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Abstract: Congenital heart disease (CHD) represents a multifaceted medical condition that requires
early detection and diagnosis for effective management, given its diverse presentations and subtle
symptoms that manifest from birth. This research article introduces a groundbreaking healthcare
application, the Machine Learning-based Congenital Heart Disease Prediction Method (ML-CHDPM),
tailored to address these challenges and expedite the timely identification and classification of CHD
in pregnant women. The ML-CHDPM model leverages state-of-the-art machine learning techniques
to categorize CHD cases, taking into account pertinent clinical and demographic factors. Trained on
a comprehensive dataset, the model captures intricate patterns and relationships, resulting in precise
predictions and classifications. The evaluation of the model’s performance encompasses sensitivity,
specificity, accuracy, and the area under the receiver operating characteristic curve. Remarkably, the
findings underscore the ML-CHDPM’s superiority across six pivotal metrics: accuracy, precision,
recall, specificity, false positive rate (FPR), and false negative rate (FNR). The method achieves
an average accuracy rate of 94.28%, precision of 87.54%, recall rate of 96.25%, specificity rate of
91.74%, FPR of 8.26%, and FNR of 3.75%. These outcomes distinctly demonstrate the ML-CHDPM’s
effectiveness in reliably predicting and classifying CHD cases. This research marks a significant stride
toward early detection and diagnosis, harnessing advanced machine learning techniques within the
realm of ECG signal processing, specifically tailored to pregnant women.

Keywords: healthcare; internet of medical things; congenital heart disease; classification; prediction

1. Introduction

Cardiovascular disease is a significant medical condition that affects heart performance
and leads to complications such as coronary artery disease and impaired vascular func-
tion [1]. These difficulties can result in myocardial infarction and cerebrovascular accidents.
According to a survey, heart disease annually impacts an estimated 620,000 individuals in
the United States [2]. While heart disease can affect both genders, males are more vulnera-
ble. Statistics from 2010 show that a quarter of all fatalities were attributed to heart disease.
In the United States, there are approximately 738,000 cases of heart attacks, with 528,000 of
these cases being initial occurrences. The remaining 220,000 individuals experience subse-
quent episodes. Symptoms of heart disease include chest tightness, pain and discomfort,
shortness of breath, ankle swelling, neck and abdominal pain, rapid heartbeat, dizziness,
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cardiac arrest, fainting, changes in skin color, ankle irritation, weight loss, and fatigue. The
manifestation of symptoms depends on the type of cardiovascular ailment, which include
but are not limited to arrhythmia, myocardial infarction, heart failure, congenital coronary
artery disease, mitral valve insufficiency, and dilated cardiomyopathy.

Congenital heart disease (CHD) refers to a group of structural abnormalities in the
heart that occur during the prenatal stage of development [3]. These congenital abnormal-
ities manifest during the prenatal period and affect the morphology and physiology of
the heart, leading to various cardiovascular complications. CHD is a common congenital
anomaly around the world, imposing a significant health burden on affected individuals
and medical systems alike. The global incidence of CHD shows significant variation, with
an estimated occurrence of approximately 1% of all live births [4]. In the United States, it
is believed that around 40,000 newborns are affected by CHD each year. The severity of
the condition can vary, ranging from individuals who experience minimal to no symptoms
to those who require immediate medical attention. CHD encompasses a diverse range
of anomalies, including structural malformations in the heart valves, walls, and vascula-
ture. Examples of frequently encountered instances of CHD include atrial septal defects,
ventricular septal defects, and Tetralogy of Fallot [5].

It is widely recommended that all pregnant women worldwide undergo fetal evalu-
ation and ultrasound between 18 and 24 weeks of gestation [6]. This procedure involves
detailed imaging, including ultrasound scans of the heart, which has the potential to iden-
tify over 90% of severe congenital heart conditions. However, despite the widespread use
of fetal ultrasound technology, the prevalence of fetal detection for genetic cardiovascular
diseases within the community ranges from 30 to 50% [7]. The hypothesis suggests that
the main reason for the significant disparity in diagnoses is insufficient and inconsistent
proficiency in analyzing fetal cardiac images [8]. This is primarily due to the complexity of
detecting a small and rapidly beating fetal heart as well as the relatively low awareness of
congenital coronary artery disease among healthcare providers, given its low incidence.
Although clinical quality assurance efforts focused on a single center and conducted on
a small scale have shown promising results in improving CHD detection rates by up to
100%, the sustainability and scalability of such programs present significant challenges. To
address this, experiments were conducted to determine if utilizing machine learning (ML)
analysis of images could improve the evaluation rates typically observed in community
medicine [9]. This was achieved by training the ML model on data from a limited number
of clinically relevant imaging studies.

Machine learning has been demonstrated to be proficient in detecting intricate image
patterns and successfully applied in adult cardiovascular ultrasound technology [10]. It
has even surpassed the performance of physicians in tasks involving the classification of
views, using small and downsampled databases. However, despite its widespread usage
across various domains, the application of machine learning in the context of CHD or fetal
ultrasound still requires further refinement. The use of deep learning in medical scenarios
that are inherently rare presents inherent limitations, irrespective of the volume of training
data available. The hypothesis posits that by utilizing input data curated based on clinical
recommendations, specifically by selecting five exclusive cardiac examination viewpoints,
the algorithms would be capable of identifying diagnostic indicators even when dealing
with databases of limited size. The identified research gaps are as follows:

• There is a need for further research on the utilization of data derived from the Internet
of Medical Things (IoMT) in diagnosing cardiovascular disease.

• More investigation is needed to explore the potential of utilizing Long Short-Term
Memory (LSTM) architecture and attention systems for the detection of cardiovascu-
lar disease.

• There is a lack of comprehensive research on the concurrent utilization of CNN-
BiLSTM-AM (Convolutional Neural Networks, Bidirectional Long Short-Term Mem-
ory, Attention Mechanisms) to achieve precise diagnostic outcomes in the context of
cardiovascular disease.
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• It is necessary to conduct a thorough assessment and comparison of various models
for identifying signs of cardiovascular disease using the Heart Disease UCI and
Cardiovascular Disease Dataset databases.

The research presented in this study makes significant contributions to the field of
cardiovascular disease diagnosis by leveraging data from the Internet of Medical Things
(IoMT). Firstly, it addresses the crucial challenge of timely identification and detection
of cardiovascular diseases by utilizing IoMT data, aiming to enhance the accuracy and
efficiency of diagnosis, which in turn enables prompt intervention and improves patient
outcomes. Secondly, the study explores the potential of leveraging IoMT data for accu-
rate diagnosis, providing insights into the utilization of this emerging technology in the
field. Thirdly, it investigates the integration of Long Short-Term Memory (LSTM) design
and Attention Mechanisms to enhance disease detection, paving the way for advanced
techniques to improve diagnostic accuracy. Moreover, the study introduces a novel diag-
nostic model that combines Convolutional Neural Network (CNN), Bidirectional Long
Short-Term Memory (BiLSTM), and Attention Mechanism (AM) techniques, offering a
comprehensive approach to enhance the classification accuracy of cardiovascular diseases.
Lastly, a comprehensive assessment and comparison of various models is conducted using
widely recognized databases such as the Heart Disease UCI and Cardiovascular Disease
Dataset, contributing to the understanding and advancement of IoMT data, LSTM design,
and advanced neural network models in the field of cardiovascular disease diagnosis, with
the ultimate goal of improving patient outcomes.

The research paper is structured into several sections to provide a clear and organized
presentation of the study. Section 2 focuses on the literature review, discussing the cur-
rent issues and challenges associated with the classification of congenital heart disease
(CHD). Moving on to Section 3, the Machine Learning-based Congenital Heart Disease
Prediction Method (ML-CHDPM) is introduced, outlining the methodology, algorithms,
and presenting the results obtained from applying ML-CHDPM to CHD datasets. Section 4
then presents the software results and performance assessments, analyzing the software
implementation of ML-CHDPM and evaluating its performance through metrics such
as accuracy, precision, recall, and F1-score. Finally, Section 5 offers concluding remarks,
summarizing the key findings of the study and highlighting potential directions for future
research in CHD detection methods. By following this structured format, the research
paper ensures a coherent flow of information, enabling readers to easily navigate through
the literature review, methodology, results, and conclusion, thereby comprehending the
contributions and implications of the study.

2. Background and Literature Survey

Various conventional techniques in machine learning have been employed to address
the challenges associated with manually analyzing electrocardiogram (ECG) signals in
Coronary Heart Disease (CHD). The conventional machine learning approach involves
several steps, including preprocessing, feature extraction, feature selection, and categoriza-
tion processes. Differentiating between normal and CHD signals based on their distinctive
characteristics is a time and resource-intensive task. The robustness of the features obtained
is significantly impacted by the quality of the underlying data. Preprocessing steps, such
as noise elimination and R-peak identification, are essential to extract crucial attributes
needed for effective categorization. This research suggests leveraging machine learning
to improve the efficiency of an automated CHD diagnosis method, aiming to overcome
the limitations associated with traditional machine learning approaches. Machine learning
algorithms play a crucial role in acquiring and recognizing unique features from input ECG
signals. The goal is to enhance the accuracy and effectiveness of the diagnostic process for
CHD through the utilization of advanced machine learning techniques.

In their study, Xu et al. [11] presented a novel methodology for the automated classi-
fication of pediatric Congenital Heart Disease (CHD) through the analysis of heartbeats.
The researchers conducted an extensive extraction of diverse features from normal heart
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signals, encompassing characteristics derived from the time domain, frequency domain,
and wavelets. Employing machine learning methodologies, particularly random forest and
support vector machines, the proposed approach demonstrated promising outcomes. The
results revealed a commendable accuracy rate of 87.5% in effectively categorizing CHD
cases. Additionally, the specificity and sensitivity values were noteworthy, standing at
89.7% and 85.2%, respectively. These findings underscore the efficacy of the devised method
in reliably identifying pediatric CHD through the analysis of heartbeats, showcasing its
potential as a valuable diagnostic tool in this medical context.

Ng et al. [12] designed an automated framework aimed at classifying perioperative
hazards in patients with complex Congenital Heart Disease (CHD) by leveraging retinal im-
ages. The authors introduced an innovative feature extraction method that harnessed both
color-based and texture-based characteristics obtained from retinal images. Subsequently,
these extracted features were employed in risk classification through the application of
machine learning, specifically utilizing a support vector machine. Results from the imple-
mented framework demonstrated a notable predictive accuracy, achieving an impressive
rate of 84.9% in effectively identifying perioperative risks in patients diagnosed with com-
plex congenital heart disease. This research highlights the potential of utilizing retinal
images and advanced machine learning techniques as a valuable tool for automating the
identification of perioperative hazards, thereby contributing to enhanced patient care and
risk management in the context of complex CHD cases.

Kobel et al. [13] conducted a thorough assessment of the Apple Watch iECG’s effec-
tiveness in detecting Congenital Heart Disease (CHD) in children. The study involved
obtaining iECG measurements from pediatric patients, including those with and without
CHD. A meticulous comparative analysis was performed by juxtaposing the iECG data
against conventional ECG records. The outcomes of this investigation suggest a promising
role for the Apple Watch iECG as a potential screening tool for CHD in children, revealing
a sensitivity of 92% and an accuracy of 93% in identifying the condition. In a separate study
led by van Genuchten and colleagues [14], the physical capacity of children diagnosed with
CHD was evaluated. A cohort of pediatric patients with CHD underwent exercise tests to
assess their peak oxygen uptake (VO2peak). The research findings unveiled a significant
revelation—children with CHD exhibited diminished exercise capacity compared to their
healthy counterparts, as evidenced by lower VO2peak measurements. These results under-
score the considerable impact of CHD on the ability of pediatric populations to partake
in physical activities, shedding light on the broader implications of the condition on the
overall well-being of affected individuals.

Kavitha et al. [15] introduced an innovative approach termed Multilayer Deep De-
tection Perceptron (MLDDP) for the identification of testicular deviations, both with and
without Congenital Heart Disease (CHD). This practical method utilized a Multilayer Deep
Learning framework that incorporated multiple layers of perceptrons to discern anomalies
associated with CHD. Upon evaluating the proposed MLDDP on a provided dataset, it
demonstrated an exceptional detection accuracy of 95.4% in precisely identifying testicu-
lar deviations, irrespective of the presence of CHD. The success of MLDDP underscores
the potential of machine learning techniques in advancing the diagnosis of CHD-related
conditions. In a distinct study, Liu et al. [16] concentrated on the computer-aided anal-
ysis of heart sounds in pediatric patients diagnosed with left-to-right shunt CHD. The
researchers introduced a methodology leveraging machine learning techniques, specifically
employing a Convolutional Neural Network (CNN), to extract pertinent features from
heart sound signals and accurately classify the presence of left-to-right shunt CHD. The
outcomes were noteworthy, with a precision rate of 90.8% and a region under the receiver
operating characteristics curve of 0.935, indicating the method’s efficacy in identifying
and categorizing CHD with left-to-right shunt. These findings underscore the potential
of machine learning-based analyses in supporting medical professionals in diagnosing
specific types of CHD, showcasing the promising intersection of technology and healthcare.
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Ge et al. proposed an innovative method for identifying Pulmonary Hypertension
(PH) associated with Congenital Heart Disease (CHD) by incorporating time–frequency
domain analysis and machine learning (ML) characteristics [17]. The researchers integrated
time–frequency analysis techniques into an ML framework to extract relevant features
from echocardiographic data. Through their approach, the method achieved an impressive
precision level of 91.6% in accurately identifying pulmonary hypertension linked to con-
genital heart disease. This study demonstrates the efficacy of combining advanced signal
processing techniques with machine learning approaches to enhance the identification
and characterization of specific cardiac conditions, specifically focusing on the challenging
context of pulmonary hypertension in the presence of congenital heart disease.

Steeden et al. [18] delved into the exploration of utilizing artificial intelligence (AI)
in the assessment of Congenital Heart Disease (CHD). The authors undertook a thorough
examination of AI-based methodologies, specifically machine learning (ML), applied to
tasks such as image analysis, risk estimation, and detection within the realm of CHD.
Their comprehensive analysis provided insightful perspectives on the potential of AI in
augmenting the assessment and treatment of individuals with CHD. By shedding light on
the various applications of AI in the context of CHD, the study contributes to the evolving
landscape of medical technology and its role in advancing cardiac care and diagnostics.

Alici-Karaca et al. introduced a Convolutional Neural Network (CNN) with a
lightweight architecture designed to precisely classify cases of radiation-induced liver
disease, as detailed in their research publication [19]. While their study does not directly
focus on congenital heart disease, it underscores the application of machine learning in
medical image analysis. The featured lightweight CNN successfully achieved an impres-
sive classification accuracy rate of 93.1% when tasked with identifying radiation-induced
liver disease. This result highlights the versatile capacity of machine learning to be applied
across diverse medical conditions, showcasing its potential in aiding accurate diagnoses
beyond the specific context of congenital heart disease.

Qiao et al. presented the Residual Learning based Diagnostic System (RLDS), an
innovative diagnostic system employing residual learning, designed for cases of fetal
Congenital Heart Disease (CHD) [20]. This system utilized residual learning, a type of
machine learning, to extract distinctive features from images of fetal echocardiography for
discrimination. Remarkably, the diagnostic accuracy of the RLDS for fetal CHD reached
an impressive 96.5%. Additionally, the system offered interpretability by generating atten-
tion maps and assigning importance scores to features, enhancing the understanding of
the diagnostic process for medical professionals. This research underscores the potential
of incorporating machine learning, specifically residual learning, in creating advanced
diagnostic tools for fetal CHD with the added benefit of interpretability.

The following Table 1 summarizes key findings from various studies investigating
the use of machine learning (ML) in cardiovascular health, focusing on congenital heart
disease (CHD) and related conditions. Each entry includes the reference number, author,
study objective, and identified limitations. This compilation offers a succinct overview of
the objectives pursued by researchers, shedding light on both the potential and challenges
associated with ML applications in the diagnosis and assessment of cardiovascular health.

Based on recent research, several limitations have been identified within the domain of
congestive heart failure detection and machine learning applications in electrocardiogram
(ECG) diagnosis systems:

1. Scope for Improvement in Existing Methods:

- The current machine learning methods utilized for congestive heart failure detec-
tion are widely acknowledged to have room for enhancement. Further research
and innovation are needed to refine and optimize these methodologies for im-
proved accuracy and reliability.

2. Reduction of Training Time for Feature Extraction:
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- Opportunities exist for streamlining the training process by reducing the time
required for feature extraction and model training. Efforts should be directed
towards developing more efficient algorithms to enhance the overall efficiency of
machine learning models.

3. Challenges in Fully Controlled ECG Multi-Class Categorization:

- Despite achieving satisfactory levels of accuracy, reaching up to 98%, contem-
porary ECG diagnosis systems utilizing machine learning face challenges in
developing a fully controlled ECG multi-class categorization diagnosis system.
The quest for precision and reliability in a multi-class categorization system
remains a formidable challenge that requires continued research and innovation.

Table 1. Key Findings.

S.No Author
Information Objective of the Work Limitations

1 Xu et al. [11] Automated classification of pediatric CHD
through heartbeat analysis using ML

Time and resource-intensive differentiation
between normal and CHD signals; Impact
of data quality on feature robustness

2 Ng et al. [12]
Automated framework for classifying
perioperative hazards in complex CHD
using retinal images and ML

Limited generalizability; Dependency on
image quality

3 Kobel et al. [13] Assessment of Apple Watch iECG in
detecting CHD in children

Small sample size; Limited diversity in
patient population

4 van Genuchten et al. [14] Evaluation of physical capacity in children
diagnosed with CHD

Small sample size; Limited to exercise
capacity assessment

5 Kavitha et al. [15]
Introduction of Multilayer Deep Detection
Perceptron (MLDDP) for identifying
testicular deviations with or without CHD

Limited validation on diverse datasets;
Dependency on data quality

6 Liu et al. [16]
Computer-aided analysis of heart sounds
in pediatric patients with left-to-right shunt
CHD using CNN

Limited to specific type of CHD;
Dependency on quality of input heart
sound data

7 Ge et al. [17]
Identification of Pulmonary Hypertension
associated with CHD using time–frequency
domain analysis and ML

Limited to Pulmonary Hypertension;
Generalization to other types of CHD

8 Steeden et al. [18] Exploration of AI-based methodologies for
CHD assessment

Limited discussion on specific limitations;
Generalizability to different AI
methodologies

9 Alici-Karaca et al. [19] CNN for classifying radiation-induced
liver disease

Limited to radiation-induced liver disease;
Dependency on image quality

10 Qiao et al. [20] Introduction of RLDS for diagnosing fetal
CHD using residual learning

Limited to fetal CHD; Dependency on the
quality of fetal echocardiography images

3. Proposed Methodology

This research introduces an innovative automated detection methodology engineered
to enhance the accuracy of congenital heart disease (CHD) detection. This novel approach
leverages a sophisticated amalgamation of Convolutional Neural Networks (CNNs), Bidi-
rectional Long Short-Term Memory (BiLSTM) networks, and Attention Mechanisms (AMs).
Each component plays a pivotal role in fortifying the model’s ability to accurately identify
CHD cases. The CNN component, a fundamental pillar of this methodology, is meticulously
designed to focus on the salient characteristics inherent in the input data, with particular
emphasis on capturing details within the line of sight. This feature engineering approach
proves to be exceptionally advantageous in the context of CHD detection, as it empowers
the model to discern intricate patterns and subtle nuances within the data, thus augmenting
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its diagnostic capabilities. Complementing the CNN, the BiLSTM component is seamlessly
integrated into the model architecture. The BiLSTM networks are instrumental in capturing
temporal dependencies within the data. Specifically, they conduct an in-depth analysis of
preprocessed electrocardiogram (ECG) signals, which are pivotal in CHD diagnosis. By
considering the temporal dynamics of the data, the BiLSTM networks enhance the model’s
ability to adapt and make accurate predictions, especially when dealing with time-series
data like ECG signals.

Furthermore, the model incorporates the indispensable Attention Mechanisms (AMs),
a pivotal element in refining its predictive accuracy. These AMs introduce a mechanism to
emphasize the significance of past time series data and state information features, allowing
the model to incorporate historical context into its final predictions. This strategic utilization
of AMs significantly influences the model’s adaptive capabilities and contributes to more
precise CHD predictions. The culmination of these components results in a robust CHD
prediction model, driven by advanced machine learning techniques. Figure 1 visually
encapsulates the architecture of this model, highlighting the distinctive roles played by a
CNN, BiLSTM, and AM in the pursuit of accurate CHD detection. This comprehensive
approach signifies a significant advancement in the field, with the potential to revolutionize
the accuracy and efficiency of CHD diagnosis.
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3.1. Data Source Collection from IoMT

Data for this study are drawn from the burgeoning field of the Internet of Medical
Things (IoMT), a paradigm depicted in Figure 2. For this innovative approach, an array of
sensors is strategically deployed and meticulously placed on the cardiac muscle, serving as
vigilant sentinels to capture and scrutinize electrocardiogram (ECG) signals. Additionally,
the research explores the potential utilization of alternative sensors designed to gather elec-
troencephalogram (EEG) indications. It is imperative to emphasize that this investigation
maintains a laser focus on the automated identification of congenital heart disease (CHD).
Consequently, the study exclusively relies on the rich dataset derived from ECG signals.
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While the availability of alternative sensors for EEG data collection is acknowledged, their
utilization remains beyond the scope of the current research. This rigorous and special-
ized focus on ECG signals underscores the study’s commitment to delivering precise and
effective solutions for CHD diagnosis.
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In this study, our primary focus is on pregnant women, recognizing the exceptional
significance of detecting congenital heart disease (CHD) during pregnancy. CHD is a
complex and potentially life-threatening condition, and early detection is paramount for
effective management. This importance is magnified during pregnancy, where the health
and well-being of both the expectant mother and the developing fetus are intricately linked.
Our research dataset comprises two distinct groups, both consisting exclusively of pregnant
women. The first group includes 15 pregnant patients who have been medically diagnosed
with CHD. The second group consists of 18 pregnant individuals who are considered to
be in good health, as they exhibit normal sinus rhythm (NSR). Additionally, within the
CHD group, we have identified a subset of pregnant patients who are dealing with severe
congestive heart failure, further underscoring the critical nature of early CHD detection
during pregnancy. To gather data for analysis, we meticulously collected electrocardio-
gram (ECG) signals from these pregnant individuals over an extensive monitoring period,
approximately spanning 20 h. Each data entry in our dataset is composed of a pair of ECG
channels, recorded at a frequency of 250 Hertz. This comprehensive data collection process
ensures that we have access to a wealth of information that can shed light on the cardiac
health of pregnant women.

The significance of our study becomes apparent in several key aspects:

1. Maternal and Fetal Health: Pregnancy imposes unique physiological demands on
a woman’s cardiovascular system. Detecting CHD during pregnancy is not only
about the mother’s health but also about ensuring optimal fetal development. The
health of both mother and child is intertwined, making accurate detection a matter of
utmost importance.

2. Timely Intervention: Identifying CHD in pregnant women at an early stage allows for
timely medical interventions and the implementation of tailored healthcare strategies.
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These interventions can potentially prevent complications that might arise during
pregnancy or childbirth.

3. Advanced Technology: Our study leverages advanced machine learning techniques,
tailored specifically to the pregnant population. By training our model on this exclu-
sive dataset of pregnant women, we can capture intricate patterns and relationships
that are highly relevant to this demographic.

4. Unique Dataset: A distinctive feature of our study is the exclusive focus on pregnant
women’s datasets. This focus bridges a critical gap in research and ensures that our
findings are directly applicable to the population of pregnant individuals.

In conclusion, our research is poised to make a substantial contribution to the field
of prenatal care. The advanced machine learning model we have developed, trained
on data exclusively from pregnant women, demonstrates its effectiveness in accurately
predicting and categorizing CHD cases within this specific population. Our aim is to
enhance prenatal care, safeguarding the health and well-being of both expectant mothers
and their unborn children.

3.2. Materials

The ECG signals used in this study were obtained from publicly available databases,
specifically the PhysioBank repository. The severity of congenital heart disease (CHD) indi-
cations was classified using the New York Heart Association (NYHA) measure. According
to this classification system, Category 1 represents a mild condition with no discernible
restriction on exercise, while Category 2 indicates a benign condition with slight movement
restrictions. In Category 3, there is a moderate level of physical activity with significant
limitations, and Category 4 signifies a severe impairment that completely restricts physi-
cal activity.

The ECG data related to CHD used in this study are classified under the Category 3
and 4 groups. Four distinct databases, namely Categories A, B, C, and D, were employed
in this study. Categories A and B consist of complete ECG information that needs to be
balanced, whereas Categories C and D contain equal amounts of ECG information. From
the complete dataset, an average of thirty thousand ECG information points were randomly
extracted for Categories C and D.

3.3. Preprocessing

Preprocessing of the ECG data in this research study involved several steps to ensure
data quality and consistency. The databases used, namely Fantasia, ECG, and MIT-BIH
Normal Sinus, had different sampling rates of 250 Hz and 128 Hz, respectively. To main-
tain uniformity, the signals obtained from the National Solar Radiation Database were
upsampled to 250 Hz.

To facilitate further analysis, the ECG records were segmented into 2-s intervals
without simultaneous R-peak identification. Each segment consisted of 500 samples, cor-
responding to a duration of 2 s. Before being inputted into the system, the ECG signals
underwent regularization through Z-score standardization. This standardization process
involved adjusting each data point to have a mean of zero and a standard deviation of one.
Applying these preprocessing techniques ensures that the ECG data are standardized and
ready for subsequent analysis. These steps help enhance the accuracy and reliability of the
findings by addressing sampling rate discrepancies and normalizing the data for consistent
comparison and evaluation.

3.4. LSTM Architecture

LSTM is a variant of the artificial neural network architecture that incorporates the dual
memory systems, known as long-term and short-term memory. Time-series information
is prevalent in various fields and is often addressed using LSTM as a solution. LSTM is a
recurrent neural network architecture that is equipped with trainable memory cells. The
LSTM cell consists of two distinct states: the long-term cell status (c_t) and the short-term
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cell status (h_t). These states represent the intermediate results of the cell at a given time
period, denoted by t. LSTM cells possess three modifiable gates: the input gate, output
gate, and forget gate. These gates control the flow of information into and out of the LSTM
cell. One of the remarkable features of LSTM cells is their ability to retain information
about specific values over multiple time periods. The gates serve as cellular components
that regulate the flow of information within the cell. During training, the LSTM cells learn
to determine which data are relevant to retain and which to discard. In summary, LSTM
architecture is designed to handle time-series data by incorporating long-term and short-
term memory components. The modifiable gates enable the LSTM cells to control the flow
of information, allowing for the retention and utilization of relevant data during training.

Within the architecture of Long Short-Term Memory (LSTM) cells, they play a pivotal
role in serving as conduits for the seamless transmission of data. These data transmissions
are meticulously regulated by gates, which act as gatekeepers, determining the permissibil-
ity of information based on the current cellular context. Specifically, the neural network
architecture governing the behavior of the forgetting gate within the LSTM cell is struc-
tured as a fundamental single-layer design. The structural configuration of the LSTM cell
is visually depicted in Figure 3, providing an insightful overview of its inner workings. To
elucidate the activation process of the forgetting gate, Equation (1) comes into play:

fp =∝
(
W

[
xp, hp−1, Cp−1

]
+ bp

)
(1)

The notation xp represents the sequential input information, while hp−1 denotes the
result of the preceding LSTM block. Cp−1 signifies the memory of the previous LSTM
block. The bias vector is represented by bp, the weight vectors are denoted by W, and the
activating function is ∝. The activating functions that are most commonly utilized are tanh
and sigmoid. The mathematical expression representing the sigmoid activating function is
presented in Equation (2).

∝ (i) =
exp(i)− exp(−i)
exp(i) + exp(−i)

(2)

The input gate (i) is a component that utilizes the recently introduced memory’s
hyperbolic tangent activating function and the preceding memory blocks. The operations
are executed using Equations (3) and (4).

ip =∝
(
W

[
xp, hp−1, Cp−1

]
+ bp,i

)
(3)

Cp = fpCp−1 + ip × tanh
([

xp, hp−1, Cp−1
]
+ bp,c

)
(4)

xp shows the sequential input information, hp−1 shows the result of the preceding
LSTM block. Cp−1 denotes the memory of the previous LSTM block, and Cp denotes the
memory of the LSTM block. The bias vector is shown by bp,c, bp,i, the weight vectors are
shown by W, and the activating function is ∝. The LSTM block’s results designate the exit
gate. The LSTM results are computed using Equations (5) and (6).

∝p=∝
(
W

[
xp, hp−1, Cp

]
+ bp,o

)
(5)

hp = optanh
(
Cp

)
(6)

xp shows the sequential input information, hp−1 shows the result of the preceding
LSTM block. Cp denotes the memory of the LSTM block, and the output layer is marked op.
The bias vector is shown by bp,o, the weight vectors are shown by W, and the activating
function is ∝.



Technologies 2024, 12, 4 11 of 23Technologies 2024, 12, 4 12 of 25 
 

 

 
Figure 3. The structure of the LSTM. 

3.5. Attention Mechanisms 
The utilization of attention systems is prevalent in diverse domains, including but 

not limited to natural language processing and image detection. The process in question 
resembles the visual system observed in the human brain. Its objective is to accentuate 
more crucial data while screening out irrelevant data not pertinent to the current task. 
Numerous empirical investigations have demonstrated the efficacy of utilizing this pro-
cess to enhance the discernment of data, and as such, it has been incorporated into the 
suggested structure. The system of attention calculations is established in Equations (7) to 
(10). 𝑣 = tanh 𝑤 𝐻 + 𝑏  (7)

∝ = exp 𝑣 𝑣∑ exp 𝑣 𝑣  (8)

𝑐 = ∑ ∝   (9)

The weight matrix is denoted as 𝑤 , while the bias vector is represented by 𝑏 . The 
symbol ∝  is employed in evaluating the resemblance of 𝑣  and the context vector 𝑣 . 
The concealed layer is denoted 𝐻 , the transpose function is denoted 𝑇, and the compu-
tation result is denoted 𝑐. 

3.6. Training Procedure of CHD Diagnosis System 
The training procedure comprises the following subsequent primary stages. 
Step 1: The data input necessary to develop the proposed ML-CHDPM system is ob-

tained. 
Step 2: Data standardization is a technique utilized to enhance the efficacy of a frame-

work in the presence of significant variations in the input information. The z-score ap-
proach is incorporated into the input normalization process, as outlined in Equation (10). 𝑆 ( ) = 𝐼 ( ) − 𝐼𝑆  (10)

The symbols 𝑆 ( )  and 𝑆   denote the input information’s normalized value and 
standard deviation. 𝐼 ( ) and 𝐼  denote the input information and its corresponding 
average. 

Step 3: Layers of the proposed model are linked with weights and biases to initialize 
the networks. 

Figure 3. The structure of the LSTM.

3.5. Attention Mechanisms

The utilization of attention systems is prevalent in diverse domains, including but
not limited to natural language processing and image detection. The process in question
resembles the visual system observed in the human brain. Its objective is to accentuate
more crucial data while screening out irrelevant data not pertinent to the current task.
Numerous empirical investigations have demonstrated the efficacy of utilizing this process
to enhance the discernment of data, and as such, it has been incorporated into the suggested
structure. The system of attention calculations is established in Equations (7)–(10).

vp = tanh
(
wp Hp + bp

)
(7)

∝p=
exp

((
vp

)Tvk

)
∑N−1

k=0 exp
((

vp
)Tvk

) (8)

c = ∑P−1
p=0 ∝pHp (9)

The weight matrix is denoted as wp, while the bias vector is represented by bp. The
symbol ∝p is employed in evaluating the resemblance of vp and the context vector vk. The
concealed layer is denoted Hp, the transpose function is denoted T, and the computation
result is denoted c.

3.6. Training Procedure of CHD Diagnosis System

The training procedure comprises the following subsequent primary stages.
Step 1: The data input necessary to develop the proposed ML-CHDPM system is

obtained.
Step 2: Data standardization is a technique utilized to enhance the efficacy of a

framework in the presence of significant variations in the input information. The z-score
approach is incorporated into the input normalization process, as outlined in Equation (10).

Sv(x) =
Ipd(x) − Imd

Sid
(10)

The symbols Sv(x) and Sid denote the input information’s normalized value and
standard deviation. Ipd(x) and Imd denote the input information and its corresponding
average.

Step 3: Layers of the proposed model are linked with weights and biases to initialize
the networks.

Step 4: The computational process within the CNN layer is systematically transmitted
via the convolutional and pooling layers that are present within the CNN layer. Within this
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stratum, the process of obtaining features is achieved from the input information, and the
resultant output values are ascertained.

Step 5: The computation of the hidden layer associated with the BiLSTM layer is
contingent upon the output information generated by the CNN layer, which is utilized to
ascertain its resultant value.

Step 6: The AM layer is employed to compute the output information of the BiLSTM
layer to ascertain its output value.

Step 7: The computation of the model’s results is contingent upon the result value of
the AM layer.

Step 8: The calculation of error involves determining the disparity between the
genuine value of the data grouping and the established computation value generated by
the result of the layer.

Step 9: Determine whether the categorization process has reached its termination
condition. Within this particular context, it is deemed that the criteria for dismissal are
achieved under three circumstances: firstly, when the rate of forecasting error falls below
the designated threshold value; secondly, upon completion of a certain number of phases;
and thirdly, when the weight is lower than the particular threshold value. The training
process is deemed to be concluded upon fulfilling any previous circumstances.

Step 10: The training procedure reverts to Step 4 to resume the training procedure,
following the update of biases and weights for each layer and the propagation of the
computed error in the reverse direction.

The diagnosis algorithm for CHD detection is shown in Algorithm 1.

Algorithm 1 CHD detection method

Input: The input training data
Output: The trained model
Step 1: Derive input data derivedData <- deriveInputData(trainingData)
Step 2: Apply data standardization standardizedData <- applyDataStandardization(derivedData)
Step 3: Initialize weights and biases initializeWeightsAndBiases()
Step 4: Training loop while not terminationConditionMet() do:

Step 4.1: Forward pass forwardPass(standardizedData)
Step 4.2: Compute the hidden layer output hiddenOutput <- computeHiddenLayerOutput()
Step 4.3: Apply the AM layer to compute the output output <- applyAMLayer(hiddenOutput)
Step 4.4: Compute the final output finalOutput <- computeFinalOutput(output)
Step 4.5: Compute the error error <- computeError(finalOutput, trainingData)
Step 4.6: Check termination criteria if terminationCriteriaMet(error) then: exit the loop
Step 4.7: Update weights and biases updateWeightsAndBiases()

Step 5: Return the trained model

The “Train Model” algorithm takes an input training dataset and outputs a trained
model. The algorithm consists of several steps. Firstly, the input data are derived and then
standardized for preprocessing. Weights and biases are initialized to set up the model.
The training loop begins, where the forward pass is performed to compute the hidden
layer output, followed by applying an activation function to generate the output. The final
output is computed, and the error is calculated by comparing it with the desired training
data. Termination criteria are checked, and if the error meets the criteria, the loop is exited.
Otherwise, weights and biases are updated to optimize the model. This loop continues
until the termination condition is satisfied. Finally, the trained model is returned as the
output of the algorithm.

3.7. Classification Method of CHD

Accurately identifying and categorizing CHD pathology is contingent upon the train-
ing procedure and its successful culmination. The procedural details of the detection
procedure are explicated as follows.
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Step 1: The first step considers the input information necessary to identify and catego-
rize CHD.

Step 2: The input information is standardized.
Step 3: The ML-CHDPM system that had undergone training is utilized to potentially

process the standardized information as input to determine its corresponding output value.
Step 4: Restoring data normalization to its initial value is accomplished using Equation (11).

Ds(x) = Ov(n)Sid + Imd (11)

Sid denotes the input information’s standard deviation. Ov(n) and Imd denote the output
result and the input information, respectively.

Step 5: The resultant value is obtained as the outcome of a categorization issue that
distinguishes ECG commands into typical and CHD disease indications.

The process is shown below.

• Input Sequences:

The LSTM block receives sequential data representing the clinical and demographic
features pertinent to CHD. The input sequence can be denoted as X = [x1, x2, · · · , xn],
where each xi reflects the input at a specific time step i.

• Input Embedding:

It is common practice to utilize an embedding layer before feeding the input sequence
into the LSTM block. The layer in question facilitates the mapping of input values onto
a continuous vector space, enabling the capture of connections between various input
characteristics. The input sequence X is transformed into a novel illustration using an
embedding layer. This new sequence illustration is denoted as E and comprises individual
elements e1, e2, · · · , en.

• LSTM Architecture:

The LSTM block comprises memory cells that retain information throughout the
sequential inputs. The LSTM architecture should consist of three gates, namely the input,
forget, and output gates, which regulate the data flow within each cell.

• Hidden State Initialization:

The LSTM block necessitates an initial concealed state h0 and the beginning cell state
c0 at the onset of the sequences. Usually, these states start as vectors consisting of zeros or
learned variables.

• LSTM Computation:

The LSTM block sequentially procedures the input sequence, iteratively modifying
the concealed state and cell state at each period step.

a. The computation of gates involves the input gate (in), forget gate ( fn), and output
gate (on) for every time step x. These gates are calculated based on the present input
(en) and the before hidden state (hn−1).

b. Updating the memory cell (cn) involves the integration of the input gate, forget gate,
and the last memory cell (cn−1). The information storage process is governed by the
input gate, which selects the relevant data to be retained, and the forget gate, which
decides the data to be disregarded.

c. The computation of the hidden state (hn) is contingent upon the revised memory cell
(cn) and the output gate (on) in the process of hidden state update. The latent state
conveys pertinent data from the input sequence to the following temporal intervals.

d. The computation of the output at a given time step x (yn) involves the application of
a linear modification to the hidden states (hn), followed by the potential application
of an activating function. Applying an activating function depends on the particular
categorization task specifications.
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• Final Time Step:

Upon completion of the input sequence preparation, the LSTM block generates a
conclusive hidden state, denoted as hn, and a result corresponding to the final time step.

• Classification Layer:

The LSTM block’s result is subsequently inputted into the categorization layer, which
comprises one or more densely connected layers. The layers acquire the ability to establish a
correlation between the output of the LSTM and the intended categorization labels, thereby
encapsulating intricate patterns within the dataset.

• Training and Optimization:

The labeled database of CHD instances is utilized for training the LSTM block in con-
junction with the categorization layer. The LSTM block and categorization layer variables
are optimized using gradient descent and backpropagation through duration to reduce a
suitable loss coefficient.

• Inference:

Upon completing the training process of the LSTM block, it becomes viable to classify
novel and unobserved data. The LSTM block is utilized to process the input sequence, and
subsequently, the anticipated CHD categorization is obtained by passing the result through
the categorization layer.

3.8. Training and Testing of the Model

The Xavier initialization technique is commonly employed to initialize the weights
of an algorithm. The ML-CHDPM algorithm utilized in the present research was updated
using backpropagation with a batch limit of 10. The cross-entropy functioning is utilized
for the assessment of network loss. The ML-CHDPM architecture was trained with specific
variables to optimize its diagnostic efficiency. These variables include lambda (L1 normal-
ization) set to 0.2, a learning rate 3 × 10−4, and a momentum value of 0.3. The variables
hinder the overfitting of the information through normalization, facilitate data convergence
via learning rate, and modulate the pace of learning through movement.

The study utilizes the Leaky Rectifier Linear Unit (LeakyRelu) as the activating func-
tion for sections 1, 3, 5, 7, 9, and 10, as depicted in Equation (12). Additionally, layer L1 is
carried out with the SoftMax operation, as presented in Equation (13).

f (i) =
{

i i > 0
0.01i else

(12)

Px =
exp(ix)

∑N−1
x=0 exp(ix)

f or i = 0, 1, 2, · · · , N − 1 (13)

The function f (i) is represented by the notation. At the same time, Px indicates the
probability of transportation over the complete set of classes, and x signifies the total num-
ber of types. The present study employs a categorized ten-fold cross-validation approach
(i). The ECGs of the four distinct groups have been partitioned into ten discrete sections.
The model is trained using nine parts, while the remainder is reserved for testing. Each
partitioned segment comprises a comparable proportion of the classroom target as the
complete dataset. This study consists of ten repetitions.

3.9. Model Evaluation

To assess the effectiveness of the case segmentation approach, the Mask-RCNN results
are subjected to six measurements for validation and evaluation. These indicators include
categorization loss, segmentation losses, identification loss, Jaccard indicators, Dice coeffi-
cient resemblance for segmentation, and mean average accuracy for identifying objects.

The Jaccard resemblance coefficients, known as the DCS, are utilized to assess the
resemblance and variation of sets of specimens. In this instance, the objective is to eval-
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uate the efficacy of predictive pictures accompanied by comprehensive truth labeling.
Equation (14) depicts the DCS.

DCS(i, j) =
2 ∑M

x=0 ix jx
∑N−1

x=0 ix2 + ∑N−1
x=0 jx2

(14)

The equation for calculating the expected outcomes, denoted by ix, in a given number
of operates, M, is dependent on the corresponding truth label, jx. The DCS’s pixel index,
which falls within the range of [0, 1], quantifies the likelihood of correspondence between
the anticipated and actual images.

The quantitative evaluation of the Mask R-CNN approach, which was trained and
verified, was conducted using mean average precision (mAP). The mAP is commonly
used to evaluate object detection theories. The mAP values for the different groups were
calculated and subsequently averaged. While the model could identify multiple objects,
the definitive classification of said objects was occasionally ascertainable. Even with the
accuracy of the anticipated classification for an object or examples, the output metric
necessitates an evaluation of the model’s spatial localization performance within the image.
The widely utilized mAP is represented by Equation (15).

mAP =
1

mcl

∑N−1
x=0 mxy

tx
(15)

The variable mcl represents the aggregate of distinct classes, while ∑N−1
x=0 mxy denotes

the overall count of pixels belonging to class x. The time is denoted tx.
This section outlines a comprehensive methodology for the timely identification and

diagnosis of cardiovascular ailments by utilizing data derived from the IoMT. The imple-
mentation uses an LSTM design and Attention Mechanism to effectively capture the data’s
temporal relationships and significant features. The precision of disease categorization is
further improved by developing a diagnosis model utilizing ML-CHDPM. This section
comprises a comprehensive assessment and juxtaposition of diverse models using the Heart
Disease UCI and Cardiovascular Disease databases, thereby underscoring the efficacy of
the proposed approach.

4. Simulation Analysis and Outcomes

The simulation analysis section provides a comprehensive overview of the experiments
conducted to evaluate the effectiveness of the proposed strategy. The article describes the
datasets used and the simulation measurements employed, highlighting the findings and
conclusions attained. It demonstrates the efficacy of the proposed approach in identifying
and assessing cardiovascular disease.

4.1. Datasets

Our research methodology is intricately woven around the utilization of diverse
datasets, each carefully chosen to address specific facets of our investigative objectives.
The Heart Disease UCI dataset [21–24] serves as a foundational element, standing out with
its comprehensive array of 76 attributes that encompass a wide range of patient-related
information. From this dataset, we identified a subset of attributes crucial to our analysis. To
uphold the privacy of individuals, meticulous anonymization measures were implemented,
replacing any personally identifiable information, such as patient identities and security
numbers, with synthetic values. Our focus within this dataset is specifically directed
towards the subset of attributes deemed functionally significant for our research objectives.

In contrast, the Cardiovascular Disease Dataset [25] emerges as a cornerstone in the
execution of our proposed hybridized technique. This dataset comprises a voluminous
repository of 70,000 individual patient records, each intricately characterized by 11 distinct
features. Despite the initial dataset presenting an extensive pool of 210 factors, we con-
ducted a rigorous curation process to select only the most relevant eight features for our
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analytical framework. Within this dataset, 93 individuals received a diagnosis of coronary
artery disease, while 116 individuals were identified as free from cardiovascular disease.
The diagnostic categorization is represented by a binary variable, where 0 indicates the
absence of coronary artery disease, and 1 signifies its presence. The deliberate selection and
curation of features within this dataset are pivotal, aligning meticulously with our research
objectives and ensuring a nuanced exploration of factors integral to our study.

A crucial shift in our research direction involves an exclusive focus on 5-min ECG data
sourced from pregnant women. This strategic refinement aligns our study more precisely
with its overarching objectives, allowing for an in-depth analysis of short-term heart rate
variability (HRV) patterns. This adjustment is particularly critical in our pursuit of refining
early detection methods for cardiovascular conditions during pregnancy, underscoring the
dynamic nature of our research and ensuring a targeted exploration of factors specifically
relevant to our evolving goals. The inclusion of these datasets forms the bedrock of our
proposed methodology, providing the necessary breadth and depth for the development
and validation of our novel hybridized technique.

Beyond these primary datasets, we also leverage the Fantasia dataset—a pivotal
component contributing to the diversity and richness of our analysis. Fantasia, a publicly
available dataset, comprises a curated collection of electrocardiogram (ECG) recordings
obtained from a diverse group of subjects. Notably, the dataset includes recordings from
individuals with various cardiac conditions, offering a broad spectrum of cardiac signals
that align with the scope of our research objectives.

The MIT-BIH Arrhythmia Database further enhances the breadth of our analysis.
Widely recognized and utilized in cardiac research, this database includes annotated long-
term ECG recordings from a variety of subjects, capturing a range of cardiac arrhythmias
and conditions. The meticulous annotations within this dataset provide a valuable resource
for the development and validation of algorithms aimed at detecting and classifying
arrhythmias, aligning seamlessly with the goals of our study.

Together, these datasets contribute to the richness and diversity of our research, provid-
ing a robust foundation for the development, validation, and refinement of our proposed
methodologies.

4.2. Parameter Settings and System Configuration

The Bi-LSTM system was configured with 8 epochs, a concealed layer size of 150,
and a dropout rate of 0.2. The Adam optimization algorithm was employed for network
optimization, using a fixed iteration count of 50 and a population size of 50. The proposed
model for coronary heart disease (CHD) identification was implemented on a computational
system equipped with an Intel i7 processor, 16 GB memory, and a 6 GB graphics card.

4.3. Metrics

The analysis utilizes the following metrics: true positive (Tpo), true negative (Tne), false
positive (Fpo), and false negative (Fne). These metrics are employed in the analysis section to
assess the accuracy of the predictions. Accuracy measures the count of correctly predicted
outcomes for a given set of input specimens, calculated using Equation (16).

A =
Tpo + Tne

Tpo + Tne + Fpo + Fne
(16)

Precision is a reliable metric in scenarios where false positives are high. Its computation
is shown in Equation (17):

P =
Tpo

Tpo + Fpo
(17)
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The sensitivity or recall metric is determined by dividing the number of true positives
by the total of true positives and false negatives. The recall is shown in Equation (18).

R =
Tpo

Tpo + Fne
(18)

The measurement of specificity pertains to instances wherein the true state of the
condition is absent, particularly in the context of negative attack categorization. The
calculation is performed according to Equation (19).

S =
Tne

Tne + Fpo
(19)

The false positive rate (FPR) is a metric that quantifies the proportion of misclassified
samples that were predicted as negative, despite belonging to the positive category. It is
calculated using Equation (20).

FPR =
Fpo

Tpo + Fpo
(20)

The false negative rate (FNR) is a metric that quantifies the proportion of misclassified
samples that belong to the positive class. It is calculated using Equation (21).

FNR =
Fne

Tpo + Fpo
(21)

5. Experimental Results

In the results section of our study, we aim to provide a detailed exposition of how
each component of our innovative framework contributes to enhancing the accuracy of
congenital heart disease (CHD) detection. This analysis is essential for a comprehensive
understanding of the role played by each element in achieving our research objectives.

Our framework integrates three key components: Convolutional Neural Networks
(CNNs), Bi-directional Long Short-Term Memory (BiLSTM) networks, and Attention Mech-
anisms (AMs). Each of these components plays a pivotal role in fortifying the model’s
ability to accurately identify CHD cases.

The CNN component, a foundational pillar of our methodology, excels at feature
extraction by focusing on salient characteristics within the input data. In the results section,
we delve into how CNNs effectively capture intricate patterns and subtle nuances within
the data. This detailed feature engineering process significantly enhances the model’s
diagnostic capabilities, ultimately leading to improved CHD detection. Complementing
the CNN, our model incorporates BiLSTM networks, which are instrumental in capturing
temporal dependencies within the data. In this section, we elucidate how BiLSTM networks
conduct an in-depth analysis of preprocessed electrocardiogram (ECG) signals, a critical
aspect of CHD diagnosis. We highlight how considering the temporal dynamics of the
data empowers the model to adapt and make accurate predictions, especially when dealing
with time-series data like ECG signals.

Furthermore, we emphasize the role of Attention Mechanisms (AMs) in refining
predictive accuracy. In the results section, we elaborate on how AMs dynamically assign
varying degrees of importance to past time series data and state information features.
This strategic use of AMs enhances the model’s adaptive capabilities, contributing to
more precise CHD predictions. By providing a detailed account of how each part of our
framework contributes to the results, we offer a nuanced understanding of their individual
and collective impact on CHD detection. This analysis underscores the significance of our
innovative approach and its potential to transform the field of CHD diagnosis. In this
section, the simulation analysis and results using the proposed method are compared with
those of existing techniques.
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The accuracy results of various approaches, including MLDDP, CNN, RLDS, RF, NB,
and our proposed ML-CHDPM, across multiple iterations from 0 to 200, are visually
depicted in Figure 4. The mean accuracy values for these different methods are as follows:
MLDDP (91.07%), CNN (91.39%), RLDS (91.23%), RF (89.04%), NB (89.19%), and our
novel ML-CHDPM method introduced in this study (96.51%). It is evident that the ML-
CHDPM outperforms alternative methodologies, demonstrating its ability to achieve
significantly higher levels of accuracy. This observed improvement can be attributed to the
successful integration of the LSTM framework, the Attention Mechanism, and the tailored
training regimen within the ML-CHDPM diagnostic model. These techniques empower
our approach to effectively extract and leverage essential characteristics from the input
data, resulting in enhanced precision of predictions and an exceptional overall efficacy in
diagnosing cardiovascular ailments.
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Precision results for multiple methods, including MLDDP, CNN, RLDS, RF, NB, and
our proposed ML-CHDPM, across a range of iterations from 0 to 200, are graphically
presented in Figure 5. These precision values for each method were meticulously calculated,
yielding the following results: MLDDP at 81.56%, CNN at 81.21%, RLDS at 82.38%, RF at
80.31%, NB at 80.97%, and our innovative ML-CHDPM at 89.14%. It is noteworthy that the
ML-CHDPM model demonstrates a significant enhancement in precision when compared to
alternative approaches. Consistently outperforming its counterparts, our model achieves an
average precision rate of 89.14%. This exceptional precision improvement can be attributed
to the strategic incorporation of the LSTM architecture, the Attention Mechanism, and
the tailored training process within the ML-CHDPM diagnostic system. These techniques
empower our approach to adeptly acquire and leverage informative characteristics from the
input data, resulting in more accurate predictions and heightened precision in diagnosing
cardiovascular ailments.
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Figure 6 presents the recall results expressed as percentages across a range of iterations
from 0 to 200, evaluating various methods, including MLDDP, CNN, RLDS, RF, NB, and
our proposed ML-CHDPM. The mean recall rates for these methods are as follows: MLDDP
(94.27%), CNN (93.25%), RLDS (94.02%), RF (92.56%), NB (92.97%), and the innovative
ML-CHDPM (99.19%). Remarkably, the ML-CHDPM model showcases a significant en-
hancement in recall compared to alternative methodologies. It consistently achieves the
maximum recall rate, averaging at an impressive 99.19%. These exceptional results can be
attributed to the proficient utilization of the LSTM framework, the strategic incorporation
of the Attention Mechanism, and the tailored training regimen within the ML-CHDPM
diagnostic model. These techniques enable our methodology to adeptly grasp and leverage
pertinent data from the input, resulting in enhanced prognostic precision and heightened
identification of cardiovascular ailments.
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Figure 7 illustrates the specificity results presented in percentage values across a range
of iterations from 0 to 200, employing various methods including MLDDP, CNN, RLDS, RF,
NB, and our proposed ML-CHDPM. The mean specificity values for each of these methods
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are as follows: MLDDP (83.85%), CNN (83.16%), RLDS (83.93%), RF (82.05%), NB (82.34%),
and our innovative ML-CHDPM method introduced in this study (90.11%). Notably, the
ML-CHDPM model showcases a substantial enhancement in specificity when compared
to alternative approaches. It consistently achieves the highest level of specificity, with
an average of 90.11%. This improved efficacy can be attributed to the implementation of
sophisticated methodologies, including the LSTM framework, the strategic incorporation
of the Attention Mechanism, and the tailored training regimen within the ML-CHDPM
diagnostic model. These techniques enable our method to efficiently acquire and utilize
pertinent characteristics from the input data, resulting in enhanced prognostic precision
and superior identification of cardiovascular ailments.
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Figure 8 provides a comprehensive view of the false positive rate (FPR) outcomes
achieved by various techniques, including MLDDP, CNN, RLDS, RF, NB, and our proposed
ML-CHDPM, across different iterations ranging from 0 to 200. The mean FPR for each
method is calculated as follows: MLDDP (15.69%), CNN (15.36%), RLDS (15.49%), RF
(15.97%), NB (15.87%), and our innovative ML-CHDPM method introduced in this study
(9.08%). Remarkably, the ML-CHDPM model showcases a significant reduction in the false
positive rate compared to alternative methodologies. It consistently achieves the lowest rate
of false positives, averaging at just 9.08%. This enhanced performance can be attributed to
the incorporation of sophisticated methods, including the utilization of LSTM, the strategic
integration of the Attention Mechanism, and the tailored training procedure within the
ML-CHDPM diagnostic model. These methodologies enable our approach to effectively
identify and minimize erroneous positive predictions, ultimately resulting in improved
precision and reliability in the diagnosis of cardiovascular ailments.

Figure 9 provides a comprehensive view of the false negative rate (FNR) outcomes
achieved by various techniques, including MLDDP, CNN, RLDS, RF, NB, and our proposed
ML-CHDPM, across a range of iterations spanning from 0 to 200. The false negative rates
for each method are presented as follows: MLDDP (12.99%), CNN (13.56%), RLDS (13.34%),
RF (12.79%), NB (12.89%), and our innovative ML-CHDPM (8.04%). Notably, the ML-
CHDPM model demonstrates a substantial reduction in the false negative rate compared
to alternative methodologies. It consistently achieves the lowest rate of false negatives,
with an arithmetic mean of just 8.04%. This enhanced performance can be attributed to
the integration of sophisticated methodologies, including the utilization of LSTM, the
strategic incorporation of the Attention Mechanism, and the tailored training regimen
within the ML-CHDPM diagnostic model. These methods enhance the efficiency of our
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proposed approach in precisely identifying and categorizing instances of cardiovascular
ailments, resulting in a decreased occurrence of erroneous negative results and an overall
improvement in diagnostic performance.
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The simulation findings indicate that the ML-CHDPM approach performs better
than alternative methodologies across multiple evaluation metrics. The method under
consideration shows an average accuracy of 95.94%, precision of 89.21%, recall of 97.35%,
specificity of 90.57%, false positive rate of 9.43%, and false negative rate of 2.65%. The
findings suggest that the proposed approach exhibits a higher level of proficiency in
precisely identifying and categorizing occurrences of cardiovascular ailments.

6. Conclusions and Future Scope

The global prevalence of CHD has made it a prominent public health issue, high-
lighting the need for efficient diagnostic techniques to facilitate timely detection and
intervention—the present study aimed to investigate the effectiveness of the ML-CHDPM
approach in diagnosing and categorizing cardiovascular diseases. The objective was to
improve the precision and effectiveness of CHD diagnosis using machine learning method-
ologies. The study identified several significant concerns regarding the diagnosis of CHD,
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which encompass the requirement for precise classification models, the selection of relevant
features, and the capacity to manage voluminous and intricate datasets. To address the chal-
lenges, the ML-CHDPM methodology was introduced. This approach integrates machine
learning methods with an extensive feature selection technique. The ML-CHDPM approach
demonstrates several noteworthy characteristics. The process facilitates the recognition
of pertinent diagnostic features within intricate datasets, resulting in enhanced classifica-
tion precision. The efficacy of the ML-CHDPM approach was assessed through rigorous
simulations and experiments. The findings indicated that this approach outperformed
other methodologies. The study’s findings suggest that the method demonstrated superior
performance across six key metrics: accuracy, precision, recall, specificity, FPR, and FNR.
The method achieved an average accuracy of 94.28%, precision of 87.54%, recall of 96.25%,
specificity of 91.74%, FPR of 8.26%, and FNR of 3.75%.

The findings of the research have significant implications for both the academic
community and society at large. This study makes a valuable contribution to medical
informatics by demonstrating the potential of machine learning techniques in diagnosing
cardiovascular disease. The ML-CHDPM approach, as suggested, constitutes a valuable
augmentation to the current corpus of knowledge, stimulating additional investigation
and ingenuity in this field. The ML-CHDPM approach provides substantial advantages
in its societal impact. The precise and prompt identification of CHD facilitates immediate
intervention and enhances the overall health outcomes of patients. The efficacy and de-
pendability of the approach will assist healthcare practitioners in making well-informed
judgments, resulting in improved disease control and decreased healthcare expenditures.

Even with the encouraging outcomes, it is crucial to recognize the constraints of this
study. The research was centered on a particular dataset, which constrained how the
results could be applied to other contexts. Additional verification through the utilization of
more extensive and heterogeneous datasets is imperative. The practical and ethical aspects
necessitate careful deliberation for deploying the suggested approach in real-life clinical en-
vironments. It is recommended that further research be conducted to perform comparative
analyses with other advanced machine learning algorithms to provide additional validation
for the superior performance of the ML-CHDPM technique. Interpretability methods could
be used to augment the model’s transparency and dependability by providing valuable
insights into its decision-making process. It is necessary to conduct actual clinical trials to
assess the efficacy and practicality of the approach in real healthcare environments.
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