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Abstract: Bio-mechatronics is an interdisciplinary scientific field that emphasizes the integration of
biology and mechatronics to discover innovative solutions for numerous biomedical applications.
The broad application spectrum of bio-mechatronics consists of minimally invasive surgeries, rehabil-
itation, development of prosthetics, and soft wearables to find engineering solutions for the human
body. Fiber-optic-based sensors have recently become an indispensable part of bio-mechatronics
systems, which are essential for position detection and control, monitoring measurements, compli-
ance control, and various feedback applications. As a result, significant advancements have been
introduced for designing and developing fiber-optic-based sensors in the past decade. This review
discusses recent technological advancements in fiber-optical sensors, which have been potentially
adapted for numerous bio-mechatronic applications. It also encompasses fundamental principles,
different types of fiber-optical sensors based on recent development strategies, and characterizations
of fiber Bragg gratings, optical fiber force myography, polymer optical fibers, optical tactile sensors,
and Fabry–Perot interferometric applications. Hence, robust knowledge can be obtained regarding
the technological enhancements in fiber-optical sensors for bio-mechatronics-based interdisciplinary
developments. Therefore, this review offers a comprehensive exploration of recent technological
advances in fiber-optical sensors for bio-mechatronics. It provides insights into their potential to
revolutionize biomedical and bio-mechatronics applications, ultimately contributing to improved
patient outcomes and healthcare innovation.

Keywords: bio-mechatronics; fiber-optical sensors; force myography; polymer optical fiber; optical
tactile sensors; Fabry–Perot interferometry

1. Introduction

The studies and research on bio-mechatronics and applications date back to the 1970s
and 1980s as an effort to address the theoretical and experimental issues, especially those
brought about by applications of mechatronics and robotics in the healthcare and medical
domains [1]. One of the main goals of recently popular research into bio-mechatronic
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systems for technology and scientific exploration is to learn more about the mechanisms that
drive biological systems. The current emphasis of bio-mechatronic research revolves around
the applications and activities in humanoid and bioinspired robots [2], such as human–
robot interaction [3], prostheses [4], endoscopic systems [5], minimally invasive surgeries
(MISs) [6], physical parameter monitoring [7], health monitoring [8], and rehabilitation [9].
The measurement system that senses physiological parameter changes is one of the most
crucial components of bio-mechatronic systems.

This measurement system typically consists of a sensor that detects changes in phys-
iological parameters and a signal-conditioning circuit. Accurately measuring dynamic
variables is crucial for the optimal operation of sensitive systems, such as bio-mechatronic
systems. Until now, only clinical settings have been able to effectively use the accurate
monitoring of physiological parameters since using sophisticated and complex technologies
incurs high costs and requires skilled employees [10]. Innovative sensor technologies have
recently been developed to deliver tools for bio-mechatronic systems that are non-invasive,
affordable, and tailored to address these drawbacks [11,12].

Fiber optics play a significant role in the development of bio-mechatronic systems
by providing non-invasive and accurate sensing capabilities. Optical fibers have unique
properties, such as high sensitivity, low noise, and electromagnetic interference immunity,
which make them ideal for monitoring physiological parameters in real time. These
advantages make optical fibers an attractive alternative to traditional sensors for measuring
a wide range of physiological signals.

In this account, the recent technological advancements of fiber-optical sensors (FOSs)
for bio-mechatronic applications will be reviewed. An overview of various optical fiber
sensors utilized in bio-mechatronics, operation principles, designs, and applications are
discussed. The challenges faced by current FOSs and the strategies employed to overcome
them will be examined. Additionally, the potential of FOSs to enhance the accuracy,
reliability, and affordability of bio-mechatronic systems is highlighted. This review is
divided into five main sections, which provide insights into various fiber-optic sensors
and their use in bio-mechatronic applications, contributing to the overall understanding
of advanced sensor technologies in the field. In Section 2, applications of fiber Bragg
grating (FBG) technology are discussed along with the fundamental applications. Section 3
discusses the use of force myography (FMG) sensors in various applications, while Section 4
mentions the use of polymer optical fiber (POF) sensors in different applications. Section 5
discusses the use of optical tactile sensors. In Section 6, the advantages and applications
of Fabry–Perot interferometry (FPI) fiber sensors are discussed. Finally, Section 7 outlines
the potential advancements in bio-mechatronics through advanced fiber-optical sensors
while addressing the limitations of fiber-optic sensors and emphasizing the need for further
development. Table 1 provides all abbreviations and their full meanings used in this study.

Table 1. List of abbreviations.

Abbreviation Definition

MIS Minimally Invasive Surgery
FBG Fiber Bragg Grating
SEM Scanning Electron Microscopy
CPC Calcium Phosphate Cement
CFRP Carbon-Fiber-Reinforced Polymer
FMG Force Myography
FSR Force-Sensitive Resistor
PDMS Polydimethylsiloxane
PLA Polylactic Acid
EMG Electro Myography
DAQ Data Acquisition Device
PVC Polyvinyl Chloride
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Table 1. Cont.

Abbreviation Definition

CCD Charge-Coupled Device
MMF Silica Multi-Mode Fiber
EDC Extensor Digitorum Communis
FDP Flexor Digitorum Profundus
AEP Abductor/Extensor Pollicis
RMS Root Mean Square
DNN Deep Neural Network
FSR Force-Sensing Resistor
POF Polymer Optical Fiber
POF-SG POF Strain Gauge

ALLOR Advanced Lower-Limb Orthosis for
Rehabilitation

ESG Electronic Strain Gauge
GRF Ground Reaction Force
PMMA Polymethyl Methacrylate
3D Three-Dimensional
RAMIS Robot-Assisted Minimally Invasive Surgery
LED Light-Emitting Diode
FEA Finite Element Analysis
CBR Constant Bending Radius
VBR Variable Bending Radius
MAE Mean Absolute Error
FPI Fabry–Perot Interferometry
MRI Magnetic Resonance Imaging
FP Fabry–Perot
OCT Optical Coherence Tomography
SMF Single-Mode Fiber
TDM time-division multiplexing
DOF Degrees of Freedom
ANN Artificial Neural Network

2. Fiber-Bragg-Grating-Based Instrumentation

At the forefront of optical sensing technologies, the FBG stands as a remarkable
innovation. The FBG is a distributed Bragg reflector, which is formed by exposing the core
of the fiber. Fiber Bragg grating sensors have gained considerable. Moreover, FBG sensor
arrays can be fabricated by connecting multiple FBGs to different wavelengths in series
along the length of a single fiber, which enables the acquisition of strain data at several
points along the fiber. Recently, femtosecond laser technology was explored for fabricating
microstructures, including FBGs [13]. It is worth noting that the biocompatibility and
versatility of optical fiber sensors specifically refer to the capacity of FBG sensors to operate
effectively in diverse biomedical applications, accommodating a broad range of strain
levels. Optical fiber sensors incorporating FBGs have been widely used as strain sensors to
measure various parameters and monitor prosthetics in biomedical engineering.

The refractive index within the core of an optical fiber is periodically modulated in
the formation of FBGs (Figure 1). This is achieved through exposure to an intense optical
interference pattern, creating a resonant structure that reflects a Bragg wavelength [14,15]
while all the other wavelength components move through the FBG. The Bragg wavelength
λB can be expressed as [16]

λB = 2Λneff

where neff is the optical fiber’s effective refractive index, and Λ is the grating period.
When the grating is exposed to external disturbances, such as strain and temperature, a
change occurs in the Bragg wavelength. Physical properties can be measured by precisely
measuring this wavelength change [14]. The recent technological efforts to functionalize
FBGs for minimally invasive surgery applications are discussed in Section 2.1.
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Figure 1. Fiber core and cladding of an FBG have distinct refractive indices. The FBG’s exposure
to external turbulences, such as strain and temperature, alters the Bragg wavelength, which will be
back-reflected while other components of the wavelength will pass through the FBG. (a) The incident
light is transmitted through the FBG, and a narrow band is back-reflected. (b) Shifted back-reflected
band after applying external disturbances (adapted from [17]).

2.1. Minimally Invasive Surgeries (MISs)

MISs provide significant benefits for patients, such as reduced blood loss, less pain,
faster recovery, and reduced infection rates. Thus, MIS has become a desirable alternative
to conventional open surgeries in many surgical procedures [18,19]. Here, the surgeries
are performed on organs by inserting specially designed instruments through small ac-
cess points on the patient’s skin into the body cavities and blood vessels [20]. However,
emerging MIS systems have major limitations, such as the absence of force feedback during
instrument–tissue interaction [20–23]. Therefore, surgeons solely rely on pseudo-haptic
feedback [24] or visual force feedback [19] to perform the surgery. The precision and
accuracy of the measured force are debatable in most cases because of internal friction in
the tools and contact friction between the trocar and the tools. Undesired forces created
by body cavities cause the forces perceived at the instrument to be greater than the actual
force at the tip of the device [22,25].

Pouya Soltani Zarrin et al. developed a stainless-steel sterilizable grasper with two
degrees of freedom (DOF) for a laparoscopic needle to sense grip and axial forces with
high accuracy and resolution [22]. Its sensorized grasper consisted of two jaws, and each
grasper jaw comprised deformable and fixed parts to increase axial sensitivity. A 3 mm
FBG sensor was embedded into the lower jaw of the grasper. It was used to measure axial
forces at the tip of the instrument, where embedding those sensors eliminates the effects
of undesirable forces in the perceived axial force reading. For measuring grasping forces,
an 8 mm FBG sensor was attached to the lower jaw with the help of glue. A force/torque
sensor (F/T) was used to calibrate the axial and grasping sensors, and computer software
was used to acquire and manipulate each sensor’s information. Given the force stimuli, the
grasping and axial FBG sensors show that 0.19 N (range, 0–10 N) and 0.26 N (range, 2–5 N)
were the total root-mean-square (RMS) errors with the repeatability of 0.21 N and 0.35 N.

Moreover, Changhu LV et al. developed a palpation force sensor based on FBGs to
inspect tissue abnormalities with high sensitivity and large sensing range in the course of
robot-assisted minimally invasive surgery, as shown in Figure 2 [18].

The sensor incorporates two main components: a force-sensitive flexure based on
the mechanism of sarrus linkage and a suspended optical fiber embedded with a 5 mm
FBG element.

Figure 3a FBG interrogator with a sampling rate of 100 Hz and a wavelength resolution
of 1 picometer (pm) was used to obtain the reflected wavelength that corresponds to the
induced strain. In static force calibration, axial forces ranging from 0 to 5 N at 0.5 N
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intervals were applied, with corresponding FBG reflective wavelengths recorded. This
process was repeated six times, and the average values during each loading step determined
the force–wavelength relationship, shown in Figure 3b.
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Figure 3. (a) Experimental configuration for force calibration of the designed sensor. (b) Calibration of
the relationship between the exerted force and the reflective FBG central wavelength. (c) Comparison
of force values measured from designed FBG and force/torque sensor along the Z-direction and it
exhibits measured force values of FBG sensor noticeably follows commercially available torque/force
sensor values, which validate the precision of the designed sensor (adapted from [18]).

As emphasized in Figure 3c, the axial sensitivity value hit 392.17 pm/N with a resolu-
tion of 2.55 mN, making it very easy to detect tissue abnormalities precisely. The axial force
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values measured from the prototype sensor are in tune with the commercially available
T/F (torque/force) sensor. The T/F sensor was used to calibrate the prototype sensor, and
the experimental data showed a linearity error of 0.97%, validating FBG’s potential use for
efficient force sensing in minimally invasive surgeries.

2.2. Fiber-Bragg-Grating-Instrumented Rehabilitation

The potential applications of FBG technology in rehabilitation encompass a wide
range of functions. These include strain detection in bones, monitoring of bone cement,
measurement of contact forces, and pressure mapping in orthopedic joints. Additionally,
FBG technology can be utilized for assessing pressure distribution in intervertebral discs,
monitoring chest wall deformation, and measuring forces within tendons and ligaments.
It also aids in evaluating forces occurring at various angles between body parts during
the gait cycle [26–28]. A. Bimis et al. measured induced strain during the hardening stage
of self-setting calcium/phosphate bone cement using an embedded fiber Bragg grating
sensor with a 1 mm grating length [29]. Two different cylindrical bone cement samples
with embedded FBGs were created, and during the hardening process, an interrogator was
used to record the peak wavelength with an interval of 24 h. Once the hardening process
was completed, both specimens were exposed to different kinds of wet environments to
gain weight while recording peak wavelengths. To assist the understanding of the FBG
results, scanning electron microscopy (SEM) imaging was performed, and any change in
the morphological structure of bone cements occurred at the curing step. Finally, after the
hardening process, FBG sensors were used to obtain hygroscopic strains. As illustrated in
Figure 4, the strain measurements show two different linear responses, which implies good
adaptation and compatibility between calcium phosphate cement (CPC) and integrated
FBG sensor, confirming the potential applicability of FBGs to investigate the kinetics of CPC.
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Figure 4. Induced strain during the hardening stage of 2 CPC specimens, namely Sample A and
Sample B, revealed comparatively large compressive strains in the beginning. Over time, the strain
became much smaller following two distinct linear paths of strain relief (adapted from [29]).

Ali Najafzadeh et al. investigated the efficacious layout of FBG with respect to the
fracture position and implant plate for future works [30]. For the intact femur, three FBGs
were placed close to the proximal, middle, and distal regions of the femur surface using
adhesives, as shown in Figure 5. A greenstick fracture of 30◦ was introduced in the femur
in another experiment and fixed using a three-hole implant bone plate. Figure 6 illustrates
a plated femur with three FBG sensors attached at different locations longitudinally close
to the fracture. Two more FBG sensors were glued to each end of the femur to compare the
fractured femur with the intact one.
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Figure 6. Plated femur with a greenstick fracture of 30◦ and fixed using implant bone plate. The
figure shows the total of 5 longitudinal FBGs attached to the fractured femur and a total of 7 coiled
FBGs employed in the final test to measure strains (adapted from [30]).

In the final test, a coiled FBG array with five and seven gratings was attached to the
intact and fractured femur, respectively. For all the tests, a compression loading of under
300 N was applied to both femurs and bone strain was recorded for the femoral cortex and
implant plate, as shown in Figures 7 and 8. The sensor showed a precise linear response
over various loads. The higher sensitivity and the compact size of FBGs compared to the
conventional strain gauges made it simpler to measure bone strains than conventional
strain sensors, suggesting the successful implementation of FBGs for monitoring strain
in bone.
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2.3. Fiber Bragg Gratings for Prostheses

The prosthesis is a manmade device that is used to replace missing body parts or
make a body part work better. With rapidly increasing amputation incidences, the need
for research and development in prostheses has become critical [31,32]. To introduce the
adoption of FBGs in prostheses, José Rodolfo Galvão et al. proposed a strain mapping of
carbon-fiber-reinforced polymer (CFRP) lower-leg prostheses at different positions using
FBG sensors [33]. After the development of a CFRP below-knee prosthesis using 65 layers of
both bidirectional and unidirectional carbon-fiber fabric, eight FBG sensors were embedded
in the last five layers and placed in a row perpendicular to the stress applied to monitor
different stress points along the CFRP. To test the prosthesis, a candidate with a body
weight of 90 kg attached the prosthesis and walked at a speed of 0.5 m/s. A comparison
between the stress distribution of a loaded and unloaded prosthesis was conducted. FBGs
displayed different strain responses according to their positioning in the prosthesis. For
example, FBGs located at the distal end showed a weaker strain value in comparison. The
experiment showed the applicability and effectiveness of FBGs in measuring strain in the
below-knee prosthesis [33].

3. Force-Myography-Based Sensors

In the domain of sensors based on FMG, obtaining accurate data about limb position,
orientation, and motion is crucial. This data plays a pivotal role in analyzing physical
activities and advancing human–machine interface technologies, as emphasized in Ref-
erence [34]. Such information can be accomplished using optical tracking like camera
technologies or wearable approaches to monitor limb movements. Comprehensive infor-
mation, such as posture and applied forces, can be obtained using wearable approaches,
which depend on FMG and have drawn the attention of researchers over the past couple of
decades [35–37]. Creating FMG sensors involves developing force transducers to register
the signals in their analog form and then converting these signals into digital form for
further processing [34]. FMG is a non-invasive technique that is used to track functional
movements and the position of the limb. It detects variations in the radial pressure and
stiffness caused by muscle movements by placing FMG sensors (force transducers) on the
selected positions with a default force [34,38].

3.1. Measuring Muscular Contraction

Alok Prakash et al. extracted information about muscle contraction using a novel dual-
channel FMG sensor using a force-sensitive resistor (FSR) with high accuracy for controlling
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the hand prosthesis [39]. The sensor incorporates three main components: an FSR, an
elastomer coupler made of polydimethylsiloxane (PDMS), and a printed assembly made of
polylactic acid (PLA). The FSR is liable for uniform transmission of force across the FRS’s
sensing portion and gives output according to the volumetric change in muscle. To ensure
consistent output from the FSR, elastomers are employed to evenly distribute muscular
contractile forces across the sensing area. To prevent undesired bending and ensure even
force distribution across the sensing area, the firm PLA base offers essential back support
for the FSR plate. For the output analysis, FMG sensor measurement and electromyography
(EMG) signals from the flexor muscles of eight subjects were simultaneously acquired using
a data acquisition (DAQ) device at a sampling frequency of 2 kHz, and a two-tailed paired
t-test was performed to compare the similarity between these two signals. The FMG sensor
performed faster real-time control of a prosthetic hand in comparison to the traditional
EMG sensor, with successful testing on five subjects.

3.2. FMGs in Posture Detection

In work by Eric Fujiwara et al., an FMG sensor based on the micro bending effect was
used to assess muscular activities related to five hand postures for four human subjects [40].
The FMG sensor used consists of a pair of polyvinyl chloride (PVC) plates, where both
plates enclose graphite rods, which are placed in a periodic arrangement with 10 mm
periodicity. The upper deformer plate is attached to a silica multi-mode fiber (MMF) with
light-emitting diodes (LEDs). A sufficient bending in the MMF will induce a change in the
optical intensity of modulated light facilitated by the corrugated transducer. This change
can be measured using a charge-coupled device (CCD) camera and processed in MATLAB.
Three FMG sensors, which were placed on the subject’s forearm, were used to detect the
variations in forearm movements by monitoring the extensor digitorum communis (EDC),
the flexor digitorum profundus (FDP), and the abductor/extensor pollicis (AEP) muscles.
The system was designed to identify five postures. Artificial neural networks (ANNs)
were employed to link postures with intensity signals in this study. A virtual manipulator
was used to validate the applicability of the developed FMG sensor in the control of a
prosthetic hand. The results confirm that virtual manipulator responses are by the FMG
sensor commands in real time, which implies good adaptation of developed FMG sensors
to detect hand postures with higher accuracy. Furthermore, employing a multimodal
human–robot interaction (HRI) strategy can improve both the resilience and authenticity of
prosthetic hand manipulation [41].

3.3. Force Myography Sensors in Human–Robot Interaction

A collision monitoring system was developed by Mohammad Anvaripour et al. using
FMG of the hand of a worker and robot’s dynamic parameters with the aid of eight FMG
sensors [42]. Deep neural networks (DNNs) were incorporated to ensure a reliable human–
robot interaction with no unnecessary collision during the work in the industry. The FMG
sensors are based on force-sensing resistors (FSRs) planted to a band, which can be worn
on a human hand to detect signals induced by muscle movements during interactions
with the robot. In addition to that, robot dynamic parameters were also detected to find
the human–robot interactions separately. By combining both the detected signals using a
deep network, the researchers have been able to accurately classify between intended and
unintended collisions and, based on that, a valid decision made to ensure a safe human–
robot interaction. The overall results exhibit an impressive accuracy of 90% with an average
detection delay of 0.2 s for this method, which validates the efficacy of the proposed method
in collision monitoring during human–robot interaction.

4. Polymer Optical Fiber Sensors

Numerous important fields, such as industrial [43], medical [44], security [45], health
monitoring, and physical parameter detection applications [46], use optical fiber-based
sensing systems [47]. Silica and polymer optical fibers are the two major types of optical
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fibers (POFs) [48]. Recently, a much simpler manufacturing process, compared to con-
ventional and other 3D printing techniques, was introduced for POF sensors. It uses 3D
printing to create POF sensors. It involves adding thermochromic powders to a resin,
resulting in fibers that change color when heated or cooled. These fibers are evaluated for
their properties and can be used as cost-effective temperature sensors [49]. The material
characteristics of POF sensors, such as high elastic strain limits, fracture toughness, high
flexibility in bend, lower Young’s modulus (facilitating high sensitivity for mechanical
parameters), impact resistance, and relatively low cost, provide additional benefits. Owing
to these benefits, several POF-sensor-based applications have been presented in this section.

4.1. Polymer Optical Fiber Sensors in Rehabilitation

The creation of a POF strain gauge based on light coupling for lower limb rehabilitation
was conducted by Arnaldo G. et al. [50]. The system comprises POF strain gauges (POF-
SGs), namely “illuminated” and “non-illuminated”, in which the alignment difference
between two POFs causes power attenuation when there is a deflection. Following the first
characterization experiment, which was conducted to characterize the sensor behavior, two
POF-SGs were used on a knee orthosis with a knee rehabilitation device called advanced
lower-limb orthosis for rehabilitation (ALLOR) for flexion and extension exercises of
knee rehabilitation (Figure 9). The flexion–extension movement is assisted by ALLOR,
which consists of an admittance controller that can actively adjust the system’s mechanical
impedance by changing the device stiffness, damping, and inertia based on feedback from
the electronic strain gauge (ESG). The degree of this assistance ranges from 1 (highest
assistance) to 10 (lowest assistance) of the ALLOR, depending on the user’s movement. The
POF-SGs are positioned on the orthosis. Therefore, the POF-SG 2 is triggered and displays
a higher power variation when the knee joint flexion movement is made. Conversely, the
POF-SG 1 exhibits the greatest variance during the knee extension movement (Figure 10a).
ESG is commonly used as a strain gauge in knee rehabilitation devices in robotics. In
comparison with ESG, the proposed sensor showed lower variations. In the tests conducted
on each of the 10 levels of assistance permitted by the controller (Figure 10b), it was
validated that advantages can be provided by POF-SGs on the rehabilitation exercises and
the inner controller of the rehabilitation device.
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4.2. Polymer Optical Fiber Sensors for Gait Analysis

In-shoe plantar pressure measurements are made possible by the properties of POF.
Arnaldo G. et al. presented an in-shoe measurement device for monitoring the vertical
ground reaction force (GRF) during the gait cycle [51]. The system is composed of an
insole comprising four POF sensors made of polymethyl methacrylate (PMMA), and sensor
placements are selected based on the areas of the insole with higher plantar pressure
during gait. Due to the viscoelasticity of the polymer, the polymer’s response to stress or
strain is not consistent. Hence, a compensating mechanism for this effect is also suggested.
Sensors are connected to the light source, and each sensor has a sensitive zone that curves
as it is influenced by a plantar pressure. This causes an output power variation (which
can be detected using a photodiode and a transimpedance amplifier) proportionate to
the curvature’s angle. The presented quasistatic tests indicate the sensor’s viability for
measuring the vertical GRF during a gait cycle and the ability to recognize gait events
throughout the stance phase.

4.3. Polymer Optical Fiber Sensors in Health Monitoring

To monitor sleep performance, Pengfei Han et al. examined the use of POF pressure
sensors implanted in mattresses to evaluate respiratory and heart rate while proposing a
method to increase pressure sensitivity by cutting fiber cladding and the portion of the core
uniformly at 10 cm intervals [52]. The system can be broken down into three components:
data processing, circuit design, and optical fiber mattress design (Figure 11).
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For sleep assessments, behavioral monitoring participants were asked to stay in four
different stages, and the highest points of the energy spectrum were measured every 30 s
(Figure 12). Another experiment proposed placing fibers on the second, fifth, and seventh
ribs to confirm the impact of various positions on the mattress while the participant was
constantly lying on his or her back, and each position’s data was gathered for 30 s. The
third test required participants to lie on the mattress in one of four positions, supine, left,
right, or prone, to determine the impact of various sleeping postures on the sensor, and
each posture’s data was gathered for 30 s (Figure 13). Results show that the maximum
relative errors are 6.7% and 2.4% for breathing rate and heart rate, respectively, which
implies a good adaptation of the developed system for sleep performance monitoring with
different sleeping postures with higher accuracy.
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Figure 12. Power spectral density of four behavioral stages for sleep monitoring. The spectral energy
is minimal when not in bed. The energy increases when lying still on the mattress, primarily by
breathing and heartbeat. Slightly higher spectral energy compared to just lying when a person moves
in bed. The spectral energy rapidly diminishes as they depart the mattress (adapted from [52]).
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there are fewer heart rate signals in this situation. Positions 1, 2, and 3 have breathing rate and heart
rate measurements that are somewhat near normal ranges. (c,d) Time series and power spectral
density of different postures; in any posture, the respiratory signal is obvious. Due to the asymmetry
of the heart’s placement within the human body, the right-side laying position produced the weakest
heartbeat signal performance, while the supine and left postures demonstrated a more pronounced
heartbeat signal performance (adapted from [52]).

5. Optical Tactile Sensors

The field of tactile sensor technologies includes capacitive sensors [53], piezoelectric
sensors [54], piezoresistive sensors [55], quantum tunneling composites [56], and optical
sensors [57,58]. These sensors come in all sizes and shapes, while some are commercially
available and have been used for robotic manipulations. Their technologies have a diverse
range and can be based on task-dependent designs [59]. The creation of Optical Tactile
sensors involves complex steps, including microstructured surfaces, photodetectors, and
precise calibration. These sensors are critical for precise tactile feedback in robotics, medical
devices, and industry. Ongoing research is driving improvements in their accuracy and
versatility [60].

5.1. Tissue Distinction and Discontinuity Detection in Minimally Invasive Surgeries

Robot-assisted minimally invasive surgery (RAMIS) is opening a new horizon for
healthcare providers seeking a reliable solution for remote surgeries, but losing the sense
of touch is a major shortcoming in RAMIS [61–65]. Due to the lack of haptic and tactile
feedback, haptic feedback systems were introduced as a part of RAMIS units by Naghmeh
M. Bandari et al. [66]. In this account, A hybrid force sensor was designed, modeled, simu-
lated, fabricated, and experimentally verified to address the common problem of accurate
force measurement in RAMIS applications. The sensor was fabricated using micromachin-
ing technology, whereby a V-groove, which serves as a foundation for integrating optical
fibers, was bulk micromachined on the bottom surface of the beam via an anisotropic wet
etching process.

Naghmeh M. Bandari proposed a hybrid force sensor, which uses the sensing principle
of piezoresistivity to estimate the deformation in the tissue and directly measure the
contact force and intensity modulation in optical fibers (Figure 14a). The force sensor
incorporates two piezoresistive force sensing elements, eight silicon structural elements,
and two separate optical fibers. Each piezoresistive element consists of two copper shell
electrodes and a piezoresistive film. When one of the optical fibers was connected to a
light source, the other was connected to a photodetector [67]. The schematic of the three-
dimensional (3D) hybrid force sensor is shown in Figure 14b. The basic sensing concept
behind this design was to measure the loss of gap power by comparing the input power
(Pi) of the first fiber with the output power (Po) of the second fiber (Figure 14c).

Figure 15 illustrates the schematic experimental system, depicting the entire proposed
system along with its DAQ. The lower jig of the testing machine was secured and equipped
with a force sensor, while the upper jig was movable and featured a displacement sensor.
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Figure 14. The schematic of the tissue and sensor with and without contact load applied from
the gripping surgical tool. (a) Schematic of tissue and sensor with/without load from the surgical
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(c) Schematic of de-formed sensor beams and detailed view of the gap between optical fibers and
angular misalignment formation (adapted from [66]).
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To validate the simulations, a series of experiments were conducted under identical
conditions. Figure 16a compares the estimated changes in voltage output of the photodetec-
tor obtained through finite element analysis (FEA) with the measured voltage changes from
experiments in simulation. Figure 16b illustrates measured changes in voltage from actual
experiments conducted using the proposed sensor for three different tissue phantoms.
The force ratio variation with respect to the location of the mass is shown in Figure 16c.
Figure 16d illustrates a hidden mass in motion towards a piezoresistive film, causing a
change in the force ratio. A higher ratio indicates proximity to the left film.
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Figure 16. The estimated force between the tissue phantoms and the sensor (left axis) and the
output voltage of the photodetector (right axis) obtained from the (a) simulation and (b) experiments.
(c) Variation in the force in the left and right piezoresistive film with a hidden mass located at
d = 5 mm and (d) variation in the ratio of forces as a function of the location of the hidden mass
(adapted from [66]).

This proposed optical setup acquires data based on optical principles with the piezore-
sistive elements, providing a comprehensive and accurate evaluation of tissue properties
and discontinuities during surgical procedures. This hybrid force sensor addresses the limi-
tations of traditional tactile feedback in robot-assisted surgery and enhances the precision
and safety of medical interventions.

5.2. Learning-Based Nonlinear Calibration for Miniaturized Optical Force Sensors

As the previous section described, loss of tactile information and lack of direct access
to the internal organs are the most critical limitations of MIS, which can cause excessive
or insufficient grasping force [60,68–72]. Therefore, to address this issue and improve the
accuracy, dexterity, and instrument control, a simple and miniaturized optical tactile sensor
to integrate MIS graspers is proposed by Naghmeh M. Bandari et al. [73]. To fabricate the
sensor components, 3D printing technology was used with flexible, clear, and white resins.
The sensor consists of a flexible shell fixed at both ends on a substrate. The shell had a
small semi-circular indenter at the midspan of its bottom surface with a radius of 0.5 mm.
A single-mode optical fiber was passed through the two substrates under the indenter and
fixed (glued) to the substrate at both ends. One end of the optical fiber was connected
to a light source with constant power, while the other end of the fiber was coupled to a
photodetector to capture the transmitted power. Previous research studies have explored
bending power loss in an optical fiber using the analytical frameworks postulated in the
literature [74–78]. It was assumed that the fiber undergoes a constant bending radius
(CBR) deformation. However, the CBR requirement has limited the scale of miniaturization.
To address this, a variable bending radius (VBR) principle was introduced, allowing for
further miniaturization. As suggested in [79], the calculated mean absolute error (MAE)
has obtained excellent accuracy while meeting the requirements for reliable force measure-
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ments in MIS applications. The rate-dependent calibration has effectively captured and
compensated for the hysteresis, leading to accurate results. The standard deviation of peak
force for repeatability and the average difference between consecutive force estimations for
resolution also met the requirements for tactile sensors in MIS applications [66,80,81].

6. Fabry–Perot Interferometry Fiber Sensor

Optical-sensor-based FPIs have been extensively studied because of their tunability
and the potential to amplify signals through resonance. In recent years, FPI sensors
have gained recognition as highly promising optical fiber sensors. They are preferred for
their accuracy, simplicity, adaptability, responsiveness, and ability to work well in noisy
environments. Fabrication of Fabry–Perot interferometry fiber sensors is a complex process
involving precise etching, gap formation, and protective coating. Ongoing research aims to
improve their manufacturing techniques for greater accuracy and versatility. These sensors
operate by measuring the interference of light waves between two mirrors, one of which
is partially transparent. By adjusting the distance between the mirrors, the sensor can be
tuned to a specific wavelength, allowing for precise measurement of physical parameters
such as strain, temperature, and pressure. Due to their high sensitivity and accuracy, FP
interferometric sensors have been used in a wide range of applications, including structural
health monitoring, industrial process control, and biomedical research [82]. Despite their
advantages, the commercial growth of FPI sensors has been limited by difficulties in device
fabrication. These sensors are typically fabricated using air–glass reflectors, in-fiber Bragg
gratings, or semi-reflective splices.

The Bragg grating structure is created within the core of an optical fiber made of
germanosilicate by utilizing an Arion laser to induce a periodic change in the refractive
index [83]. Optical fiber sensors are being widely developed due to their numerous advan-
tages over conventional sensors. These advantages include the ability to operate effectively
in harsh or hostile environments, high sensitivity to various physical and chemical parame-
ters, resistance to electromagnetic interference, and potential for multiplexing. As a result,
optical fiber sensors are being used in a wide range of applications, including structural
health monitoring, environmental monitoring, medical diagnostics, industrial process
control, etc. [84]. Recently, there has been a significant focus on embedding optical fiber
sensors into composite materials to measure strain, temperature, and vibration in various
structures such as spacecraft and airplane wings. This is due to the many advantages of
optical fiber sensors, such as their ability to withstand harsh environments, high sensitivity,
and resistance to electromagnetic interference.

There are two broad types of FPI fiber sensors: intrinsic and extrinsic. Intrinsic sensors
use an optical fiber itself as the sensing element, while extrinsic sensors use a separate
structure to measure physical parameters. Recent developments in all types of FPI fiber
sensors have led to significant advancements in their performance and capabilities. FPI
optical fiber sensors have been utilized in numerous applications across various fields.
They have been used for aircraft jet engine monitoring, where inflammable materials and
high voltage electricity exist, as well as for smart structure monitoring, seismic and sonar
applications, the oil industry, downhole measurement in oil wells, fiber optic gyroscopes for
navigation purposes, acquiring information from small complex structures, biomechanics
and rehabilitation engineering, and biological and chemical sensing. Despite the challenges
in fabrication, the potential of FPI fiber sensors continues to drive research and development
in this field [85].

Moreover, interferometer-based fiber-optic sensors have been utilized in various
applications since the 1980s. These sensors can measure physical parameters by detecting
changes in the interference pattern of light that travels through an optical fiber. As a
result, interferometer-based fiber-optic sensors have been implemented in diverse fields
such as aerospace, civil engineering, and biomedical research, among others. Optical
coherence tomography (OCT) is an alternative method, which is mainly operated based
on fiber optics and mechatronics [86–91]. This emerging opto-mechatronics technology is
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analogous to ultrasound imaging, except that it uses light instead of sound. Moreover, OCT
can provide cross-sectional images of tissue structure on the micron scale in situ and in real
time. Therefore, OCT has been extensively applied for medical, agricultural, and industrial
applications [86,92–100].

6.1. FPI Sensor Fabrication Methods Using Fabry–Perot Interferometers

Several varieties of optical fibers have been used for the development of FPI sensors.
Yoshino et al. fabricated an FPI sensor using single-mode fiber (SMF) by optically polishing
and coating the two end faces with a multilayer of dielectric films. The single two-core fiber
was employed to develop Fabry–Perot interferometric sensors for concurrent comprehen-
sive measurement of temperature and strain. This FPI is made up of a pair of low-reflection
Bragg gratings that are holographically written with a time-division multiplexing (TDM)
technique. Various interesting and challenging FPI fabrication methods can be found in the
literature [85,101–103].

6.2. Sensing Applications of Fabry–Perot Interferometers

FPIs excel in temperature sensing, mechanical vibration detection, acoustic wave
sensing, ultrasound imaging, voltage monitoring, magnetic field measurement, pressure
sensing, strain measurement, flow velocity monitoring, humidity sensing, gas detection,
and liquid level sensing. The precision and sensitivity of FPIs make them essential in
modern technology and research, playing a vital role in advancing various fields.

6.3. Phantom Study of a Fiber Optic Force Sensor Design for Biopsy Needles under Magnetic
Resonance Imaging

One of the major problems in a biopsy operation is needle deflection during insertion.
The needle deflection can be detected immediately through sudden fluctuations in continu-
ous force measurement if a biopsy needle has an embedded force sensor. Fiber optic force
sensors can be used under magnetic resonance imaging (MRI) without causing any danger
or disruption to the MR image. Applied axial force measurement during needle guidance
can be performed by FPI-based fiber optic force sensors, which can be integrated into the
biopsy needle tip [104–107].

6.4. In-fiber Fabry–Perot Interferometer for Strain and Magnetic Field Sensing

Greice et al. conducted a comprehensive study on FPIs, which primarily focused
on the application of FPIs in strain sensing, with a particular focus on scenarios where
temperature variations can potentially impact the accuracy of strain measurements [108].
Researchers used a Fujikura FSM-30S fusion splicer to create cylindrical air cavities by
splicing short sections (25–650 µm) of capillary fiber between standard SMF. The splicing
procedure involved attaching a long section of the capillary fiber to a single-mode fiber,
cleaving the capillary fiber under an optical microscope to achieve the desired air-cavity
length, and then splicing the cleaved side of the capillary fiber to another single-mode fiber.
Typical images of air cavities were shown, with lengths of 25 µm (Figure 17a) and 200 µm
(Figure 17b). The paper also explores the use of in-fiber FPIs in magnetic field sensing. Two
configurations were proposed for magnetic field sensors based on in-fiber FPIs. The first
configuration involved attaching the FPI to a magnetostrictive material, and the second
configuration involved placing the FPI inside a small magnet.

The researchers explore the capabilities of FPIs based on capillary optical fibers, com-
paring them with FBGs. The team conducted experiments to measure the temperature and
strain sensitivity of FPI sensors with different air-cavity lengths. The study reveals that
FPIs offer lower sensitivity to temperature changes, as their wavelength shift is directly
proportional to the thermal expansion coefficient, observing temperature sensitivities in
the range of 0.8 pm/◦C to 1.1 pm/◦C, whereas the sensitivity of FBG was ~12 pm/◦C (Fig-
ure 18a). Additionally, the FPIs (air-cavity length of approximately 25µm) demonstrated
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remarkable strain sensitivity, with a response approximately 9.5 times higher than that of
FBGs (Figure 18b).
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Figure 18. (a) The relationship between wavelength shift and temperature is examined for an FPI
with an air-cavity length of L = 25 µm (λ0) and a standard FBG (∆λβ) (b) The impact of longitudinal
strain on the in-fiber FPI is investigated by analyzing the wavelength shift (λ0) in response to applied
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The proposed two configurations for magnetic field sensors using FPIs, each proving
highly sensitive and outperforming FBG-based counterparts. One configuration involved
attaching the FPI to a magnetostrictive material, achieving a sensitivity of 44 pm/mT. The
second device, a magnetic force sensor, attained a calibration of 1.82 nm/N, demonstrating
superior sensitivity compared to FBG-based sensors. These findings underscore the versa-
tility of FPI sensors in addressing some unique demands of bio-mechatronics applications,
where temperatures often challenge the precision and accuracy of optical sensors. Table 2
provides an overall table of the reviewed techniques, comparing each sensor.

Table 2. Fiber-optic sensors for bio-mechatronics applications.

Fiber-Optic Sensor Type Key Features Limitations Typical Applications References

FBG High sensitivity,
compact design

High cost, design
complexity

Strain detection,
prosthetics [14–33]

FMG Accurate limb
movement monitoring

Requires further
wearable development

Rehabilitation,
human–robot
interaction

[34–40,42]

POF High elastic strain
limits, flexibility

Material attenuation,
biocompatibility

Gait analysis, sleep
monitoring [43–48,50–52]

Optical Tactile
Sensor

Improved resolution
and sensitivity

Limited hospital
adoption

Robotics-assisted
minimally invasive
surgery

[57–59,61–66]

FPI Measures various
physical parameters

Further development is
needed for prosthetic
limbs

Biomedical
applications, real-time
monitoring

[82,83,85–90,92–
95,101–108]
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7. Conclusions and Future Perspectives

In the coming years, the field of bio-mechatronics is expected to experience signif-
icant growth and advancement, largely driven by the integration of advanced sensors
and technological innovations. This study has explored the potential of various optical
sensors, such as FBGs, FMG sensors, POFs, optical tactile sensors, and FPI fiber sensors,
in enhancing bio-mechatronic applications. FBG technology has already demonstrated
its potential in various bio-mechatronic applications, including the detection of strains
in bones, monitoring of bone cement hardening, and measurement of contact forces in
orthopedic joints. The compact nature and the high sensitivity of FBGs make them an
attractive option for future strain mapping in prosthetics. Further research and develop-
ment in this area have the potential to significantly improve the functionality of prosthetic
devices. Similarly, the advancements in FMG technology hold tremendous promise for
the future of bio-mechatronics. The use of FMG sensors in conjunction with deep neural
networks has already shown the ability to accurately monitor limb movements and posture,
leading to the potential for safer human–robot interactions. Moreover, the exploration of
wearable FMG sensors may lead to the creation of even more advanced human–machine
interface technologies. Further, POF technology has already demonstrated its potential
for use in bio-mechatronic applications since POF sensors have several advantages over
traditional sensors, such as their high elastic strain limits, exceptional flexibility, and impact
resistance, which make them an attractive option for a wide range of applications, including
rehabilitation, gait analysis, and sleep performance monitoring. Thus, future developments
of POFs are focused on improving accuracy and sensitivity while enabling user-friendliness.
Optical tactile sensors have undergone significant advancements over the years, which
have improved their resolution and sensitivity. While these sensors have not yet been
widely adopted in hospitals, their potential benefits make them a promising technology for
RAMIS. Another promising direction is the integration of algorithms to enable real-time
guidance and feedback during surgery. Such feedback and guidance systems can improve
the accuracy and safety of RAMIS by reducing the risk of tissue damage and improving
surgical outcomes.

Furthermore, the development of FPI sensors has shown remarkable progress over
the years. With the ability to measure various physical parameters, such as pressure and
strain, FPI sensors have become a crucial part of many biomedical applications. However,
the field of FPI sensors still has much room for advancement. Future research will likely
focus on developing more sensitive and precise sensors that can be integrated with other
technologies to provide greater accuracy and control for real-time monitoring of physical
parameters. The current studies demonstrated the feasibility of integrating a custom-
designed FPI force sensor into a biopsy needle for real-time force monitoring during needle
insertion and showed that the sensor could successfully detect small changes in applied
force. In the future, FPI force sensors could be further developed and optimized for use in a
variety of clinical applications, such as neurosurgery and cardiac surgery, where it is crucial
to ensure that the forces exerted on tissues are within a safe range and also to provide
real-time feedback on the forces exerted during surgery, enabling the surgeon to make
more precise adjustments and avoid complications. Additionally, FPI sensors could also be
useful in the development of prosthetic limbs, where accurate force sensing is necessary to
achieve optimal functionality and user comfort.

In order to fully realize the potential of fiber-optic sensors in bio-mechatronic appli-
cations, further research and development is necessary. To expand their applicability in
different surgical procedures and environments, there is a need to develop more compact
and portable sensors that can be effortlessly integrated into surgical instruments. Despite
the advantages, restricted spectral range, material attenuation, fragility, and biocompatibil-
ity concerns can be considered as the primary limitations of FOS. In addition to that, they
can be costly, complex, and susceptible to environmental noise and crosstalk in multiplexed
systems. Furthermore, rigorous clinical testing and validation are needed to demonstrate
the effectiveness and reliability of these sensors in real-world surgical environments. To
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overcome these, it is imperative that researchers, medical device manufacturers, and sur-
geons engage in collaborative efforts to propel these technologies forward and to improve
the design and performance of new and existing sensors and feedback systems. Ultimately,
these efforts will bring about meaningful advancements and enhancements in the domain
of bio-mechatronics in the upcoming years.
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