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Abstract: The detection of photovoltaic panels from images is an important field, as it leverages the
possibility of forecasting and planning green energy production by assessing the level of energy
autonomy for communities. Many existing approaches for detecting photovoltaic panels are based
on machine learning; however, they require large annotated datasets and extensive training, and the
results are not always accurate or explainable. This paper proposes an automatic approach that can
detect photovoltaic panels conforming to a properly formed significant range of colours extracted
according to the given conditions of light exposure in the analysed images. The significant range of
colours was automatically formed from an annotated dataset of images, and consisted of the most
frequent panel colours differing from the colours of surrounding parts. Such colours were then used
to detect panels in other images by analysing panel colours and reckoning the pixel density and
comparable levels of light. The results produced by our approach were more precise than others in
the previous literature, as our tool accurately reveals the contours of panels notwithstanding their
shape or the colours of surrounding objects and the environment.

Keywords: green energy; environment analysis; object detection

1. Introduction

The integration of renewable energy sources, such as solar power harnessed through
photovoltaic panels, within the context of a smart grid has contributed to diminished
reliance on conventional fossil fuel-based power generation facilities [1,2]. Photovoltaic
(PV) systems are one of the most promising low-carbon energy generation methods [3].PV
energy production has grown rapidly over the last decade, at a rate of more than 35%
annually [4,5]. At the end of 2022, the world’s cumulative installed PV capacity was
1055.03 GW, compared to 589.43 GW in 2019, almost doubling in three years [6].

Estimating the total installed PV capacity and power generation can enhance the ability
of policymakers and stakeholders to evaluate progress in terms of sustainability, quantify
the actual benefits of green energy, and consider potential future installations [7]. Aerial
and satellite images have been analysed to recognise PV panels by means of approaches
using machine learning (ML), i.e., convolutional neural networks (CNN), deep learning
methods [8–17], and random forests [18–21]. However, ML tools require a large amount of
labelled datasets for their training to be effective, and the related effort to build datasets
and perform training is costly and time consuming. Moreover, many such approaches rely
on a training phase that can cause overfitting, resulting in the inability of the ML-based
model to properly generalise when employed with other datasets.

Further approaches have focused on analysing the physical absorption and reflection
characteristic of PV panels to identify them from airborne images [22,23]. The related
results show that the identification of shapes and areas of PV panels is not very accurate.
In addition, spectral detection is sensitive to the thresholds selected for the spectral bands
of the different sensors.
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In this paper, we propose an approach that identifies PV panels by means of a deter-
ministic algorithm that carefully and extensively analyses the colours of the pixels forming
the panels. The proposed approach first analyses images to reveal potential intermingling
between PV panel colours and surrounding colours, which mostly affects images having a
high level of colour saturation; as a result, images are organised according to their level of
saturation. Second, pixel colours in selected PV panels of labelled images are collected and
filtered by excluding the colours typical of background or portions surrounding PV panels.
Colour tones commonly found in very dark portions (shadows, ground, etc.) as well as very
bright portions (roads, roofs, etc.) are excluded from the colours characteristic of PV panels.
The resulting colour selection is a set that properly characterises PV panel colours. This set
is then used to analyse colours in unlabelled images and detect PV panels. Additionally,
for the selected colours that appear in analysed images, their density is evaluated when
considering whether a portion of an image contains PV panels.

Our proposed approach does not require large annotated datasets or computationally
intensive training. The colours characterising PV panels can be found from a small dataset
using a very low amount of computational resources, then readily used to identify PV
panels in other images in a similar area. The approach is deterministic; hence, the set of
colours and steps can be further tuned if needed. Moreover, the results of the detection tool
can be easily explained, e.g., a lower than expected recall can be explained in terms of the
number of selected characterising colours, level of darkness, etc. The approach has been
validated on a publicly available aerial imagery annotated dataset, and several metrics,
including accuracy, recall, and precision, show that it manages to locate PV panels more
accurately than previous works in the recent literature.

Compared with other approaches, our approach has the following strengths: it is fast;
it does not need annotated data (i.e., when the characterising colours have been gathered,
they can be reused across areas); it separates images that are more prone to be used for
panel detection, as certain levels of saturation or darkness make it hard to distinguish
panels; and it automatically detects false positives and false negatives on the basis of the
density of pixels in the tiles of the image under analysis.

The remainder of the paper is structured as follows. Section 2 presents related works in
the field of PV panel detection. Section 3 details the phases of our proposed novel approach.
Section 4 describes the experiments performed to test and validate our approach. Section 5
discusses our approach and the obtained results. Finally, our conclusions are drawn in
Section 6.

2. Related Works

Estimating the number of PV panels in a region is a complex task due to the insuffi-
ciency (or even lack of) official registers. Many papers have proposed approaches to detect
PV systems by analysing satellite and aerial images, often using Convolutional Neural
Networks (CNN) or Random Forest (RF) classifiers.

A deep neural network model called Faster-RCNN was used to design the identifi-
cation model of PV panels [12]. The approach consisted of two parts: first, a ResNet-50
classifier was pretrained, then a CNN was fine-tuned for the identification task of rooftop
PV panels. Similarly, three convolutional layers and three fully connected layers were used
to evaluate the performance of the identification [8]. Moreover, eight 2D convolutional
layers were used to detect PV panels in residential areas; to achieve the best performance,
thirteen architectures were trained and the most accurate was selected [9]. Other ap-
proaches have used InceptionV3, a CNN used for image analysis and object detection,
which was fine-tuned for the task of PV panel identification [10,11]. These approaches
were designed to detect PV panels in both residential and non-residential areas; however,
due to the lack of PV panel images, data augmentation was performed during the training
process. The framework proposed in [10] was employed for the detection of PV panels
in Sweden to collect further market statistics [24]. Similarly, an innovative approach was
presented to detect rooftop PV panels on the three-dimensional (3D) orientation [25]. This
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approach employed the InceptionV3 model to classify images; subsequently, segmentation
and geocoding steps were performed to analyse the 3D images. ML and deep learning
techniques were used for rooftops PV panels detection in [13]. The k-means approach
was applied to segment the images in order to define the contours of each rooftop, then a
support vector machine (SVM) classifier with a CNN was integrated to accurately identify
solar PV arrays. A Mask-RCNN was used for segmentation and identification in [14,16,17].
These approaches applied the object detection technique to reveal PV panels on aerial
images, with CNN being fine-tuned to characterise the mask contours used for the arrays.
A CNN with the VGG16 encoder was presented in [15]; first, image segmentation was
performed to select the suitable portions of solar panels, then the azimuth of the solar
arrays was predicted using edge detection and the Hough transform.

Despite, generally, CNNs obtain high performance; however, they need a massive
amount of labelled data during the training process, and several runs are required to
properly tune a model. However, excessive training can lead to overfitting, meaning that
the model fails to generalise. Moreover, CNNs are often considered black boxes, that is,
hard to interpret and comprehend. Therefore, the debugging and validating process can be
complex and time consuming, and the decisions are ultimately made by the model. These
approaches are very costly both when preparing the dataset and when running the system
during training.

A different approach was proposed in [18] to extract image features such as colours,
textures, and other patterns from each pixel, then pass them as input to train an RF classifier
to identify pixels related to PV arrays. In a similar approach [19], the focus was on the
identification of water PV systems (WPV); an RF classifier with 400 trees was trained to
extract pixels related to WPV, then postprocessing was performed to remove noise and
rooftop PV panels. Another pixel-based RF algorithm used the L-8 surface reflectance (SR)
product to identify suitable PV panels [20]. The RF classifier was based on the Google
Earth Engine (GEE) and used to map PV power plants. Similarly, an RF classifier for an
Object-Based Image Analysis (OBIA) approach used different combinations of multispectral
Sentinel-2 imagery and radar backscatter from Sentinel-1 SAR imagery [26]. RF algorithms
use a lot of computational power, and need additional resources to build numerous trees
and combine their outputs. Furthermore, the training process is time consuming and
resource intensive, as it needs to combine different decision trees to determine the class for
the identification. In comparison, our proposed approach is more versatile and lightweight.

In [21], RF classification was combined with a CNN. First, the RF was used to assign a
confidence value to each pixel in order to determine the possibility of that pixel belonging
to a solar PV array; then, a CNN was used to classify 40 × 40 patches of RGB images to
determine whether or not they corresponded to solar PV panels.

An innovative deep learning technique called EfficientNet-B7 was employed for PV
panel detection in [27], showing better accuracy and efficiency compared to classic CNN
approaches. EfficientNet-B7 was used as a backbone encoder to train a U-Net model for
segmenting solar panels.

Spectral characteristics have been investigated to detect PV panels from hyperspectral
data [22,23] by focusing on the physical absorption and reflection characteristics of PV
panels. To handle the material diversity of PV panel types, these studies applied a tailored
image spectral library, which together with the hydrocarbon index mitigated the spectral
variance caused by the detection angle. The results of these approaches showed that the
shape and the area of the PV panels were not accurate; moreover, the identification was
sensitive to the thresholds set for the spectral bands of different sensors.

Conversely, our approach proposes several innovative aspects: (i) due to the absence
of a training process, the process is light, fast, and does not require a large amount of
labelled data; (ii) the automatic definition of a set of suitable colours makes the approach
applicable to PV panels with colours that fall within the defined set, and the set can be
updated with other colours to broaden the range of PV detected panels; (iii) the proposed
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algorithm makes it possible to explain the resulting outcomes, that is, the reason behind
the detection (or lack of detection) of PV panels.

3. Proposed Approach
3.1. Overview

The main strategy of the proposed approach is to scan the colours of a small number
of annotated aerial images and extract from them a set of characterising PV panel (cPV)
colours. Then, these selected colours are used as a reference to detect the location of PV
arrays in other (unannotated) aerial images. Our approach resembles and extends the
methodology presented in [28,29], where colour analysis and mobile tile-based detection
were employed to automatically determine the green and urban areas in an image and
trace the boundaries between them.

Figure 1 shows the high-level view of the four main phases of the proposed approach,
consisting of: (i) classification, used to identify images featuring Detectable PV (DPV)
panels, i.e., those exhibiting colours different enough from the colours of roofs, roads,
ground, etc.; (ii) extraction of cPV colours from DPV images; (iii) detection of PVs in
unannotated images using a sliding window that marks tiles on the panels’ surface; and
(iv) denoising to filter the previous results. A brief overview is presented below, followed
by a more detailed description of each phase.

Figure 1. Overview of the proposed phases for PV panels detection.

The classification phase is designed to automatically categorise images based on the
prominent colours of PV panels. Depending on illumination conditions or panel materials,
PV arrays may exhibit a large variation in the range of their colours, and can include shades
that are commonly found in background elements such as roads and buildings. For this
reason, we leveraged a previously labelled dataset to locate PVs and analysed pixels to
pinpoint only the images including DPV panels, i.e., those images with panels featuring
colours that are not very common in the surrounding parts. In the subsequent cPV colour
extraction phase, annotated DPV images are analysed to automatically collect a palette
of colours that are representative of PV panels. During the detection phase, the set of
cPV colours is used to identify and mark pixels that are recognised as belonging to the
surface of PV panels. Thereafter, moving square windows are employed to cluster marked
pixels based on proximity and density. Multiple passes of the moving square window are
employed to refine the detection. Finally, a denoising phase aims to identify and remove
noise in the background areas. For this, we utilise a moving detection window that assesses
the structure and patterns of marked tiles to determine whether the previous identification
can be confirmed as correct.

The final output of the proposed approach consists of images in which PV installations
are detected. Depending on the algorithm parameters, both the panels’ surfaces and the
whole PV array deployment areas can be detected, as shown in Figure 2.
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Figure 2. Example outputs of the proposed algorithm: the yellow part shows the detected area for
PV panel deployment (middle) and the red part shows the PV panels (right). The original PV image
is shown on the left. The analysed image dataset was presented in [30].

3.2. Phase 1: Image Classification

The image classification phase comprises three steps: (i) label assessment, which
involves examining the area covered by the labels; (ii) pixel colour extraction and fil-
tering, which finds PV panel colours that are different from the colours of other parts;
and (iii) colour analysis and classification, which identifies images featuring DPV panels.
Figure 3 provides an overview of the above steps. Each step is further described in the
following subsections.

Figure 3. Workflow of dataset image classification.

3.2.1. Label Assessment

The label assessment step aimed to reveal the accuracy of the pre-existing PV panel
annotations in the initial dataset, as the detection results could be misleading if the an-
notations are not accurate. Figure 4 shows an example in which the bottom right corner
of the image presents PV panels but the mask does not. When there are incorrect labels,
the detection of PV panels in areas not covered by the labels would be erroneously classified
as a false positive, leading to incorrect values in the evaluation metrics. For this reason,
inaccurate labels were identified and the corresponding images were manually removed.

In addition, PV arrays with limited extension do not significantly contribute to the
colour analysis; therefore, any image with labels covering less than 0.5% of the total image
area was excluded from the dataset.

Figure 4. An example of an incorrect label in the dataset [30]: PV panels (left) are visible in the top
left corner and the bottom right corner; however, the label (right) indicates only the top left corner.
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3.2.2. Colour Extraction and Filtering

In general, labels in the dataset encompass a region that includes PV panels along
with a significant portion of the surrounding area, such as terrain, vegetation, shadows,
etc. (see Figure 5). As a consequence, dataset labels cannot be reliably employed to guide
the extraction of PV colours. For this reason, we devised a strategy to analyse the colours
within the area enclosed by labels and automatically exclude the subset of colours that
are also commonly encountered outside the annotated area. Thus, only those colours that
correspond to the surface of PV panels are retained.

Figure 5. The region enclosed by the dataset labels includes both PV panels and background.

The implemented strategy operates as follows. Initially, dataset labels are used to
partition each image into two regions: the Label Region (LR) and its complement, referred
to as the Background Region (BR). Subsequently, the RGB colour components of the pixels
are collected and the colour count for each region is computed, indicating the total number
of pixels displaying every colour in each of the two regions. This information is aggregated
from all images in the Ground dataset [30] and used to build two sets: LR colours and BR
colours (see Figure 6). For LR pixels that are actually depicting the background, rather than
PV panels, it is a reasonable assumption that their colours are also commonly found in
the BR. Therefore, for each colour within the intersection of the two sets, a comparison is
performed between the corresponding counts. If the ratio between the BR count and the
LR count exceeds a threshold, that colour is characterised as a background colour and is
removed from the LR set.

Figure 6. Labels are used to partition images in Label Region (LR) and Background Region (BR),
and then the colours and their counts are determined.
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The outcome of this filtering operation is a subset denoted as PV Panel (PVP) colours
that more accurately represents the actual colours of PV panel surfaces. PVP colours are the
collection of filtered colours obtained from the whole Ground dataset [30]. Next, a colour
analysis is performed, as described in the following subsection.

3.2.3. Colour Analysis and Classification

Our analysis of the PVP colour sets collected from several images revealed significant
colour variations, possibly due to differences in illumination conditions and/or PV panel
materials. We have identified three classes of PV panels based on the properties of their
prominent colours. Figure 7 shows the three classes of PV panels. The first class is
represented by dark panels, which are typically found in images captured in low-light
conditions. Their significant number of dark shades renders such colours non-significant
for characterising PV arrays, as they are also commonly encountered in shadows and dark
terrain. The second class is denoted as grey–white panels. These shades can result from the
panel material or from sunlight reflecting off the panel surface, and are not characterising
colours for PV installations. In particular, such colours can also be found on roads and
buildings. The third class is called detectable panels (DPV), and includes all images that do
not fall into the previous two classes.

Figure 7. Classes of PV panels: dark (left), grey–white (middle), and detectable (right).

We have developed a strategy to automate the classification of the dataset’s images
into such three classes. The strategy is as follows: for each image, we consider the LR colour
set and determine its intersection with the PVP colour set, resulting in the image-specific
PVP colour set (iPVP). The iPVP set comprises all PVP colours found within that particular
image along with their respective counts.

To assess the amount of dark pixels, we convert the RGB coordinates of the iPVP
colours into the HSL (Hue, Saturation, Lightness) colour space [31,32]. Next, the lightness
component is evaluated; if a colour falls below a threshold, it is designated as dark. If the
aggregated count of dark colours surpasses a predetermined fraction of the total iPVP set
counts, then the image is classified as dark.

To evaluate the amount of pixels displaying white or grey shades, we leverage the fact
that such colours can be described as having low saturation. Consequently, we transform
the colours in the iPVP set into the HSV (Hue, Saturation, Value) colour space [31,32],
which in our analysis enables better classification based on saturation compared to the HSL
space. Similar to the previous step, we aggregate the count of all colours with a saturation
component below a threshold. If this combined count exceeds a predetermined fraction of
the total counts of the iPVP set, the image is classified as belonging to the grey–white class.

Images not categorised as either dark or grey–white are automatically classified as
DPV images, and serve as the input for the next phase.

3.3. Phase 2: Characterising PV (cPV) Colours Extraction

The goal of this phase is to extract colours from DPV images and isolate the character-
ising PV (cPV) colours. Similar to the image classification phase, we begin by partitioning
each DPV image into a Label Region (LR) and its complementary Background Region
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(BR). Then, we aggregate the colours and their respective counts for all images, which are
recorded separately for each region, resulting in sets for the LR colours and BR colours.
Next, we remove the background colours by evaluating the ratio between the BR count
and LR count for all colours within the intersection of the two sets. As a result of these
operations, we derive the PVP colour set.

A further filtering process is applied to the PVP colour set with the objective of
excluding both dark and low saturation colours. The reason this that, as illustrated earlier,
these colours are not representative of PV panels. Again, this assessment uses thresholds
for the lightness component in the HSL colour space and the saturation component in the
HSV colour space. The result of this filtering operation is the cPV colour set, which is used
in the detection algorithm discussed below.

3.4. Phase 3: PV Detection

The algorithm consists of the two steps outlined in Figure 8: (i) pixel replacement,
in which all pixels displaying cPV colours are marked, and (ii) detection refinement, in
which windows of varying sizes are employed to cluster pixels belonging to PV arrays. The
final output of the algorithm is a set of images in which the positions of detected PVs are
marked. The individual steps are detailed in the following subsections.

Figure 8. Workflow of the detection algorithm.

3.4.1. Pixel Replacement

Initially, PV images are analysed and all pixels with a colour contained in the cPV set
are identified and marked with RGB green. Figure 9 shows an example of the results of the
pixel replacement operation. From the image, a high concentration of green pixels can be
observed corresponding to the panel surfaces. Nonetheless, a more thorough inspection
reveals that a significant minority of pixels in the same area have not been marked, as they
do not feature cPV colours; see Figure 10 for a zoomed-in image. Therefore, the detection
of PV panels in the images is further refined as described below.

Figure 9. An example image with pixels displaying cPV panel colours marked in green (right);
the original image is shown on the left for reference.
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Figure 10. An enlarged section of the above image reveals that not all pixels on the panels have been
marked with cPV colours.

3.4.2. Detection Refinement

To enhance the detection of PV panels, we evaluate the colours within the area of
a moving square window. In general, when starting a detection refinement run, three
parameters are defined: (i) the window size; (ii) the threshold density for colouring the
window; and (iii) the new marking colour.

In each step, the number of marked pixels is assessed; if their total count exceeds
a threshold, e.g., 75% of the total window pixels, then the entire tile is coloured with a
new marking colour, e.g., RGB blue. This assessment is performed for the whole image.
Depending on the features of PV installations, multiple passes with progressively larger
windows can greatly enhance the effectiveness of PV detection.

The reason for utilising a new marking colour in each refinement run lies in the fact
that each successive run assesses the marked colours within an increasingly larger area. If a
window in a subsequent refinement iteration contains marked pixels but their cumulative
count is not sufficient to trigger the threshold, this indicates that a significant number of
pixels within the window do not feature cPV colours. Consequently, it is very likely that
the previously marked pixels actually correspond to incorrect detections. In this case, the
window is not coloured. Moreover, the remaining marked pixels are be dealt with during
the denoising phase described in the next section. Therefore, only the marking colour from
the last refinement run is considered final when evaluating the detection results.

Figure 11 shows example results from two consecutive refinement runs using window
sizes of 5 × 5 and 11 × 11 pixels, respectively. The enlarged sections demonstrate the
improvements in PV detection after the successive window passes.

Figure 11. Detection results after a 5 × 5 window pass (middle) performed on the marked pixels
image (left) and a subsequent 11 × 11 window pass (right). The enlarged sections at the bottom show
the detection enhancement after successive passes.
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The same methodology involving a moving window can be applied to remove incor-
rect detections that correspond to coloured tiles in the background region, as explained in
the following section.

3.5. Phase 4: Image Denoising

Pixels displaying cPV colours might be found in background regions, although less
frequently than for actual PV panels. Occasionally, the count of such pixels is sufficient to
trigger the moving window threshold, leading to incorrect detections. Examples are shown
in Figure 12.

Figure 12. Examples of detections in background regions.

To address noise, i.e., occurrences of cPV pixels outside of actual panels, we initially
note that panel surfaces typically contain large clusters of marked tiles. Conversely, incor-
rect detections in the surroundings often result in isolated coloured pixels or short coloured
stripes. Leveraging this observation, our strategy for identifying and eliminating noise
involves evaluating the surroundings of a coloured stripe.

To achieve this, we apply the same methodology of the moving window, adapting it
for the denoising task. We make adjustments to the three parameters; the specific evaluation
logic as follows, First, in order to include the surrounding pixels, the size of the denoising
window is set to be larger than the detection window size used in the last run of the
algorithm. Then, a threshold is defined such that when the count of marked pixels within
the window falls below the threshold, the pixels are classified as noise and consequently
coloured in green, whereas detected panels are coloured in red. Figure 13 shows the results
after the denoising pass. Pixels in green have been excluded from the detection results;
only the pixels marked with the last execution’s marking colour (in this example, red) are
considered detected panels.

Figure 13. Detections in certain areas (the red dots in the left part) have been identified as noise and
marked in green (the right part).
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4. Experiment and Results

From the aerial imagery dataset [30], we selected images having a resolution of
0.3 m/px and a size of 1024 × 1024 from five distinct sub-datasets, namely: Cropland,
Grassland, SalineAlkali, Shrubwood, and WaterSurface. The collected images constituted the
Ground dataset, comprising 2072 images. The Ground dataset served as the input for the
classification phase, which analysed its features and identified DPV images.

A total of 71 incorrect labels and 115 labels covering less than 0.5% of the image area
were discovered; the corresponding images were consequently removed from the dataset.
Next, colours and counts were extracted from the LR and BR and the background colours
were filtered out using a threshold of 1.0 for the colour count ratio between BR and LR,
resulting in the PVP colour set.

The colour set analysis proceeded as follows: first, to identify dark panels, the RGB
coordinates were converted into the HSL colour space. A threshold of 0.20 (in the range
[0, 1]) was applied to the lightness component, while a 50% threshold for the pixel count
was used to categorise images into the dark class. To detect grey–white panels, the RGB
coordinates were transformed into the HSV colour space. A threshold of 0.25 (in the range
[0, 1]) was used to evaluate the saturation component, with a 33% threshold for the low
saturation pixel count used to categorise images into the grey-white class.

After colour set analysis, images were classified as follows: 174 dark panels, 1254 grey–
white panels, and 458 DPV panels. The latter were aggregated to constitute the DPV dataset
on which PV detection was performed. Initially, 80% of the DPV images were randomly
selected for extraction of the characterising PV colours, while the remaining 20% were used
to test and evaluate the algorithm.

The results of colour extraction were as follows: an aggregated 1,133,935 distinct
colours for the LR, and an aggregated 1,836,190 distinct colours for the BR. After colour
filtering, there were 403,713 colours remaining, which accounted for 35.60% of the to-
tal LR colours, representing the characterising PV (cPV) colour set. Table 1 shows the
classification parameters.

Table 1. Parameters used in the classification of the Ground dataset.

Parameter Threshold

Label Area 0.005
BR/LR Colour Count 1.00

Lightness 0.20
Dark Pixels 0.5
Saturation 0.25

Low Saturation Pixels 0.33

After obtaining the cPV set, test images were selected and analysed. Any pixel
displaying a colour found within the cPV set was marked in green. Subsequently, PV
detection was carried out using two moving windows, one of size 5 × 5 pixels with a
detection colour of RGB blue and another of size 11 × 11 pixels with a detection colour of
RGB red. The detection threshold for both windows was set to 0.5.

Figure 14 shows an image for which the two-pass detection was performed, together
with the original dataset image and the corresponding label. The output image (middle)
shows that the panel surfaces were identified and the background portions present between
rows of PV installations were not marked by the detection colour (red). This confirms that
the colour filtering approach was able to discern between PV-characterising colours and
background colours with very high accuracy.
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Figure 14. An example PV image (left) and the results of PV detection after two successive detection
passes (middle). The corresponding dataset label is shown on the right. The bottom part contains an
enlarged section for each of the three images.

Furthermore, to detect the whole PV installation area, which in the labelled dataset
includes the background between individual panels, an additional detection pass was
performed in an attempt to enclose the entire region where PV panels were deployed.

4.1. PV Area Detection

To cluster PV arrays together, a window with a size of 21× 21 pixels was used. A lower
detection threshold of 0.25 was set in order to take into account the high number of colours
not included in the cPV set that appeared in the background portions between the panels.
The marking colour was set to RGB yellow. Table 2 shows the parameters used for the
three detection passes, while Figure 15 shows the detection result. Finally, a denoising
operation was carried out on the images. The size of the denoising window was 63 × 63
pixels and the threshold was set to 1/3 of the window area. Coloured tiles identified as
noise were marked in green, as shown in Figure 16.

Table 2. Parameters used for PV area detection.

Detection Pass Window Size Detection Threshold Colour (RGB)

1 5 × 5 0.50 Blue (0, 0, 255)
2 11 × 11 0.50 Red (255, 0 , 0)
3 21 × 21 0.25 Yellow (255, 255, 0)

Figure 15. Example result of PV panel region detection (middle). The original dataset label is shown
on the right.
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Figure 16. After denoising, certain detections in the background (yellow tiles) are reverted
(green tiles).

We evaluated the performances of the proposed approach and corresponding detection
algorithm by assessing five metrics: Accuracy, Precision, Recall, F1 Score, and Intersection
over Union (IoU). Table 3 presents the results for the DPV Ground dataset as well as the five
individual sub-datasets: Cropland, Grassland, SalineAlkali, Shrubwood, and WaterSurface.
The last row of Table 3 displays the values reported by the authors of the dataset in [30].

Table 3. Evaluation metrics for the DPV Ground dataset and the five sub-datasets.

Dataset Size Accuracy Precision Recall F1 Score IoU

Ground 458 0.963 0.918 0.901 0.897 0.833
Cropland 146 0.971 0.931 0.938 0.931 0.877
Grassland 42 0.952 0.953 0.881 0.912 0.844
SalineAlkali 53 0.982 0.913 0.958 0.934 0.878
Shrubwood 77 0.975 0.934 0.956 0.944 0.897
WaterSurface 140 0.974 0.915 0.928 0.917 0.852
max in [30] 0.981 0.960 0.903 0.931 0.877

4.2. PV Panel Surface Detection

To evaluate the algorithm’s performance when detecting only the surface of PV panels,
as opposed to the entire area covered by PV arrays, we manually created labels for five test
images. These updated labels exclusively enclosed the panel surfaces without including
background areas. Figure 17 shows a comparison between the updated labels and the
original dataset labels. The algorithm was then run on the DPV Ground dataset with the
parameters shown in Table 4.

Figure 17. Updated labels exclusively covering the panel surfaces (middle) alongside the original
dataset labels (right). The corresponding PV images are shown on the left.
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Table 4. Parameters used for detecting PV panel surfaces.

Pass Window Size Window Threshold Colour (RGB)

1 3 × 3 0.75 Blue (0, 0, 255)
2 5 × 5 0.5 Red (255, 0 , 0)

The experiments revealed that smaller window sizes produce better detection results
when considering only the panel surfaces. Similarly, a higher threshold of 0.75 can be
employed for clustering those pixels displaying cPV colours, as the background does need
not to be taken into account in this case. Figure 18 shows example results after two detection
passes and subsequent denoising with a denoising window size of 15 × 15 and threshold
of 1/3 of the window area.

Figure 18. Example results of PV panel surface detection.

The Recall and Precision metrics for the test images were calculated using both the
updated and original labels, with the results displayed in Table 5. The PV/Label columns
represent the ratio between the area covered by the PV panel surfaces and the total label area.
When using the updated labels, a mean Recall score of 0.917 was achieved, demonstrating
our algorithm’s effectiveness in detecting PV panel surfaces. Conversely, when utilising
the original labels, the mean Recall score drops to 0.307. This value can be explained by
considering the fact that the PV surface comprises only a fraction of the total labelled area,
as indicated in the PVs/Label column. Indeed, the background accounts for more than 50%
of the original label area. The high Recall value with the updated labels was obtained while
attaining an average Precision score of 0.955. The higher value obtained with the original
labels is because most of the pixels surrounding the panels’ surface are considered true
positives when using the dataset labels, despite actually representing the background.

Table 5. Comparison of Recall and Precision scores between the updated and original labels.

Updated Label Original Label
Image Precision Recall PVs/Label Precision Recall PVs/Label

325711_1198541 0.988 0.916 100% 0.984 0.436 47%
318008_1197612 0.948 0.918 100% 0.979 0.330 35%
331352_1190202 0.955 0.932 100% 0.969 0.292 31%
331764_1180482 0.936 0.949 100% 0.991 0.309 31%
335603_1188533 0.950 0.870 100% 0.998 0.166 18%

Average 0.955 0.917 0.984 0.307

5. Discussion

We evaluated the results of our approach by means of several metrics (see Table 3) and
compared them with the results shown in [30]. The highest value achieved for each metric
is marked in bold. Our approach outperforms the previous approach in all metrics except
for precision; however, the difference between the two values is only 0.007. The values for
the metrics vary across different datasets, with the highest variation for recall. Specifically,
recall is recorded as 0.881 for the Grassland and 0.958 for SalineAlkali. This variation is due
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to the presence of common colours between PV panels and surrounding parts in Grassland.
As our approach filters out the colours shared between PV panels and surround areas, this
resulted in a reduction in the number of identified PV pixels for Grassland. In general,
the ability to accurately identify a PV panel is directly influenced by the dissimilarity in
colours between the surrounding area and PV panels.

The application of our proposed approach to other images having photovoltaic panels
has been investigated and evaluated in the additional provided material (see Supplemen-
tary Materials) and has shown that the extracted set of colours is appropriate to analyse
novel images.

Unlike most deep learning approaches, which identify PV panel areas, our approach
identifies both PV panel areas and PV surfaces. The latter is a more precise estimation of
the actual size of PV panels than the former. In our approach, this is achieved by the use of
different detection window sizes (see Section 3.4.2) in which the marked pixel density is
sufficient to recognise panels. If there is a low density of marked pixels within a window, it
is likely that such pixels indicate noise, i.e., surroundings that share colours with PV panels.

In addition to the labels provided in the original dataset, which only marked PV
areas, we have provided a small subset of images with accurate labels for PV panels. Our
accurate labels were introduced because in several images the original labels marked PV
areas containing more than 50% of background pixels relative to the total pixel count.
While the previous detection approach described in [30] broadly identifies the PV panel
regions, it encompasses a significant portion of background pixels as well, significantly
diminishing the ability to assess the detection of actual PV panels. Table 5 shows the
detection performed by our approach measured using the updated labels and the original
labels. While the precision scores remain high for both labels, the recall varies significantly
and is much higher for the updated labels. Our approach achieves high sensitivity for PV
panels, whereas the previous approach is useful only for the broad PV panel region.

In contrast to CNN-based approaches, our method forgoes a training phase, offering
several advantages. First, it requires only a limited number of labelled images to extract
the defining colours of PV panels, whereas ML and deep learning approaches need large
datasets of labelled data for training. This training process can be time-consuming and
error-prone, as discussed in Section 3.2.1, and imprecise labels can pose challenges. Second,
training phases in deep learning typically require substantial computational power and
significant storage capacity, in addition to prolonged execution times for model training.
In contrast, our approach’s execution time is solely dependent on the number of images
to be analysed. Finally, along with its shorter execution time, our approach delivers
high performance levels, as shown in Table 3, which are comparable to if not better than
those of CNN-based approaches. Moreover, the extraction of PV-characterising colours
can be performed one time and used to analyse many images of the same area. Table 6
shows the average execution times of each phase in the proposed approach for each image.
The algorithm was tested on a PC with the following characteristics: (i) Linux Ubuntu
operating system kernel version 6.2.0-36-generic; (ii) 2.0 GHz AMD Ryzen 5 2500U 4-core
processor; (iii) AMD Radeon Vega 8 Graphics; (iv) RAM memory 8 GB 2400 MHz DDR4.

Table 6. Average execution times for image

Phase Average Execution Time per Image

Image Classification 2.42 s
cPV Colours Extraction 1.63 s
PVs Detection (3 passes) 9.25 s

Image Denoising 3.16 s

The PV panel colour characterisation phase provides a set of colours that are used
in the detection phase. However, the colours of PV panels can be influenced by several
factors, including the panel’s model (e.g., the materials used), the intensity of incident light
(which can either lighten or darken the panel), and the panel’s inclination and orientation.
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Accordingly, PV panels with colours that closely resemble the background or exhibit darker
colour shades pose challenges for detection. Thus, detection is more reliable for images
with fewer very dark colours and where the background or surrounding objects have
different colours. Our detection approach can make use of labels marking roads and related
infrastructure to collect the characterising colours of these objects and compare them with
the distinguishing colours of PV panels.

The versatility of our approach allows for its application to datasets from various
geographic regions thanks to the phase in which the PV-characterising colours are collected.
Because this colour set may vary across several geographic areas, it may be appropriate to
extract a fresh colour profile that is more finely tuned to the characteristic colours of the
geographic area under analysis.

Finally, the aerial images analysed in this paper exhibited a pixel resolution of 0.3 metres
per pixel. When using lower resolutions, the risk of lower detection performance increases
due to the coarseness of the figure edges and the blending of pixel colours.

6. Conclusions

In this paper, we have presented an approach that accurately detects the parts of
images showing photovoltaic panels. First, the proposed approach automatically classifies
images according to the brightness and saturation of their colours and selects those images
having appropriate brightness and saturation levels. This step is automatic and does
not require annotated images. Second, the colours characterising photovoltaic panels are
gathered by comparing panel colours to the colours of the background/surroundings.
This step uses a small number of annotated images to discover the panel colours. Third,
detection of photovoltaic panels is automatically performed on images using the obtained
PV-characterising colours and their densities without the need for any previous analysis or
or annotation. By comparing colour sets, the proposed approach is able to automatically
exclude false positives and false negatives by quantifying colour densities within tiles.

To validate the effectiveness of our approach, experiments were performed using an
open-source dataset of aerial images containing photovoltaic panels. The results showed
that the proposed approach can accurately and consistently identify photovoltaic panels,
achieving high precision and recall values. Furthermore, a comparison with a Convolu-
tional Neural Network (CNN)-based approach revealed superior performance in terms
of recall and accuracy on the part of our approach. Notably, unlike many CNN methods,
our approach is capable of identifying both the areas and the actual precise surfaces of PV
panels, offering a dual identification capability.

Thanks to the initial classification phase used in our approach, datasets for different
regions can be analysed successfully, e.g., images that have been captured at different times
of the day with a specific light can be detected and separated from others, then a subset of
the whole set can be automatically identified for PV detection. Moreover, the automatic
extraction of distinctive pixel colours characteristic of PV panel models specific to a given
region provides a level of tuning, flexibility, and versatility when applying our proposed
approach to images with widely varying colours of panels and surrounding areas. Finally,
our proposed approach exhibits a fast execution time, as no training phase is required,
and works well without a dataset of annotated images, as the gathered representative
colours can be used for other regions.

Supplementary Materials: The detection of solar panels was performed on three additional images
and the description of the analysis and the results can be downloaded at: https://github.com/
damarletta/detecting-pv-panels.
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