarchies.
– Employs fully connected layers for classification.
Performance:
– Well suited for image-related tasks: object detection, image classification, and

segmentation.
– Well suited for processing static visual information.
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Table 8. Cont.

Neural Network Details

Recurrent neural network (RNN) [81]

Mathematical model:
– Designed for sequential data processing and capturing

temporal dependencies.
– Uses hidden states and gates to model sequential information.
Performance:
– Suitable for tasks like tracking objects over time and recognizing sequential

patterns in data.
– Effective in understanding the dynamic nature of robotic vision.
– Challenges with vanishing gradients in capturing long-range dependencies.

Reinforcement learning (RL) [133]

Mathematical model:
– Markov Decision Process (MDP) framework.
– Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO).
Performance:
– Extracts features from visual input, enhancing robots’ understanding

and navigation.
– Utilizes algorithms, enabling robots to learn and decide through

environmental interaction, and approximates mappings between states,
actions, and rewards.

Generative Adversarial Network (GAN) [7]

Mathematical model:
– Consists of a generator and discriminator engaged in a minimax game to

generate and evaluate data.
– Aims to generate realistic data by improving the generator over time.
Performance:
– Valuable for generating synthetic data, which can be used for training in

various environments or simulating conditions in robotic vision tasks.
– Valuable for image-to-image translation and style transfer.

Long Short-Term Memory (LSTM) [138]

Mathematical model:
– A type of RNN designed to capture long-term dependencies in

sequential data.
– Uses gates, cell states, and hidden states to model memory.
Performance:
– Effective for tasks requiring memory of past states.
– Valuable for tracking objects with complex trajectories and understanding

long-term patterns.

4.3. Combining Approaches for Robotic Vision

To address the complexity of robotic vision tasks, a combination of these neural
network architectures can be powerful. For instance:

• Using CNNs for initial image feature extraction to identify objects and their positions.
• Integrating RNNs to process temporal data and track object movement and trajectories

over time.
• Implementing GANs to generate synthetic data for training in various environments

and conditions.
• Employing LSTMs to remember past states and recognize long-term patterns in robot

actions and sensor data.

By combining these approaches, robotic vision systems can leverage the strengths of
each architecture to improve object detection, tracking, and the understanding of complex
visual scenes in dynamic environments (see Table 9).
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Table 9. Combined approaches in robotic vision.

Approach Strategy Benefits

CNN-RNN fusion [139]
Utilizes CNNs for initial image feature

extraction and integrates RNNs to process
temporal data.

– Improved object tracking by capturing
both spatial and temporal features.

– Enhanced understanding in dynamic
scenes, combining spatial and tempo-
ral context.

GAN-based data augmentation [140] Applies GANs to generate synthetic data,
diversifying training datasets.

– Diversifying training datasets by
adding synthetic data.

– Enhancing robustness by training on
various simulated environments.

Hybrid CNN-LSTM models [141] Combine CNNs for static feature extraction
with LSTMs for sequential understanding.

– Improved object recognition by captur-
ing both static and sequential features.

– Enhanced tracking in dynamic scenes,
understanding both spatial and tem-
poral aspects.

Triplet network with GANs [142]

Implements GANs for generating realistic
variations of images and uses a triplet

network (embedding CNN) to enhance
similarity comparisons.

– Improved recognition through realis-
tic image variations.

– Better understanding of similar objects
in varied conditions facilitated by the
triplet network.

4.4. Big Data, Federated Learning, and Vision

Big data and federated learning play significant roles in advancing the field of com-
puter vision. Big data provides a wealth of diverse visual information, which is essential
for training deep learning models that power computer vision applications. These datasets
enable more accurate object recognition, image segmentation, and scene understanding.

Federated learning, on the other hand, enhances privacy and efficiency. It allows
multiple devices to collaboratively train models without sharing sensitive data. In com-
puter vision, this means that the collective intelligence of various sources can be used
while preserving data privacy, making it a game-changer for applications like surveillance,
healthcare, and autonomous vehicles or drones.

4.4.1. Big Data

Big data uses vast and complex datasets arising from diverse origins and applications,
such as social media, sensors, and cameras. Within machine vision, big data proves
invaluable for pattern recognition, offering a plethora of information like images, videos,
texts, and audio.

The advantages of big data are numerous: it can facilitate the creation of more accurate
and resilient pattern recognition models by supplying ample samples and variations; it
can display latent patterns and insights inaccessible to smaller datasets; and it can support
pattern recognition tasks necessitating multiple modalities or domains. However, big data
also has certain drawbacks: it can present challenges in data collection, storage, processing,
analysis, and visualization; it can create ethical and legal concerns surrounding data privacy,
security, ownership, and quality; and it can introduce noise, bias, or inconsistency that may
impede the performance and reliability of pattern recognition models.

Big data and machine vision find a lot of applications. In athlete training, they aid
behavior recognition. By combining machine vision with big data, the actions of athletes can
be analyzed using cameras, providing valuable information for training and performance
improvements [143].

In image classification, spatial pyramids can enhance the bag-of-words approach.
Machine vision-driven big data analysis can improve speed and precision in microimage
surface defect detection or be used to create intelligent guidance systems in large exhibition



Technologies 2024, 12, 15 23 of 40

halls, enhancing the visitor experience. In the context of category-level image classification,
the use of spatial pyramids based on 3D scene geometry has been proposed to improve
classification accuracy [144]. Data fusion techniques with redundant sensors have been used
to boost robotic navigation. Big data and AI have been used to optimize communication
and navigation within robotic swarms in complex environments. They have also been
applied in robotic platforms for navigation and object tracking using redundant sensors
and Bayesian fusion approaches [145]. Additionally, the combination of big data analysis
and robotic vision has been used to develop intelligent calculation methods and devices for
human health assessment and monitoring [146].

4.4.2. Federated Learning

Federated learning, a distributed machine learning technique, facilitates the collabo-
rative training of a shared model among multiple devices or clients while preserving the
confidentiality of their raw data. In the context of machine vision, federated learning proves
advantageous when dealing with sensitive or dispersed data across various domains or
locations. Federated learning offers several benefits: it can safeguard client data privacy
and security by preserving data locally; it can minimize communication and computation
costs by aggregating only model updates; and it can harness the diversity and heterogeneity
of client data to enhance model generalization. Nonetheless, federated learning entails cer-
tain drawbacks: it may encounter challenges pertaining to coordination, synchronization,
aggregation, and evaluation of model updates; it may be subject to communication delays
or failures induced by network bandwidth limitations or connectivity issues; and it may
confront obstacles in model selection, optimization, or regularization due to non-iidness or
data imbalance. In computer vision and image processing, “IID” stands for “Independent
and Identically Distributed”. It refers to a statistical assumption about the data used in
vision-related tasks.

Federated learning can be used to improve the accuracy of machine vision models.
It enables training a machine learning model in a distributed manner using local data
collected by client devices, without exchanging raw data among clients [147]. This approach
is effective in selecting relevant data for the learning task, as only a subset of the data is
likely to be relevant, whereas the rest may have a negative impact on model training. By
selecting the data with high relevance, each client can use only the selected subset in the
federated learning process, resulting in improved model accuracy compared to training
with all data [148]. Additionally, federated learning can handle real-time data generated
from the edge without consuming valuable network transmission resources, making it
suitable for various real-world embedded systems [149].

LEAF is a benchmarking framework for learning in federated settings. It includes
open-source federated datasets, an evaluation framework, and reference implementations.
The goal of LEAF is to provide realistic benchmarks for developments in federated learning,
meta-learning, and multi-task learning. It aims to capture the challenges and intricacies of
practical federated environments [150].

Federated learning (FL) offers several potential benefits for machine vision applica-
tions. Firstly, FL allows multiple actors to collaborate on the development of a single
machine learning model without sharing data, addressing concerns such as data privacy
and security [151]. Secondly, FL enables the training of algorithms without transferring
data samples across decentralized edge devices or servers, reducing the burden on edge
devices and improving computational efficiency [152]. Additionally, FL can be used to train
vision transformers (ViTs) through a federated knowledge distillation training algorithm
called FedVKD, which reduces the edge-computing load and improves performance in
vision tasks [153].

Finally, FL algorithms like FedAvg and SCAFFOLD can be enhanced using momen-
tum, leading to improved convergence rates and performance, even with varying data
heterogeneity and partial client participation [154]. The authors of [155] introduced person-
alized federated learning (pFL) and demonstrated its application in tailoring models for
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diverse users within a decentralized system. Additionally, they introduced the Contextual
Optimization (CoOp) method for fine-tuning pre-trained vision-language models.

5. Hubel and Wiesel’s Electrophysiological Insights, Van Essen’s Map of the Brain, and
Their Impact on Robotic Vision
5.1. Hubel and Wiesel’s Contribution

Deep learning’s impact on robotic vision connects insights from neuroscience and com-
puter science. Hubel and Wiesel’s electrophysiological research revealed the fundamental
mechanisms of human visual perception, laying the foundation for understanding how
neural networks process visual information in deep learning. Similarly, Van Essen’s brain
map serves as a critical reference for comprehending neural pathways and functions, eluci-
dating connections within the visual cortex for developing deep learning algorithms. The
synergy between neuroscientific revelations and computer science has redefined robotic
vision. Deep learning algorithms, inspired by the neural architectures discovered by Hubel
and Wiesel and refined through insights from Van Essen’s map, have empowered robots
to decipher visual data with precision. This fusion of understanding and innovation has
accelerated the development of autonomous robots capable of perceiving, interpreting, and
reacting to their surroundings. By embracing the neural foundations of visual perception,
deep learning has surpassed human abilities, allowing robots to navigate, interact, and
make knowledgeable decisions.

Hubel and Wiesel’s groundbreaking contributions in their electrophysiological studies
mixed neuroscience, artificial neural networks (ANNs), and computer vision, shaping the
very foundation of modern AI. Their exploration of the cat and monkey visual systems
unearthed fundamental insights into sensory processing, establishing vital connections be-
tween biological mechanisms and computational paradigms. Understanding the receptive
fields of cells in the cat’s striate cortex shed light on brain visual processing. The authors
of [156] enriched the comprehension of visual pathways from the retina to the cortex, influ-
encing perception. Notably, moving stimuli trigger robust responses, suggesting motion’s
key role in cortical activation. This insight has led to advances in fields like computer
vision and robotics, refining motion detection. Specific shapes, sizes, and orientations that
activate cortical cells have impacted experimental design. Moreover, intricate properties
within the striate cortex units hint at deeper complexities necessitating exploration. Such
insights contribute to a holistic understanding of the brain’s visual processing mechanisms.
Studying a cat’s visual cortex unveils complex receptive fields, surpassing lower visual lev-
els. This involves receptive fields and binocular interaction and overcomes the limitations
of slow-wave recording. A new approach studies individual cells using micro-electrodes,
correlating responses with cell location. This method has enhanced the understanding of
functional anatomy in smaller cortex areas [157–159].

Hubel and Wiesel’s pioneering revelation of “feature detectors” is another cornerstone
that resonates within ANNs and computer vision. These specialized neurons, responsive to
distinct visual attributes, resemble the artificial neurons that define the core architecture of
ANNs. Just as Hubel and Wiesel studied layers of neurons processing features like edges,
ANNs harness a similar hierarchy to progressively grasp more complex patterns, enriching
our understanding of both brain and machine vision. Moreover, Hubel and Wiesel’s dis-
covery of “ocular dominance columns” and “orientation columns” mirrors the hierarchical
arrangement of ANNs, creating structured systems for pattern recognition. The layer-wise
organization they elucidated forms the multi-layer architecture of ANNs, maximizing
their capacity to decipher complex data patterns. Hubel and Wiesel’s legacy also extends
to computer vision, infusing it with a deeper understanding of visual processing. Their
identification of critical periods in visual development aligns with the iterative “training”
stages of ANNs. By synthesizing their discoveries, ANNs can autonomously learn and
recognize complex patterns from images, revolutionizing fields like image classification,
object detection, and facial recognition.
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Many research papers have built upon the contributions of Hubel and Wiesel. Here,
we examine a few of these papers. The VLSI binocular vision system simulates the primary
visual cortex disparity computation in robotics and computer vision [160]. It employs
silicon retinas, orientation chips, and an FPGA, enabling real-time disparity calculation
with minimal hardware. Complex cell responses and a disparity map assist in depth
perception and 3D reconstruction. This blend of analog and digital circuits ensures efficient
computation. However, the authors solely addressed the primary visual cortex disparity
emulation, overlooking other visual aspects. In [161], the authors introduced a practical
vergence eye control system for binocular robot vision. The system is rooted in the primary
visual cortex (V1) disparity computation and comprises silicon retinas, simple cell chips,
and an FPGA. Silicon retinas mimic vertebrate retinal fields, while simple cell chips emulate
orientation-selective fields like Hubel and Wiesel’s model. The system generates real-
time complex cell outputs for five disparities, enabling reliable vergence movement, even
in complex scenarios. This development has paved the way for accurate eye control
in binocular robot vision, with potential applications in robotics, computer vision, and
AI. In [162], the authors introduced a hierarchical machine vision system based on the
primate visual model, thereby enhancing pattern recognition in machines. It involves
invariance transforms and an adaptive resonance theory network, focusing on luminance,
not color, motion, or depth. The system mirrors network-level biological processes, without
biochemical simulation. This system can enhance machine vision algorithms, aiding tasks
like object recognition and image classification.

The authors of [163] studied visual mechanisms like automatic gain control and
nonuniform processing. They suggested that these biological processes, if applied to
machine vision, could reduce data and enhance computational efficiency, particularly
in wide-view systems. Implementing these mechanisms could boost machine vision’s
processing power and effectiveness. In [164], the growth of cognitive neuroscience and the
merging of psychology and neurobiology were explored. In addition, the authors examined
memory, perception, action, language, and awareness, bridging behavior and brain circuits.
Cognitive psychologists emphasized information flow and internal representations. The
authors also touched on the molecular aspects of memory, delving into storage and neural
processes, and underscored the progress in memory research within cognitive neuroscience
and the value of comprehending both behavioral and molecular memory facets. The
authors of [165] explored how the human visual cortex processes complex visual stimuli.
They discussed the event-related potentials (ERPs) generated when viewing faces, objects,
and letters. Specific ERPs revealed different stages of face processing. The study revealed
distinct regions used for the recognition of objects and letters, along with bilateral and right
hemisphere-specific face activity. These findings have enhanced our understanding of the
neural mechanisms involved in face perception and object recognition in the human brain.

Individuals with autism exhibit challenges in recognizing faces, often due to reduced
attention to eyes and unusual processing methods [166]. Impairments start early, at around
3 years old, affecting both structural encoding and recognition memory stages. Electro-
physiological studies have highlighted disruptions in the face-processing neural systems
from an early age that persist into adulthood. Slower face processing has been linked to
more severe social issues. Autism also impacts the brain’s specialization for face process-
ing. These insights have deepened our comprehension of social cognition impairments in
autism, aiding early identification and interventions. Other research papers on the use of
machine learning methods for classifying autism include [167–179].

Table 10 shows the main articles discussing the above methods, while their character-
istics, including their advantages, disadvantages/limitations, and complexities, are given
in Appendix C.
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Table 10. Methods related to Hubel and Wiesel’s main methods.

Summary References

Discuss Hubel and Wiesel’s electrophysiological studies connecting neuroscience, ANNs, and computer vision. [156–159]

Build upon Hubel and Wiesel’s work, exploring VLSI binocular vision systems, practical vergence eye control
systems, hierarchical machine vision systems, and visual mechanisms [160–163]

Explores cognitive neuroscience by merging psychology and neurobiology, with a focus on memory, perception,
action, language, and awareness. [164]

Explore how the human visual cortex processes complex stimuli, revealing distinct regions for object and letter
recognition and face processing. Individuals with autism face challenges in recognizing faces, with disruptions in

neural systems linked to social issues.
[165,166]

Machine learning methods for classifying autism [167–179]

5.2. Van Essen’s Functional Mapping of the Brain

Van Essen’s work on brain mapping serves as a bridge between our brain’s complex
networks and advanced deep neural networks (DNNs) in modern AI. His methodical
approach to understanding how different brain regions work together during thinking and
sensing is like solving a puzzle. This is similar to how DNNs, with their layers of connected
artificial neurons, learn from data. Van Essen’s study of the human connectome, mapping
brain pathways, is similar to how DNNs are structured. Both systems process information
step by step, finding patterns and understanding them better. By combining Van Essen’s
brain mapping with the DNN architecture, we can connect natural and artificial networks.
This could lead to a better understanding of how we think and improve AI. This mix of
neuroscience and AI could inspire new ways of thinking and improve what machines can
do. Looking ahead, this blend could help create AI systems that work more like brains,
giving us a deeper understanding of thinking and pushing AI to new levels. It is like a
partnership between human creativity and machine learning, a place where what we learn
about the brain can help improve technology. This mix of science and technology shows
the potential of connecting our natural thinking with the digital thinking we are building.

The new map of the human cerebral cortex from Van Essen’s studies has important
practical implications for researchers and medical professionals. It helps researchers un-
derstand brain disorders like autism, schizophrenia, dementia, and epilepsy, potentially
leading to better treatments. This map was created with precise boundaries and a well-
designed algorithm, allowing researchers to more accurately compare results from different
brain studies. It can also facilitate personalized brain maps for surgeries and treatments,
which is especially helpful for neurosurgeons. Additionally, the map identifies specific
brain areas for tasks like language processing and sensory perception, benefiting both cog-
nitive neuroscience and interventions for people with impairments. Overall, the findings
of Van Essen’s study connect brain research with practical applications in medicine and
neuroscience. Specifically, the authors of [180] outlined the cortical areas tied to vision
and other senses and presented a database of connectivity patterns. They analyzed the
cortex’s hierarchy, focusing on visual and somatosensory/motor systems, and highlighted
the interconnectedness and distinct processing streams. The study uncovered visual area
functions and suggested that the organization allows for both divergence and conver-
gence. The research deepened our knowledge of primate cortex hierarchy and connectivity,
particularly in vision and somatosensory/motor functions.

The authors of [181] explored surface-based visualization for mapping the cerebral
cortex’s functional specialization. They employed an atlas to show the link between
specialized regions and topographic areas in the visual cortex. The surface-based warping
enhanced data mapping, thereby reducing distortions. These methods advanced high-
resolution brain mapping, improving our comprehension of cerebral cortex organization
and function across species, especially in humans. The authors of [182] revealed that the
brain’s activation–deactivation balance during tasks is naturally present, even at rest. Two
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networks, linked by correlations and anticorrelations, show ongoing brain organization.
This intrinsic structure showcases the brain’s dynamic functionality and supports the
understanding of coherent neural fluctuations’ impact on brain function. The authors
of [183] presented a comprehensive map of the human cerebral cortex’s divisions, using
magnetic resonance images and a neuroanatomical method. They identified 97 new areas,
confirmed 83 previously known areas, and developed a machine learning classifier for
automated identification. This tool enhanced our understanding of cortical structure and
function, aiding research in diverse contexts.

Table 11 presents the main articles regarding Van Essen’s mapping, while their char-
acteristics, including their advantages, disadvantages/limitations, and complexities, are
given in Appendix D.

Table 11. Methods related to Van Essen’s functional mapping of the brain.

Summary Reference

Outlines cortical areas tied to vision and other senses and presents a database of connectivity patterns. [180]

Explores surface-based visualization for mapping the cerebral cortex’s functional specialization. [181]

Reveals the brain’s activation–deactivation balance during tasks, showcasing ongoing brain organization and
supporting an understanding of neural fluctuations’ impact on function. [182]

Presents a comprehensive map of the human cerebral cortex’s divisions, identifies new areas, and develops a machine
learning classifier for automated identification. [183]

6. Discussion

In machine vision, there exist numerous contemporary technologies pertaining to
pattern recognition, each harboring its own merits and demerits. Presented below are
several recent technologies alongside their respective advantages and disadvantages.

Deep learning leverages neural networks comprising multiple layers to extract intricate
and high-level features from data. Remarkable achievements have been witnessed in
diverse pattern recognition tasks through deep learning, such as image classification, object
detection, face recognition, and semantic segmentation, among others. Deep learning
possesses certain advantages: it can autonomously learn from extensive datasets without
substantial human intervention or feature engineering; it can adeptly capture non-linear
and hierarchical relationships within the data; and it can reap the benefits of hardware and
software advancements like GPUs and frameworks. However, deep learning also entails
certain drawbacks: it demands substantial computational resources and time for training
and deployment; it may be susceptible to issues of overfitting or underfitting, hinging
upon network architecture selection, hyperparameter tuning, regularization techniques,
and more; it may lack interpretability and explainability concerning learned features and
decisions; and it may prove vulnerable to adversarial attacks or data poisoning.

Challenges and Limitations

Deep learning techniques in robotic vision offer distinct advantages, enabling high-
level tasks like image recognition and segmentation, vital for robust robot vision systems.
Deep learning algorithms and neural networks find diverse applications, spanning domains
such as drug detection and military applications. These methods facilitate the acquisition
of data-driven representations, features, and classifiers, thereby enhancing the perceptual
capabilities of robotic systems. However, inherent challenges exist in employing deep
learning for robotic vision. The limitations in robot hardware and software pose efficiency
challenges for vision systems, and deep learning alone may not resolve all issues in in-
dustrial robotics. Furthermore, designing deep learning-based vision systems necessitates
specific methodologies and tools tailored to the field’s unique demands.

In the case of deep learning, several challenges demand attention. One challenge
involves the design and optimization of network architectures and hyperparameters tai-
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lored to distinct pattern recognition tasks and datasets. A universal or optimal solution to
this quandary remains elusive, often necessitating trial-and-error or heuristic approaches.
Another challenge lies in ensuring the robustness and dependability of learned models,
particularly when deployed in real-world scenarios. Numerous factors can influence model
performance and behavior, such as data quality, distribution shifts, and adversarial ex-
amples. Lastly, deep learning confronts the task of enhancing the interpretability and
explainability of learned features and decisions, particularly when faced with intricate and
high-dimensional data. Striking a balance between model accuracy and interpretability
poses a challenge, as comprehending the reasoning behind model predictions or classifica-
tions is no easy feat.

Other challenges in using deep learning methods for robotic vision include the com-
plexity and entanglement of optical parameters in wide-angle systems, which require
data-driven prediction models to overcome. Another challenge is the need for robust 3D
object detection, which is crucial for decision making in autonomous intelligent systems.
Although deep learning has shown potential in this area, a lack of critical review and
comparison among various methods makes it challenging to select the most suitable ap-
proach for specific applications. Achieving non-adversarial robustness in deep learning
models is also challenging, as it is difficult to predict the types of distribution shifts that
may occur. Researchers have proposed various approaches to address this challenge, but
there is a need for further improvement and evaluation of model performance under data
distribution shifts. Additionally, applying visual algorithms developed from computer
vision datasets to robotic vision poses unique challenges due to the assumption of fixed
categories and time-invariant task distributions.

Although big data holds immense potential for pattern recognition in machine vision,
it possesses certain limitations that merit consideration. One limitation is the potential
unavailability or inaccessibility of big data for analysis. Legal or ethical regulations may
restrict access to certain data sources, such as personal or medical data. Additionally, data
obtained from user-generated or crowd-sourced platforms can be unreliable or incomplete.
Another limitation arises from the incompatibility or inconsistency of data derived from
diverse modalities or domains. Another facet of big data’s limitations lies in its varying
usefulness and informativeness for pattern recognition in machine vision. Redundant or ir-
relevant data, such as noisy or corrupted samples, may hinder effective analysis. Moreover,
biased or unrepresentative data, including imbalanced or skewed datasets, can undermine
the accuracy of pattern recognition models. Furthermore, misleading or deceptive data,
such as manipulated or fabricated information, can introduce additional challenges.

Federated learning presents several challenges that warrant attention. One challenge
revolves around effectively coordinating and synchronizing model updates from diverse
clients in a distributed and dynamic environment. Communication and computation
efficiency within federated learning are influenced by various factors such as network
latency, bandwidth, connectivity, and heterogeneity. Another challenge lies in striking
a balance between model privacy and accuracy. Different privacy protection levels and
methods, including differential privacy, secure aggregation, and encryption, exist in fed-
erated learning. However, these methods may introduce noise or distortion into model
updates, potentially degrading accuracy or convergence. A third challenge pertains to
addressing non-iidness and data imbalance among clients. Variations in data distributions
or characteristics stemming from client preferences, behaviors, or contexts may arise. This
imbalance can result in certain clients exerting greater influence or weight on the model,
leading to suboptimal generalization or fairness.

7. Conclusions

Machine vision is arguably the most crucial pillar for supporting and creating func-
tional artificial intelligence. Vision, as one of the five senses, plays a key role in proper
sensory perception among humans and has significantly influenced our social and tech-
nological evolution. Considering this, the academic and research community is investing
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tremendous efforts to pave new paths in machine vision development and optimize existing
algorithms and methods.

In this paper, we presented a comprehensive overview of the key elements that
constitute machine vision and the technologies that enhance its performance. We discussed
innovative scientific methods extensively utilized in the broad field of AI in recent years,
along with their advantages and limitations.

Specific attention and research focus must be directed toward understanding the as-
pects of how the human brain recognizes and categorizes objects. This knowledge can then
be transferred to robotic models. Robotic vision, coupled with robotic touch, presents a
significant challenge in robotics. Achieving a robotic hand that adapts to tasks in a manner
similar to the human hand’s behavior will greatly contribute to the evolution of the mecha-
tronics scientific field and bring us closer to achieving AI with human-like characteristics.
Such AI systems would be capable of successfully performing arduous, repetitive, and
hazardous tasks that pose challenges for humans. Moreover, they would have the ability to
tackle complex problems across various domains, ranging from astronomy to biomedicine.

It is crucial to note that careful attention should be given to the subsequent steps of
technological development. Establishing an appropriate regulatory framework is necessary
to ensure responsible management of these new findings and experiments by countries
worldwide, thereby mitigating any potential adverse effects on humans. We are currently
experiencing a period of significant change, often referred to as a new Technological and
Industrial Revolution, which may rival, if not surpass, the transformative impact of the
Internet. Therefore, the forthcoming steps are pivotal for human evolution, as they will
shape the trajectory of our species.

In conclusion, machine vision has made remarkable progress in replicating human
visual perception in computers. This survey provided a comprehensive overview of robot
vision with a detailed review of papers published in the past 3–5 years Because of its
interdisciplinary nature and integration with computer science, mathematics, and robotics,
machine vision has become widely used in daily gadgets. The subject has advanced
significantly thanks, in large part, to deep learning.

Future research directions for using deep learning methods in robotic vision include
addressing challenges such as insufficient and inaccurate annotations, recognizing pathol-
ogy images with different data distributions, and training AI models based on decentralized
data sources. Another important area of research is the development of self-supervised
learning methods and domain-adaptation techniques for medical image analysis, which
can help overcome the limitations of labeled data. Additionally, there is a need for compre-
hensive analysis and validation of 3D object detection methods using benchmark datasets
and validation matrices. Furthermore, exploring the applications of deep learning algo-
rithms and deep nets in various areas of robot vision, such as image segmentation and
drug detection, is an important research direction. Overall, the field of robotic vision is
constantly evolving, and future research should focus on improving the performance and
automation capabilities of deep learning-based systems

Future pathways for computer vision could include:

• Improved object detection: Overcoming challenges with small or occluded objects.
• Real-time 3D reconstruction: Creating 3D models of environments in real time.
• Automated image labeling: Automatically tagging images with descriptive and accu-

rate labels.
• Visual reasoning and understanding: Developing algorithms that can reason and

make decisions based on visual input.
• Robustness to adversarial attacks: Creating computer vision models that are robust

to adversarial attacks, suitable for security applications, and capable of preventing
image manipulation.

• Integration with other technologies: Finding new ways to integrate computer vision
with other technologies, such as robotics, virtual reality, and augmented reality.
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• Improved facial recognition: Developing more accurate and reliable methods for facial
recognition that can be used in security and identification applications.

• More efficient deep learning models: Developing deep learning models that require
less computation and can run faster on mobile devices.

• Enhanced video analysis: Improving the ability of computer vision to analyze video
data, including object tracking and activity recognition.

• Expanding applications: Finding new and innovative ways to apply computer vision
technology in fields such as healthcare, agriculture, and transportation.

• Detection of hidden/camouflaged objects, with applications in surveillance and biology.
• A challenging task will be the detection of objects that are intentionally designed to

blend into their environments, like camouflaged ones [184]. This will be especially
interesting in monitoring natural environments but also has potential in military
applications.

• Depth perception and 3D object detection are also very interesting, as they have
applications in depth perception, navigation, action recognition, and more [185,186].
This topic was also identified as a future challenge in [187].

• Finally, emergency rescue missions would be a highly impactful application to con-
sider [188].
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Appendix A

Table A1. Characteristics of methods presented in Table 5.

Method Performance and Advantages Disadvantages
and Limitations Complexities

Deep learning (CNNs and
RNNs) [9,61–72]

High accuracy in human
action recognition.

Comprehensive solution with
spatial and temporal

modeling. End-to-end
learning enhances accuracy.
Transfer learning improves
performance. Robustness

to variations.

Requires large labeled
datasets. Computational
complexity. “Black-box”

nature. Prone to overfitting.
Difficulty in capturing

long-term dependencies.

Designing effective
architectures.

Hyperparameter tuning.
Integration of modalities.

Real-time processing.
Adapting to

dynamic environments.

Attention-based LSTM [73]

Selective feature attention.
Enhanced discriminative

power. Beneficial for
sequential data. Multi-stream

integration. Robust
feature extraction.

Computational complexity.
Limited generalization.

Reduced interpretability.

Designing effective
architectures.

Hyperparameter tuning.
Addressing convergence
challenges. Integrating
saliency information.

Handling
temporal misalignments.
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Table A1. Cont.

Method Performance and Advantages Disadvantages
and Limitations Complexities

Hybrid deep learning
model [74]

Combined strengths for
improved action recognition.

Enhanced accuracy and
generalization. Effective in

capturing spatial and
temporal features. Potential

for end-to-end learning.

Complexity in architecture
design. Increased

computational requirements.
Potential

interpretability challenges.

Balancing architecture
complexity. Hyperparameter

tuning. Handling
data variability.

Utilization of multiple models
[75]

Captures global and local
motion features. Improved

accuracy through diversified
learning. Potential for

handling complex actions.

Increased computational
demands. Model integration

challenges. Complexity in
handling diverse
motion patterns.

Coordinating multiple models.
Addressing computational

efficiency. Handling
variations in action patterns.

Utilization of RGB frames,
Bi-LSTM, and CNN [76]

Leverages RGB frames for
visual information. Bi-LSTM

captures temporal
dependencies. CNN extracts

spatial features.
Comprehensive approach for
accurate action recognition.

Requires labeled RGB frame
data. Challenges in handling

long-term dependencies.
Computational complexity
with multiple components.

Integrating RGB frames,
Bi-LSTM, and CNN. Optimal

parameter tuning for each
component. Addressing
computational demands.

Novel hybrid architecture [77]

Combines knowledge from
four pre-trained network

models. Leverages pre-trained
models for feature extraction.

Potential for improved
accuracy through

model fusion.

Dependence on availability of
pre-trained models.

Challenges in model fusion
and coordination.

Interpretability may
be compromised.

Integrating outputs from
multiple pre-trained models.

Handling domain shifts
between pre-trained models.

Addressing
interpretability challenges.

Temporal-spatial mapping
operation [78]

Utilizes temporal-spatial
mapping for capturing
intricate action patterns.

Effective in handling spatial
and temporal dynamics.
Potential for improved
accuracy in recognizing

complex actions.

Computational demands for
mapping operations. Models

interpretability challenges.
Dependence on effective

mapping algorithms.

Designing and optimizing
temporal-spatial mapping

operations. Addressing
computational complexity

through efficient algorithms.
Ensuring model

interpretability through
transparent mapping.

Image-based HAR through
transfer learning [79]

Applies transfer learning for
leveraging pre-existing

image-based models. Reduces
the need for extensive labeled
data. Potential for improved

accuracy through
knowledge transfer.

Limited by the quality and
diversity of pre-existing
models. Challenges in

transferring knowledge across
different domains. May

require additional adaptation
for specific tasks.

Ensuring effective transfer of
knowledge. Addressing

domain-specific challenges in
transfer learning. Fine-tuning

for optimal performance in
target tasks.

Cooperative approach for
feature selection [80]

Cooperative approach for
effective feature selection.
Utilizes collaboration for

identifying relevant features.
Potential for enhanced

accuracy through
feature synergy.

Coordination challenges in
cooperative feature selection.

Dependence on effective
collaboration mechanisms.

May require additional
computational resources.

Designing and implementing
effective cooperative feature

selection mechanisms.
Addressing coordination

challenges in a cooperative
approach. Ensuring scalability

and efficiency in the feature
selection process.
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Appendix B

Table A2. Characteristics of methods presented in Table 6.

Method Performance and Advantages Disadvantages/Limitations Complexities

Identification of fundamental
computer vision problems

[12,81–85]

Establish a foundation for
computer vision tasks.

Address image classification,
object detection, and

segmentation.

Assume a clear understanding
of the identified problems.

May oversimplify the
challenges faced by each

problem.

Defining problem-specific
criteria for identification.

Ensuring a comprehensive
understanding of each

identified problem.

Semantic segmentation with
CNNs [86–92]

Deep learning, particularly
CNNs, significantly enhances

semantic segmentation.
Assign labels to every pixel in

an image.

Require large labeled datasets
for effective training.

Computational complexity,
especially with
deep networks.

Leveraging pre-trained CNNs
for transfer learning.

Addressing challenges in
dataset acquisition

and annotation.

Semantic segmentation
architectures

[50,63,86,87,90–92,97–107]

Describe components of
semantic segmentation

architectures. Introduce three
main approaches:

region-based, FCN-based, and
weakly supervised.

Variability in performance
across different architectures.

Difficulty in choosing the
most suitable approach for a

given task.

Understanding the
components and trade-offs of

each architecture.
Task-specific evaluation to
select the most appropriate

approach.

Semantic segmentation in
medical image analysis with

DCNNs [108–110]

Focus on semantic
segmentation in medical

image analysis. Highlight the
use of deep convolutional

neural networks (DCNNs) in
this context.

Limited availability of labeled
medical imaging datasets.
Ethical considerations and

privacy concerns in medical
data usage.

Developing strategies for
obtaining or generating
labeled medical datasets.

Adhering to ethical guidelines
and regulations in medical

image analysis.

Appendix C

Table A3. Characteristics of methods presented in Table 10.

Method Performance and Advantages Disadvantages
and Limitations Complexities

Hubel and Wiesel’s
electrophysiological studies

[156–159]

Connect neuroscience,
artificial neural networks

(ANNs), and computer vision.

Limited to the understanding
provided by

electrophysiological studies.

Integrating findings from
neuroscience into ANNs and

computer vision.

Works building upon Hubel
and Wiesel’s work [160–163]

Explore VLSI binocular vision
systems, practical vergence

eye control systems,
hierarchical machine vision

systems, and
visual mechanisms.

Require expertise in various
domains (VLSI design, eye

control, machine vision).
Practical implementation

challenges in building
complex systems.

Collaborating across
multidisciplinary fields.
Overcoming technical

challenges in system design
and integration.

Exploring cognitive
neuroscience [164]

Merges psychology and
neurobiology, with a focus on
memory, perception, action,
language, and awareness.

Complexity in studying and
understanding cognitive

processes. Interdisciplinary
nature may result in
varied perspectives.

Developing models that
bridge psychological and
neurobiological concepts.

Ensuring a holistic
understanding of

cognitive processes.

Human visual cortex
processing [165,166]

Explore how the human visual
cortex processes complex
stimuli. Reveal distinct

regions for object recognition,
letters, and face processing.
Investigate challenges faced

by individuals with autism in
recognizing faces.

Limited to observational and
correlational findings. Ethical

considerations in studying
neurological conditions.

Developing interventions
based on understanding

neural processing. Adhering
to ethical guidelines in
neuroscience research.

Machine learning methods for
classifying autism [167–179]

Apply machine learning for
classifying autism based on

identified neural disruptions.

Rely on the availability of
relevant and diverse datasets.
Challenges in generalization

to diverse populations.

Ensuring representative and
unbiased datasets for training.
Addressing the complexity of

individual variations
in autism.
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Appendix D

Table A4. Characteristics of methods presented in Table 11.

Method Performance and Advantages Disadvantages
and Limitations Complexities

Cortical areas and
connectivity patterns [180]

Outlines cortical areas tied to
vision and other senses.
Presents a database for
connectivity patterns.

Limited to observational and
correlational findings. The
database may not capture

dynamic changes over time.

Enhancing the database to
incorporate temporal
connectivity patterns.

Ensuring accurate mapping of
cortical areas for different

sensory functions.

Surface-based visualization
for functional

specialization [181]

Explores surface-based
visualization for mapping the

cerebral cortex’s
functional specialization.

Interpretation challenges in
surface-based visualization.
Limited to the visible cortex
surface, potentially missing

deeper structures.

Developing advanced
visualization techniques for

deeper structures. Validating
functional specialization

findings through
complementary methods.

Brain activation–deactivation
balance [182]

Reveals the brain’s
activation–deactivation

balance during tasks.
Showcases ongoing brain

organization and the impact
of neural fluctuations

on function.

Challenges in precisely
quantifying

activation–deactivation
balance. Limited to the

understanding provided by
observational studies.

Developing quantitative
measures for

activation–deactivation
balance. Integrating findings

with computational models to
understand neural dynamics.

Comprehensive map of
human cerebral cortex [183]

Presents a comprehensive
map of the human cerebral
cortex’s divisions. Identifies

new areas and develops a
machine learning classifier for

automated identification.

Limited by the quality and
diversity of available datasets.
Challenges in interpreting the

functional significance of
newly identified areas.

Ensuring diversity and
representativeness in dataset
collection. Collaborating with

neuroscientists to validate
functional roles of newly

identified areas.
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