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Abstract: This study presents an innovative pedagogical approach aimed at enhancing the teaching
of robotics within the broader context of STEM (science, technology, engineering, and mathematics)
education across diverse academic levels. The integration of mobile robotics kits into a dynamic
STEM-focused curriculum offers students an immersive and hands-on learning experience, fostering
programming skills, advanced problem-solving, critical thinking, and spatial awareness. The moti-
vation behind this research lies in improving the effectiveness of robotics education by addressing
existing gaps in current strategies. It aims to better prepare students for this rapidly evolving field’s
dynamic challenges and opportunities. To achieve this, detailed protocols were formulated that not
only facilitate student learning but also cater to teacher training and involvement. These protocols
encompass code documentation and examples, providing tangible representations of the practical
outcomes of the course. In addition to the presented curriculum, this paper introduces the developed
methodology that strategically leverages 3D-printing technology. The primary focus of this approach
is to create captivating add-ons and establish a versatile workspace, actively promoting heightened
engagement and facilitating the acquisition of knowledge among students. The research involves the
development of tailored laboratory protocols suited to various academic levels, employing a system-
atic methodology aimed at deepening students’ comprehension of STEM concepts. Furthermore, an
adaptable infrastructure for laboratory protocols and in-class testing was developed. The efficacy of
this teaching/learning methodology is evaluated through student surveys, ensuring its continuous
improvement. These protocols are to be integrated into both the robotics courses and teacher-training
initiatives. This study aims to contribute to the field by using a dynamic STEM-driven approach
based on mobile robotics. It outlines a strategic vision for better-preparing students and educators in
the ever-evolving landscape of robotics education demanded by Industry 4.0 technologies.

Keywords: integrated educational resources; robotics; mobile robotics kits; STEM education; Industry 4.0

1. Introduction

The term “robotics” first appeared in the short story “Runaround” by Isaac Asimov,
published in 1942. Leonardo Da Vinci designed a knight that was supposed to move
automatically, but the construction of an automaton with such characteristics only emerged
in 1962 by Joseph Engelberger and George Devol, named “Ultimate” [1]. Robotics is defined
as the set of techniques aimed at designing systems capable of replacing humans in their
motor, sensory, and intellectual functions.

According to the World Robotics Report 2022 by the International Federation of
Robotics, robotics is experiencing expansion, with a particular emphasis on industrial
robotics. In 2021, a total of 517,385 industrial robots were installed in factories worldwide,
representing a year-on-year growth rate of 31% and surpassing the previous peak in robot
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installations before the pandemic in 2018, which was around 11%. Currently, the global
stock of operational robots has reached a new record of approximately 3.5 million units [2].

The increasing interest in robotics within the industry entails a need to prepare a
qualified workforce to deal with technological innovations. Therefore, implementing
robotics in education is imperative for the future of engineering.

Robotic educational resources are a powerful and flexible tool as they enable students
to discover things on their own, learn new programming languages, and develop working
methodologies and critical thinking. Students can apply theoretical concepts in practical
robotics projects, which helps to solidify their knowledge and develop technical skills such
as programming, mechanics, and electronics. Numerous researchers argue that activities
involving robot programming increase participants’ interest in the fields of STEM (science,
technology, engineering, and mathematics) [3].

In the literature, there are several studies on the effect of robotic resources on students
at different academic levels [1,4,5]. Different authors highlight the advantages and potential
of robotics in education as a learning tool, including its support in teaching subjects that
are not necessarily directly related to the field of robotics.

In a study conducted by Xia and Zhong [6], 22 articles describing experimental, quasi-
experimental, and non-experimental studies with educational robotic resources in K-12
children were analysed. Overall, the findings are positive, with participants benefiting
from a better understanding of concepts (sensor programming, etc.), attitude change
(motivation, efficacy), and skill development. However, other studies report in their
respective works that despite the mentioned benefits, most students are unable to provide
detailed explanations of the mechanical concepts underlying the activity [7,8].

Despite the progress made in this regard, the implementation of robotics in education
is still met with some reluctance, possibly due to limited school budgets, and a shortage of
protocols and methodologies that enable activities with educational robots (ER). The lack
of an adequate methodology can lead to a lack of interest and motivation on the part of
students. Another important aspect is the progression of the complexity of these activities
based on the academic level at which children are situated [6].

This study describes a methodology developed and implemented for teaching robotics,
motivating students to acquire fundamental knowledge for the future and the development
of engineering.

To achieve the overall objective, the following specific objectives have been defined:

• Development of laboratory protocols for different academic levels, sequentially deep-
ening STEM knowledge, aimed at teaching robotics through mobile robotics kits;

• Development of code and add-ons for new laboratory protocols;
• Testing of the protocols;
• Collection of data necessary to identify opportunities for improving the laboratory

protocols;
• Discussion of results and evaluation of the progress of students subjected to the

methodology developed in the protocols.

This approach aims to promote knowledge acquisition on topics that are fundamental
for the future automotive engineering, which will be closely related to robotics.

Thus, this introduction describes the need to use educational robotics within the con-
text of STEM (science, technology, engineering, and mathematics) education and provides
a comprehensive overview of the background, objectives, and scope of the case study. The
remainder of this paper is organized as follows. Section 2 includes a literature review
and fundamentals, overviewing educational robotics, strategies, and methodologies in
programming education, as well as a review of the main educational robotics kits that are
available. Materials, both hardware and software, and methods are described in Section 3.
This section includes the training approaches. Section 4 discusses the results of the ques-
tionnaires applied to the students and the influence of this novel approach on STEM skills
development. Its performance and added value are also assessed. Section 5 includes a
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conclusion of the research study, highlighting the contributions, and provides guidelines
for future work.

2. Literature Review and Fundamentals

This section provides a comprehensive analysis of various approaches and their corre-
sponding educational robotics kits. The primary aim is to uncover opportunities to enhance
current robotics teaching methods. This detailed examination explores the distinctive
characteristics, functionalities, and overall effectiveness of diverse approaches and kits
available in the market. Furthermore, the literature review highlights the constructive
impact of educational robotics on students’ computational thinking, problem-solving abili-
ties, and creative prowess, supporting the proposed pedagogical approach. Additionally,
a comparative assessment of educational robots is provided, such as Bee-Bot, WeDo 2.0,
Lego Mindstorms NXT, and mBot, which serves as a valuable resource for educators in
making well-informed decisions regarding the most suitable robotics kits to support their
teaching objectives. The goal is to identify methods that enhance the teaching and learn-
ing dynamics in robotics, aligning with both students’ needs and the prerequisites of the
educational curriculum, while also addressing the demands of the current and future job
market. This research provides best practices and key components, resulting in the creation
of an innovative and highly effective methodology designed to kindle students’ interest
and improve skills acquisition that is relevant to the fields of robotics and engineering.

2.1. Computational Thinking

Computational thinking (CT) is the systematic thinking process learners employ while
“solving problems, designing systems, and understanding human behaviour by drawing
on fundamental concepts of computer science (CS)”. Ideas involving CT emerged in the
1950s [9]. Papert [10] was the first to describe CT in his work related to programming in
Logo and the Logo turtle, an educational robot. In the early 2000s, CT was revitalized by
Wing (2006) as she refined the definition and emphasized the importance of CT as part of
every child’s skill set. However, in the field of education, there is still no consensus on the
definition of CT [11]. Some definitions of CT remain linked to disciplines in the field of
computing, specifically computer science [12]. Other definitions have been created in the
context of other non-CS curriculum units. For instance, Weintrop et al. [13] conducted a
literature review on CT and interviewed experts in the fields of mathematics and science
to develop a definition based on four categories: data essays, modelling and simulation
essays, computational problem-solving essays, and systems thinking essays. Others relate
computational thinking to engineering, and there are still those who define CT from a
multidisciplinary approach. Shute et al. [14] assert that CT is a necessary conceptual
foundation for solving problems effectively and efficiently.

The National Research Council (NRC) conducted a series of workshops focused on
CT and subsequently released a report on its educational and cognitive implications. The
participants in the NRC workshop agreed that it was necessary to take the next step in
conducting similar activities with a greater focus on the pedagogical aspects of CT [15]. To
implement CT activities in K-12 classrooms, the Computer Science Teachers Association
(CSTA) and the International Society for Technology in Education (ISTE) formed a team of
education and industry leaders to develop a framework that integrates computer science
and computational thinking [16].

Various tools have been used to teach these components, some of which are related
to the work carried out by Papert [10] in the field of educational programming language,
including educational toys and applications designed for children. Currently, a wide range
of robotic kits can be found on the market [12].

2.2. Strategies and Methodologies in Teaching Programming/Robotics

There are various teaching philosophies. The main recommendation that emerges
from the literature is that teaching should focus not only on learning the characteristics of
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a particular programming language but also on combining them and particularly on the
related problem of designing basic programs. One way to achieve this could be through the
introduction of numerous examples as programs are developed, discussing the strategies
used as part of this process [17].

According to Coll et al. [18], the teacher should: gradually present the content, with
moments of recapitulation, summary, and synthesis; make analogies, using students’
prior knowledge; be explanatory regarding the proposed activities and what is to be
taught; provide opportunities for students to execute procedures voluntarily, consciously,
and innovatively; and make improvements. Students should be motivated to learn the
procedures and be able to self-evaluate, knowing that the construction of knowledge
depends on their effort.

Students should develop concrete and real projects, and it is necessary to make some
simplifications through a method of gradual development [19].

Some authors emphasize the importance of a trial-and-error approach for students
to find programming errors, using reflection, understanding, analysis, and hypothesis
testing [20].

According to Roumani [21], the curriculum should be taught in an inverted manner,
meaning that after students are comfortable with the behaviour and applications of the
main data structures, they should learn how to implement them.

Teachers should adopt strategies and activities that motivate students to engage in their
learning and allow them to develop autonomy. When engaging in challenges, an increasing
level of complexity should be emphasized, encouraging the integration of knowledge from
various disciplines, and students should cooperate in small groups to solve them [22].

An interesting field to be explored is robot football (soccer), since it can embrace
a large number of disciplines such as computer vision, intelligence artificial, computer
science, physics, mathematics, mechanical, and general engineering. Apart from being a
field that connects different topics of engineering, it is attractive for all kinds of people
due to football being one of the most popular sports and the idea of seeing robots playing
soccer is fascinating for children, adolescents, and adults [23].

2.3. Educational Robotics

As mentioned earlier, there is a wide range of robots available for all levels of education,
serving different purposes [12]. Several studies have shown that educational activities
involving robotics can be highly effective in developing skills such as critical thinking,
creativity, problem-solving, teamwork, and decision-making, among others [24].

Robotics has generally been applied in education for students ranging from 3 to
18 years old, from preschool to secondary education [6]. According to Xia and Zhong [6],
the majority of applications are found in elementary school students (57%), followed by
secondary school students (24%), and kindergarten children (19%). More than half of the
studies conducted used samples with fewer than 80 participants and a duration of less than
2 months. The dominant type of robot used in the studies was the LEGO brand (67%).

Educational robots are programmed by their users to act based on specific information
obtained from the environment in which they are placed. They are equipped with a set of
sensors that enable them to measure various conditions and transmit this information to the
robot’s controller. There is a wide range of sensors available, including light sensors, touch
sensors, temperature sensors, humidity sensors, rotation sensors, sound sensors, colour
sensors, and distance sensors. At the same time, the robot has actuators, which, as the
name suggests, allow it to interact with the environment. Typically, these are motors that
enable the addition of various mechanisms such as robotic arms, wheels, and transmission
systems (gearboxes) [22]. Thus, through the analysis of scientific references and studies, it
can be concluded that there is a wide range of educational robots available. Some options
even allow for the construction of robots using low-cost or recyclable materials. Alongside
the growth of this field of robotics, various block-based programming environments have
emerged, designed for use by children. These environments facilitate programming and
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interaction, making initial encounters with programming more accessible and contributing
to educational development. Given the diversity of educational robot offerings, this section
will address some solutions available on the market and experimental studies that explore
the influence of their use on learning (Table 1).

Table 1. Detailed overview of each educational robotics platform, emphasizing additional features
and characteristics.

Platform Description Key Features Study/Reference

Bee-Bot

Prominent floor robot in elementary
education, controlled through
physical buttons for directional
programming.

• Resembles a bee; Controlled via physical
buttons for turning, and moving
forward/backward; Supports the
development of programming skills,
cognitive abilities, and spatial awareness.

Diago et al. [1]
Schina et al. [25]
Kazakoff et al. [26]

WeDo 2.0
Robotics kits by LEGO Education,
designed for interactive teaching of
basic concepts.

• LEGO pieces, motors, sensors; Interactive
programming software (WeDo 2.0); Widely
used in classrooms and robotics clubs;
Fosters hands-on learning of robotics and
programming.

Çakır et al. [5]

Lego
Mindstorms
NXT

Versatile robotics kit using LEGO
building blocks with touch, colour,
and ultrasonic sensors.

• Programmable NXT controller for precise
control; Touch, colour, and ultrasonic
sensors; Flexible building with LEGO
blocks; Intuitive visual programming with
blocks (similar to Scratch).

Atmatzidou and
Demetriadis [4]

mBot
Educational robot by Makeblock,
designed for computer science and
STEM learning.

• CyberPi processor, sensors, and motors;
Supports Scratch (block-based
programming) and Python; Versatile for
add-ons like temperature sensors, gas
sensors, and accelerometers.

Voštinár [27]

2.4. Conclusive Note

In this section, a comprehensive exploration of various technologies and method-
ologies for teaching robotics was conducted. Building upon the existing body of work,
the primary objective of this study is to make a valuable contribution to the expansion of
knowledge in the field of educational robotics. The present work intends to study novel
approaches and methodologies that effectively foster student engagement and inspire their
pursuit of robotics.

There is an attempt in this research to improve the effectiveness of robotics education
by addressing existing gaps in current strategies. The research objective is to better prepare
students for the dynamic challenges and opportunities in this rapidly evolving field. Thus,
detailed protocols were formulated that not only promote student learning but also cater to
teacher training and involvement. These protocols encompass code documentation and
examples, providing tangible representations of the practical outcomes of the course. These
protocols can be integrated into both the robotics course and teacher-training initiatives.
The paper introduces a methodology that leverages 3D-printing technology. The primary
focus of this approach is to create captivating add-ons and establish a versatile workspace,
actively promoting heightened engagement and facilitating a profound acquisition of
knowledge among students.



Technologies 2023, 11, 170 6 of 18

3. Materials and Methods
3.1. Selection of a Robotics Kit for the Activities

For the implementation of the protocols and associated activities, a more recent version
of the robots mentioned in the previous chapter was chosen. The selection of the mBot2
from Makeblock for this purpose is attributed to its capability to accommodate add-ons
and utilize mechanical components that closely resemble those used in the field of robotics
and Industry 4.0. This section will delve into all the technical aspects of the mBot2, as well
as the programming environment, mBlock. Subsequently, the methodology employed in a
robotics course with secondary school students will be elucidated.

3.1.1. mBot2

The mBot2 is an educational robot designed with a STEM approach [28,29]. Its exten-
sive capabilities make it a good choice for introducing robotics at the primary academic
levels, but it can also be explored in secondary and even university-level education.

The microcontroller used in the robot is the CyberPi, programmed through the mBlock
5 software, compatible with programming languages such as Scratch and Python. The
CyberPi offers great versatility as it includes a set of sensors and actuators such as a
microphone, speakers, an inertial measurement unit with a gyroscope and accelerometer, a
light sensor, operation buttons (including a joystick), and a colour display. Complementing
the CyberPi, the mBot kit includes an ultrasonic sensor and a line follower sensor with
four RGB sensors to detect different colours. In addition to this range of sensors and
actuators, the mBot2 allows communication via Wi-Fi. The mBots can be connected to
form a local network where robots can communicate with each other wirelessly. The
mBot2 can be connected to the Internet and perform functions such as voice recognition
or access libraries that contain various functionalities like machine learning. The different
components comprising the mBot2 are shown in Figure 1.
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Figure 1. Exploded view of the mBot2, showcasing the different components in its structure [29].
Makeblock is their respective owners’ trademark and has not sponsored, authorized, or endorsed
this work.

The locomotion of the mBot2 is ensured by encoder motors. With this type of equip-
ment, students can precisely control the rotation, speed, and position of the wheels and the
robot. Additionally, the motors can be used as servos and even as knobs, returning data
to the system as if they were sensors. The major advantage of encoder motors is that they
allow for a greater integration of mathematical concepts in program development, such
as moving precise distances, calculating curves, and mapping a path to navigate a maze,
transferring the results to the computer.
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The environmental recognition is performed through the ultrasonic sensor (Figure 2 on
the right) and the quad RGB line follower sensor (Figure 3). The ultrasonic sensor provides
more accurate and consistent readings compared to previous versions. It is located at the
front of the mBot2, in the small cylindrical structures resembling “eyes”. This sensor emits
small amounts of ultrasound and receives the echo. Based on the time it takes for the sound
to be returned to the receiver, mBot2 calculates the distance to the object.
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Figure 3. Integrated Quad RGB Sensor in mBot2: there are four RGB sensors incorporated into a
single sensor along with a set of two ports compatible with CyberPi [29]. Makeblock is their respective
owners’ trademark and has not sponsored, authorized, or endorsed this work.

The line follower sensor also works as a colour-detection sensor, featuring four RGB
sensors integrated into a single unit (Figure 3).

The RBG sensors are defined as L1, L2, R1, and R2 (L for the left side, R for the right
side). They automatically detect the RGB (red, green, blue) values of the reflected colour
and internally compare the mixture of values with different preset colors. The programming
process becomes simpler because the sensor can transmit the detected colour, eliminating
the need for the user to check the RGB colour codes. The sensor can detect six different
colors, in addition to black and white. It also contains a button on the top of the sensor that
is used to calibrate readings according to the ambient light [29].

3.1.2. Programming Software mBlock 5

mBlock 5 (example of the programming window in Figure 4) was designed for educa-
tion in STEAM. Inspired by Scratch 3.0, it supports both graphical and textual programming
languages. It allows the creation of custom projects, games, animations, and programming
of devices such as Makeblock robots and microbit. mBlock 5 provides two editors, namely
the block-based editor and the Python editor. Additionally, it integrates technologies such
as artificial intelligence (AI) and the Internet of Things (IoT) [30].

The block-based editor (Scratch, Google/MIT, Cambridge, MA, USA) is the default
editor in mBlock 5. It is divided into three workspace areas: stage area, blocks area, and
scripts area. The stage area is where backgrounds are selected, devices are connected, and
sprites are defined (two-dimensional graphical objects that move on the screen based on
the program), and their respective scenes. In the blocks area, blocks are organized into
categories and colors. Lastly, the scripts area is where the program can be built by dragging
and arranging the blocks.
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3.2. Procedure

The planning process aimed at teaching robotics through mobile robotics kits to stu-
dents from a vocational school is presented. In this training, which lasted for 3 classes of 2 h
each for each group, we opted for the application of an ABRP methodology, where students
had to solve various problems, increasing the level of difficulty, always with a group work
dynamic, promoting critical thinking, collaborative work, and socialization among them.
During the taught classes, the students had to be the agent of their intellectual development,
developing critical analysis, reasoning, and creativity. Guidance was provided only when
necessary. Support to students was provided through suggestive questions and useful
indications in clarifying the challenges or restating the objective to achieve the expected
outcome. Students had to seek a solution taking into account previous experiences and be
able to detect errors, isolate them, and correct them. Challenging problems were designed
to promote reflection and foster cooperation.

In the planning of the training, the total number of classes was divided into 3 classes of
2 h each for each group, starting with a class in which the robotic kit was introduced and the
basic aspects of its programming were explained. After the first contact, challenges were
presented in increasing order of complexity to prepare the students for the final challenge.

Table 2 presents the protocols that were developed along with their corresponding
resources for implementation. All of the protocols were applied in teaching and learning
initiatives with the students, except for the “Football” protocol, which was implemented at
a later stage. Figure 5 provides a summary of the three classes discussed in this section,
which will be further described in the following subsections.
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Table 2. Summary of the protocols developed and their respective resources for implementation.

Act. Details

1s
ts

te
ps Programming Language: Scratch Materials required: Computer, mBot2, ultrasonic sensor.

Goal: Explain how to install the application and set up the connection with mBot2. Provide a brief tutorial on how to
create a program that utilizes the values returned by the ultrasonic sensor to control the robot’s movements.

Li
ne

-f
ol

lo
w

in
g Programming Language: Scratch Materials required: Computer, mBot2, black tape, Quad

RGB sensor.

Goal: Introduce students to the operation of the line following and Quad RGB colour-detection sensors. It follows the
logic sequence of the previous activity. All steps are described in detail to enhance students’ understanding. The
objective is to follow a path using the line follower sensor. A step-by-step list is given for the preparation and
execution of the activity.

M
az

e Programming Language: Scratch or Python Materials required: Computer, mBot2, black tape, Quad
RGB sensor, ultrasonic sensor, maze scenario.

Goal: Apply path planning algorithms, taught in the robotics course, to navigate the mBot2 through a random maze.
The strategy employed will be at the discretion of each group.

Fo
ot

-b
al

l

Programming Language: N/A Materials required: Smartphone or tablet, mBot2,
bumpers, ball, multi-purpose worktable.

Goal: This protocol aims to provide an interactive, playful, and engaging activity that does not require programming
skills and is quick to prepare and explain. It is ideal for short visits by students of all ages to the robotics laboratory.
mBots are controlled using the Makeblock application to play football. The objective is to provide a fun and
immersive experience that allows visitors to directly interact with the robots, thereby stimulating interest and curiosity
in the field of robotics through a competitive activity.Technologies 2023, 11, x FOR PEER REVIEW  9  of  18 
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3.2.1. Class 1—Introduction to mBot2

The first class began with an introduction to robotics, explaining how robots can
assist humans in performing tasks and the contexts in which they are used. The students
completed the first questionnaire, a set of questions aimed at understanding if they had
any previous contact with robotics, programming, sensors, and other elements constituting
a robot. The mBot2 was introduced with the protocol “Initial configuration and first steps”,
an overview of this protocol is presented in Table 2, including its mechanical components,
the types of sensors it contains, and a brief explanation of their functioning principles.
The wide range of possible extensions that can be acquired and implemented on the
mBot2 was also discussed. While the participants installed the mBlock application on
their computers, an overview of what an algorithm is, the types of commands available in
Scratch, and their functionalities were provided. During this phase, the focus was mainly
on the commands necessary for the planned set of activities in the first class. The objective
of the first activity was to provide a set of instructions to the mBot2 that would allow it
to navigate a path without using any sensors. The students had to figure out which set of
blocks would enable them to reach the goal by perceiving the space, estimating distances,
and adjusting the rotation value in curved sections of the track. Whenever students had
difficulty understanding the functionality of a particular block, a review of the command’s
content was conducted, followed by using that instruction with the robot so that the
students could associate a physical movement with the previous explanation. This process
was repeated in all classes. After the groups achieved the goal, they were asked to think
about possible improvements, and the role of sensors in robotics was emphasized. The
activity was repeated, but this time with the assistance of a line-following sensor installed
on the robot. This change required the students to rework the entire program, as all the
decisions the robot had to make were based on the values transmitted by the sensor. This
last activity is part of “Line-following”, an overview of the protocol is presented in Table 2.

3.2.2. Class 2—Sensor Conjugation

In the second class, a general introduction to the functioning of an autonomous robot
was given, emphasizing the imperative role of sensors in the successful performance of
tasks, with particular emphasis on the ultrasonic sensor in the case of the mBot2. Examples
of living organisms that use ultrasound, as well as examples in the healthcare field, were
presented. The content taught in the previous class was reviewed, and students had the
opportunity to optimize the program to make the robot faster in completing the course,
creating some competition among groups while consolidating concepts.

After completing the introductory activity of the class, programming blocks provided
by the ultrasonic sensor extension were introduced, and students were taught how to create
a simple program to stop the robot’s locomotion when it detected an object. Here, students
had some time to explore the functionalities on their own, test, make mistakes, and try to
understand the cause of the errors.

Finally, students were challenged to make the robot follow the course from the first
class, but this time there were obstacles on the track that the robot had to detect and navigate
around. The method of navigating the obstacles was defined by the group, encouraging
their creativity.

3.2.3. Class 3—Maze and Creation of Variables

A summary of the content covered in the previous class was presented, highlighting
the programming blocks that worked best for different groups. Subsequently, the students
resumed the previous activity, which involved navigating around objects placed on the
track. This provided an opportunity to implement improvements and explore new ways of
robot navigation. Next, the maze scenario (Figure 6 on the left) was introduced as the final
project of the training: an overview of this protocol is presented in Table 2. This activity was
originally intended to be solved using the Python language. However, due to the limited
amount of time available with the students, Scratch was used instead. The students were
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required to build a program that would navigate the maze from a starting position to a red
tape strip on the floor, symbolizing the finish line. Since the robot only has a front-facing
ultrasonic sensor, it is unable to detect walls on its sides. This posed a major challenge
for the students who initially attempted to always turn the robot in the same direction,
resulting in infinite loops within the maze. They started to develop the program for a line
follower (see Figure 6 on the right).
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Eventually, one of the groups suggested creating a variable that would count the
number of turns, allowing them to adjust the rotation direction based on the number of
turns the robot had previously made.

3.3. Short STEM Courses

Within the scope of short STEM courses developed in the university, the students par-
ticipated in a mini-robot football tournament. This activity does not require programming
skills. Suitable for quick visits of students of all ages to the robotics laboratory, Futebot
consists of a simple and fast game where mBots are controlled through the Makeblock
application on a mobile phone, acting as players in a mini-soccer game. The objective is to
provide a fun and immersive experience that allows visitors to interact directly with the
robots, thereby sparking interest in robotics through a competitive activity.

Makeblock provides the option to freely control the robot using the controller shown in
Figure 7. Each game had four participants simultaneously, divided into two teams (2 × 2),
with one student per mBot. The matches ended when one of the teams scored 2 goals in the
opponent’s goal or when the game duration reached 5 min. The implementation of Futebot
required the creation of a scenario, which included two goals and a midfield line where the
ball would be placed at the beginning of each match.

Figure 8 shows some images taken during the activities. Some 3D-printed bumpers
were designed to protect the robots while also giving a more captivating appearance. These
bumpers also had the additional function of facilitating ball control, thanks to a customized
socket specifically designed for the ball used. Moreover, as additive manufacturing is also
a current topic of research and development, besides being of interest to the students, the
possibility of an activity where students develop add-on parts made by 3D printing for
their robotic solutions is also a procedure to extend the motivation and the knowledge
acquired. Although additive manufacturing is not the objective, it can be used to increase
the motivation of the students while basic concepts of this technology are provided.
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3.4. Multi-Purpose Workbench

All the research described in this paper involved the creation of structures or scenarios
to enable robots to complete the proposed challenges, ranging from maze solving to
soccer playing.

One of the initial priorities was to allocate a dedicated space within the robotics
laboratory for mobile robotics, ensuring a safe environment for robot navigation without
the risk of collisions or falls that could result in irreparable consequences.

The designated area for mobile robotics consisted of a table with a working surface
measuring 2300 × 1200 mm. To prototype this workstation, the plan included the instal-
lation of wooden panels around the table to serve as side barriers, preventing the robots
from leaving the designated area. The goal was to establish a robust structure that allowed
for the addition or removal of components depending on the specific activities performed.

Furthermore, a new project was initiated, focusing on the development of a worksta-
tion specifically tailored for projects and activities involving mobile robotics. This initiative
aimed to integrate projects from related subjects such as industrial automation, industrial
robotics, and robotic systems.

To implement the maze walls, it was necessary to equip the base of the workstation
with a mechanism that facilitated the addition or removal of supports. The solution devised
was a snap-fit mechanism incorporating springs; 3D printing was utilized to produce the
supports, and the snap-fit mechanisms comprised two distinct components. Nevertheless,
it was essential to ensure that the piece accommodating the column remained securely
fixed to the table. To accomplish this objective, a support structure was designed to be
embedded within the 16 mm-thick MDF board serving as the workstation’s base. The piece
featured different sections to prevent its removal when the support was pulled. Later, a
flat design of the panels that make up the workstation was created, and assembly was
carried out to verify compatibility between the parts. The cutouts at the edges facilitate the
attachment of the side panels. The side panels have cutouts that align with those on the
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base. There are also slots spaced 300 mm apart, where pieces will be inserted to support
the internal walls of the maze.

The MDF panels were cut using CNC machining. The side panels were glued and
screwed onto the base. Careful attention was given to the final finishing of the table. After
meticulous preparations, the cut surfaces were finished, and all the parts were glued and
screwed. Subsequently, the sanding and levelling of the surface were performed. As for
the coating, a pore filler was applied. This crucial step helped to fill in small imperfections
and create a smooth surface for subsequent painting applications. Figure 9 displays the
completed rendition of the table, featuring the incorporation of several maze walls.
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4. Results

During the training, the performance and progress of the entire group were evaluated
to implement improvements in the teaching approach.

The construction of assessment instruments is generally complex and requires consid-
eration of goal definition, inventory of available resources, identification of individuals,
selection of the representative sample, development of questionnaire outline, conducting a
pre-test, finalizing the questionnaire, data collection, response coding, data analysis, and
processing, and preparation of the final report [22,31].

Since each class had only three sessions, each lasting two hours, the assessment
instruments could not be overly complex.

The research plan for this study is qualitative, as some data were collected through
direct observation and recorded using descriptive notes and/or observation documents.
To complement the information gathered through observation, the analysis of student
responses to two anonymous questionnaires was employed, as well as questions posed
directly during the classes.

An initial questionnaire served as a diagnostic tool for assessing the student’s progress
in the field of robotics throughout their academic path. This diagnostic, conducted in
the form of a questionnaire, enabled us to adapt and better plan the subsequent classes.
It allowed for a more precise allocation of time for each activity and consideration of
the student’s autonomy levels in completing them. The final questionnaire was dis-
tributed after the last class, enabling students to self-assess and evaluate the teaching
methodology used throughout the training. The primary purpose of this questionnaire,
along with observations and dialogues with the students, was to identify potential ar-
eas for improvement in the approach followed in the protocols developed in this work.
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The process of questioning students, referred to as an interview, is more flexible than
other techniques, enabling participants to discuss specific subjects with a certain open-
ness, thereby allowing for more in-depth coverage. The first questionnaire (Question-
naire 1) consisted of a set of eight questions requiring a binary response (Yes or No):

No. Question

1 Have you had any contact with a robot before?

2 Have you programmed a robot before?

3 Have you used a block-based programming language before?

4 Have you used any type of sensor during your academic journey?

5 Are you familiar with the programming language “Scratch”?

6 Have you heard of Boolean variables?

7 Are you familiar with the concept of an algorithm?

8 Have you worked with encoder motors before?

Out of a total of 56 participants, Figure 10 presents the percentage of affirmative and
negative answers, thus providing a better understanding of the prior knowledge acquired
by the students and allowing for minor adjustments to be made to the curriculum taught
in subsequent classes.
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Figure 10. Answers from the first questionnaire applied to participants in the training focused on
teaching robotics through mobile robotics kits (mBot2).

The last questionnaire (Questionnaire 2) focused on assessing the interests and opin-
ions of the participants regarding the classes:

No. Question

1 Did you find the course challenging?

2 Did you enjoy working in a team?

3 Did you feel more comfortable with programming as the classes progressed?

4 Was it challenging to program with mBlock?

5 Were the proposed problems important for the development of reasoning skills?

6 Did the instructor support students in achieving success in solving activities?

7 Do you feel that this training will be useful for your future?

8 Would you like to continue programming mBots?

The number of participants fluctuated throughout the classes, with one of the groups
not attending the last session, resulting in a total of 44 responses to the final questionnaire.

Figure 11 presents the percentage of affirmative and negative answers to each of the
questions, with the discussion of results conducted in the following section.
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Figure 11. Answers from the last questionnaire applied to participants in the training focused on
teaching robotics through mobile robotics kits (mBot 2).

5. Discussion

Regarding the intervention with the students from the vocational school, based on
the results of the first questionnaire (Figure 10), it was found that most students have had
previous contact with robots. About 70% claimed to have programmed a robot, and 64.3%
had worked with sensors during their academic journey. However, only a few students
reported working with encoder motors (less than 4%). The aforementioned finding suggests
that the participants’ familiarity with advanced robotics components was very superficial.
While many of them possessed knowledge regarding the sensors present in the mBot2 kit
and had a general understanding of their functioning, comprehending the concept of an
encoder motor proved to be more challenging due to its concealed nature. The limited
depth of their knowledge was consistently observed throughout the classes.

A minority of students had previous experience with Scratch or any block-based
programming language. Through dialogue with the students, it became evident that they
had not explored control structures such as loops and conditions (if statements) in their
programming endeavours, which demonstrates a lack of familiarization with the concept
of the algorithm.

Although the first questionnaire consisted of direct yes/no questions, the complemen-
tary dialogue with the students helped to understand that they had a very basic level of
programming knowledge.

The focus of the second questionnaire was not to assess the student’s knowledge, as
the training duration did not allow for continuous progress evaluation. The objective was
solely to understand how the methodology used inspired the students to learn robotics and
whether there is an interest in exploring this field in the future. The majority of students
(66.1%) expressed a desire to continue programming mBots 2 if given the opportunity.
Even the teachers showed interest in acquiring the mobile robotics kits. Regarding dif-
ficulty, 23.2% admitted to experiencing difficulty in completing the activities, but 64.3%
acknowledged that the difficulties decreased as the classes progressed.

Regarding the methodology, 69.6% believed that the proposed problems were impor-
tant for the development of reasoning skills, and 75% agreed that the support provided
during the classes contributed to the successful completion of the activities, stimulating
participation and allowing students time to reflect on the problems. This compilation of
results concludes with a large majority of participants (67.9%) recognizing that the course
was useful for their future, whether it be in academia or their professional careers. One
of the main objectives of the training, besides promoting critical thinking and interest in
robotics, was to foster teamwork. This objective was relatively successful, with 76.8% of
students stating that they enjoyed solving challenges in groups.

From the short STEM courses, although there are no measured results for students’
performance in this activity, there are noteworthy observations. Namely, the high level of
student engagement during the activity, visible enjoyment in their facial expressions, and,
finally, a common difficulty that emerged: the challenge of adopting the robot’s perspective
when attempting to move backward on the terrain.
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6. Conclusions

Many students have experience as users in interacting with new technologies. Tech-
nology has the potential to foster discovery and learning both inside and outside the
classroom. There are a set of computational thinking skills that can benefit from this ap-
proach to technology, and the purpose of a robotics discipline is to empower students to
solve problems.

In the classes taught, the aim was not to follow traditional teaching methods, where
the teacher is seen as the holder of knowledge and the student as the receiver. Instead of
using expository teaching and one-way communication, there was constant sharing and
clarification of doubts, making the pace of the class dynamic and preventing students from
getting distracted from the proposed tasks [22].

During the classes, the importance of developing various problems of increasing
complexity was highlighted. In solving the final problem, students applied the knowledge
acquired during the training and expanded their horizons, promoting autonomy.

The choice of educational robotics was made to reinforce skills, promote interdis-
ciplinary learning, foster computational thinking, reasoning, creativity, and persistence,
and engage students in developing other necessary competencies in the development of
automotive engineering.

In the first two classes, there was some difficulty in implementing loops in general, as
well as in combining the line sensor with the ultrasonic sensor, as students had to prioritize
the information received by one of the sensors so that the robot could make decisions
without conflicting with other instructions. In the last class, perhaps due to the complexity
of the final challenge, competitiveness diminished, and a cooperative environment emerged
among some groups with the common goal of finding a strategy capable of navigating the
entire maze regardless of its configuration.

Although some groups were able to navigate the maze with the robot, the defined
strategy was not infallible. Some configurations were impossible to solve, so students
would need more time and classes to achieve a solution capable of resolving any scenario.
Based on the previous observation, the importance of time in this type of activity is em-
phasized. Students need many classes to gradually acquire knowledge, as programming
is a discipline perceived as difficult not only by secondary school students but also by
university students. The innovative use of 3D-printing technology empowers educators to
craft fascinating add-ons that capture students’ imagination and encourage active involve-
ment in the learning process. These engaging additions spark curiosity and enthusiasm,
effectively igniting a passion for exploration and discovery. Moreover, the inclusion of a
well-equipped workspace further augments the educational experience. It allows for the
construction of dynamic scenarios, enabling educators to design challenging activities that
test students’ critical thinking skills and creative problem-solving abilities. The synergy
between 3D-printing technology and the adaptable workspace creates a favourable envi-
ronment for fostering a deeper understanding of complex concepts and promotes active
student participation.

Overall, the described methodology represents a forward-thinking approach to ed-
ucation, connecting the potential of cutting-edge technology to create an immersive and
enriching learning experience. By leveraging 3D printing and a versatile workspace, educa-
tors can effectively teach a new generation of engaged and knowledgeable learners.

Still, it is fundamental to include diverse data collection methods to comprehensively
assess the impact of educational robotics. The constraints posed by the second question-
naire, resembling the format of the first one with only affirmative/negative responses, limit
the ability to conclude students’ advancements in critical thinking or reasoning abilities.
To address this, conducting real-world testing of all protocols within a classroom setting
becomes imperative. Employing weighted criteria, such as resolution time, teamwork
quantification, and evaluation of algorithmic skills and program construction, is essential
for the effective monitoring and measurement of students’ progress.
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It would be interesting to take football to another level by developing an autonomous
tournament. This approach would not only enhance the complexity of the game but also
provide an opportunity for students to engage in various disciplines and further their
understanding of subjects such as mathematics, physics, electronics, CAD (computer-
aided design), programming, collaborative robots, control systems, artificial vision, and
artificial intelligence.
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