
Citation: Reza, M.M.; Gutierrez, J.

An Enhanced Lightweight Security

Gateway Protocol for the Edge Layer.

Technologies 2023, 11, 140. https://

doi.org/10.3390/technologies11050140

Academic Editor: Kyoung-Don (KD)

Kang

Received: 28 August 2023

Revised: 27 September 2023

Accepted: 9 October 2023

Published: 12 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

An Enhanced Lightweight Security Gateway Protocol for the
Edge Layer
Md Masum Reza and Jairo Gutierrez *

Department of Computer and Software Engineering, Auckland University of Technology,
Auckland 1010, New Zealand; masum.du.mis@gmail.com
* Correspondence: jairo.gutierrez@aut.ac.nz

Abstract: With the rapid expansion of the Internet of Things (IoT), the necessity for lightweight
communication is also increasing due to the constrained capabilities of IoT devices. This paper
presents the design of a novel lightweight protocol called the Enhanced Lightweight Security Gate-
way Protocol (ELSGP) based on a distributed computation model of the IoT layer. This model
introduces a new type of node called a sub-server to assist edge layer servers and IoT devices with
computational tasks and act as a primary gateway for dependent IoT nodes. This paper then in-
troduces six features of ELSGP with developed algorithms that include access token distribution
and validation, authentication and dynamic interoperability, attribute-based access control, traffic
filtering, secure tunneling, and dynamic load distribution and balancing. Considering the variability
of system requirements, ELSGP also outlines how to adopt a system-defined policy framework. For
fault resiliency, this paper also presents fault mitigation mechanisms, especially Trust and Priority
Impact Relation for Byzantine, Cascading, and Transient faults. A simulation study was carried out to
validate the protocol’s performance. Based on the findings from the performance evaluation, further
analysis of the protocol and future research directions are outlined.

Keywords: IoT security; edge server; sub-server; gateway functions; lightweight protocol; traffic
filtering; policy framework

1. Introduction

The number of IoT devices is increasing significantly. Along with this rapid prolifera-
tion, the number of vulnerabilities and the chances of security breaches are also rising [1].
A great deal of research has been conducted to secure IoT-based networks, but new vulner-
abilities have been found, making it challenging to secure the entire IoT environment [2].
Industrial IoT (IIoT) is one of the promising domains where sensors and actuators perform
sophisticated tasks for automation and job efficiency [3]. Here, latency and security are both
curtailed for effective IoT communication. It is estimated that over 25% of cyberattacks have
been conducted through the IIoT domain [4]. With the development of embedded systems
and intelligent technology, devices have been deployed, but they still have constraints in
terms of memory, computing power, and energy [5–8]. Lightweight protocols aim to fulfill
system and security requirements through considering resource constraints. Minimizing
CPU usage, consuming low power (especially for battery-powered devices), implementing
overhead light, and reducing memory (RAM) usage are the essential requirements [9].
However, implementing security for these embedded devices has become challenging
due to the resource constraints associated with security operations, including crypto-
graphic operations, authentication, and critical management, thus increasing resource
usage [5]. This research article proposes an enhanced lightweight security gateway protocol
(ELSGP) for the edge layer, aiming to increase system proficiency considering security and
latency aspects.

Technologies 2023, 11, 140. https://doi.org/10.3390/technologies11050140 https://www.mdpi.com/journal/technologies

https://doi.org/10.3390/technologies11050140
https://doi.org/10.3390/technologies11050140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://orcid.org/0000-0002-2103-8636
https://doi.org/10.3390/technologies11050140
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies11050140?type=check_update&version=1

Technologies 2023, 11, 140 2 of 30

To ensure low latency and QoS for IIoT communication, it is essential to install the
edge server near the edge devices [10]. Due to their wide acceptability and low latency com-
munication characteristics, many researchers are interested in deploying edge servers [11].
Edge computing may fulfill the low latency requirement, but security is still a big concern
for IoT communication due to the heterogeneity of devices and the physically unprotected
environment [1]. Numerous security threats, such as injecting false or malicious data, can
cause disastrous outcomes in the entire communication infrastructure [12]. Therefore, a
lightweight threat protection mechanism is crucial for the edge layer. A limited number of
research works have considered IIoT edge servers for device management, enhanced secu-
rity, and lightweight communication schemes to fulfill low latency requirements. Therefore,
it is predicted that a developed protocol based on these requirements can significantly
enhance the proficiency of IIoT edge layer functions.

Based on the above, in this paper, we propose an enhanced lightweight security
getaway protocol to enhance edge layer latency and security performance. In this research
work, we also define a new type of node called a sub-server. The main objective of the
sub-server is to assist the edge devices for computing. The proposed sub-server is not
meant to replace the edge servers; instead, its purpose is to assist in distributing the
computation power that can be used for security and individual operations. To evaluate
the designed protocol and the proposed model, we mainly focused on a highly populated
IIoT environment where heterogeneous devices accomplish various operational tasks.

2. Background and Related Work

Industrial IoT (IIoT) is a subset of IoT [4] and it is expanding fast to reduce operational
costs, make the industrial processes agile and seamless, and enhance controlling and
monitoring [13]. IIoT ecosystems boost industrial productivity but at the risk of increasing
the attack surface, which causes security vulnerabilities [13]. To secure the IIoT ecosystem
from anonymous threats and attacks, researchers have developed various specialized
security models.

2.1. IoT Edge Architecture

The architecture in the IoT edge layer is equipped with numerous devices and proto-
cols [11]. The IoT edge layer architecture contains the following:

IoT devices: IoT devices work as the end nodes; these, depending on their function,
work as sensors, actuators, repeaters, integrators, filters, data transmitters, or intelligent
devices [1,12].

Gateway: A border gateway is required to communicate between the edge IoT network
and another external network [14]. To secure communication between an external network
and the internal edge IoT network, the border gateway applies various traffic filtering
rules [15]. To reduce the traffic volume in the gateway, numerous reduced traffic algorithms
can also be applied. In addition, a gateway routes the traffic from source to destination [16].

Edge servers: The edge server functions as the central hub of an IoT edge network [11]
in many applications where time-sensitive communication is required. To fulfill those
requirements, the edge server must be installed at the edge of the network. IoT devices
transfer data to the network server, and the server processes the received data on behalf of
the devices as the devices do not have adequate computing power [10]. The devices can
communicate with each other, but that communication process may experience security
breaches [2]. The primary working principle of the server is to aggregate and process the
data from the IoT devices and transfer the processed data to the gateway to transfer it to an
external server (or cloud server) [14]. Unlike traditional servers, these edge servers should
be handy, easy to maintain, and cost-effective [10].

Sub-servers: The edge server assists in computing and processing the functions of
IoT edge devices. To make the process of assisting the end devices more proficient, we
have proposed a new term for a device called a sub-server. The sub-server is like an edge
server but is not a substitute for it. The main objective of the sub-server is to distribute

Technologies 2023, 11, 140 3 of 30

the computation power to perform the functions of the edge devices more efficiently and
strengthen the security operations. In terms of the proposed model, the sub-server will be
installed near the edge devices to reduce the physical and operational distance between the
edge server and end device.

Significance of the Sub-Server device:
In a highly dense operational environment, such as those used with IIoT configurations

where edge servers are connected to numerous end devices and work as end device
gateways, the sub-server can be installed to achieve the following operational benefits:

Enhanced security: Stronger security operations can be implemented on the edge.
Ensuring high availability: The failure of an edge server may cause an outage or break

communication with (or within) the associated end devices. Sub-servers can function as
a backup gateway with defined base operations until the recovery of the corresponding
edge server.

Load sharing: One of the purposes of this measure is to reduce the operational tasks
of the associated edge server.

Distributional operations: Supports co-functional activities, including microservices,
adopting SDN (Software-Defined Network) functions, protocol translation, and validating
external requests.

Segmentation of the end devices: Supporting segmentation both physically and logi-
cally based on end-used protocols or technologies.

Implementing policies: Adopting custom-defined policies and implementing
them accordingly.

Cost efficiency: As edge servers are costly, the implementation of sub-servers may
reduce the number of operational edge servers (based on the system requirements), which
may reduce implementation costs.

2.2. Related Work

To identify cyberattacks, some researchers have opted to design an intelligent ar-
chitectural paradigm [4]; in the aforementioned work, a low-power IIoT edge gateway
was considered for the architectural paradigm. A testbed result was presented where the
gateway node used a shallow footprint as the authors presented the gateway device as a
constrained device. In addition, an algorithm was developed for randomized cyberattack
mitigation for edge IoT devices.

A secured edge computing mechanism has been proposed to facilitate Microservices
(µs) for heterogeneous devices in industrial domains [15]. The experimental result of this
research study shows that the communication delay was significantly reduced by adopting
the µs in the security gateway. However, in this proposed edge computing mechanism,
the low computing attribute of the edge devices was not considered to apply the µs on
the security gateway. The architecture was designed based on several independent server
modules rather than a single server module.

Ref. [17] presented a multi-key-based mutual authentication system where a secure
vault was used to collect keys. The secret keys secure the communication between IoT
devices and servers. In the IoT system architecture, a cloud-based IoT server is considered
to communicate with the end devices over the WAN network. Instead of a single key-
based authentication mechanism, a set of keys are used to authenticate the communication
between the IoT server and the devices. Here, the end devices’ latency and CPU usage
constraints are not considered.

The secure mutual authentication protocol (SMAP) uses three techniques to secure
the authentication process: pseudo-random number generator, hash functions, and times-
tamps [18]. The advantage of this protocol is that it does not store the master secret
key and does not repeat the session keys, which is more secure than the traditional
authentication process.

Ref. [19] presented a data aggregation protocol for a WSN to verify and validate sensed
data. In this protocol, data are encrypted, segmented, and subsequently signed with a

Technologies 2023, 11, 140 4 of 30

homomorphic MAC tag before forwarding. A comparison of overhead size packet drop
rate, energy consumption, and transmission delay among different protocols—the access
control and authentication (SDAACA) and Efficient Integrity-Preserving DA Protocol
(EIPDAP)—was carried out, and the proposed protocol showed enhanced performance.

Ref. [20] proposed a lightweight cryptographic protocol for IoT-based applications,
presenting two initiatives: integrating certificateless signatures and bilinear pairing crypto
primitives to accomplish security operations on constrained devices. The proposed protocol
was performed in a testbed platform that was developed using Raspberry PI 3 Model B.
The results of the performance evaluation of this cryptographic protocol show that the total
computational cost and time are improved.

Ref. [9] proposed a lightweight protocol for a serverless system to collect data from
Mobile Data Collectors (MDCs) and transfer it to a trusted third party. In their study, time-
sensitive communication was not considered. In the proposed protocol, a lightweight
cryptographic algorithm was used to keep the data and hash functions safe. Auto-
mated Validation of Internet Security Protocols and Applications (AVISPA) and ProVerif
tools were used to verify the protocol, and it was shown that the protocol can fulfill the
security requirements.

To secure the communication between a server and a device, Advanced Encryp-
tion Standard Constrained Queuing Telemetry Transport Protocol (AESCQTT) was devel-
oped [21]. This protocol is designed to block IoT network and application-level vulnerabili-
ties. Constrained Application Protocol (CoAP) functions (over TLS) were applied by the
above-mentioned authors to minimize the communication overhead. A table comparing
the performances of CoAP, Data Distribution Service (DDS), and AESCQTT was presented,
wherein five parameters (throughput, energy consumption, packet delivery ratio, security,
and end-to-end delay) were considered for every parameter, and enhanced performance
was recorded for AESCQTT.

Ref. [22] proposed an authentication and key agreement (AKA) scheme to address
the security risks and computation costs of the Internet of Drones (IoD). This lightweight
scheme secures a one-way hash function and runs bitwise XOR operations to authenticate
both user and drone. This proposed scheme was compared with two other schemes [23,24]
in terms of bandwidth (communication cost) and computation cost. The results of the
performance evaluation show that the AKA scheme has the lowest costs among these
three schemes.

Ref. [19] proposed an aggregation tree-based protocol to aggregate data fragments by
using data validation and integrity verification. This protocol was designed for wireless
sensor networks for the aggregation, verification, and synchronization of fragmented data
blocks by using a homomorphic MAC tag. This newly developed Data Validation and In-
tegrity Verification for Trust-based Data Aggregation Protocol (DVIVTDAP) demonstrates
better performance in comparison with the Efficient Integrity and Preserving Data Aggre-
gation Protocol (EIPDAP) [25] and the Secured Data Aggregation using the Access Control
and Authentication (SDAACA) protocol [26]. Here, the performance of DVIVTDAP was
evaluated mainly based on overhead size, detection delays, and energy consumption.

Ref. [27] studied the performance of a developed IoT testbed environment using CoAP
and Datagram Transport Layer Security (DTLS) on the Contiki operating system. The
comparison between CoAP and CoAP-DTLS showed the experimental results in terms
of energy and latency, and the CoAP-DTLS protocol incurs higher CPU usage, memory
usage, and latency than the non-encrypted CoAP protocol. Ordinarily, an encrypted
platform requires higher resource usage than an unencrypted platform. Here, the authors
showed comparative relational data, but the experimental testbed data was not significantly
improved to a great extent.

There exists several recent research papers wherein it is identified that either security
functions are compromised to reduce the operational tasks of the end devices [28,29]
or the constraint of the end devices is not considered enough to adopt the security

Technologies 2023, 11, 140 5 of 30

functions [15,17,18,30]. To a limited extent, responsiveness during time-sensitive com-
munication has been considered [4,9,31,32].

Considering all of the above requirements, limited research [19,21,22] has been con-
ducted on the adoption of flexible custom-defined policies according to system require-
ments. Adopting improved services [19,20,31] may produce additional traffic, which may
not be relevant to the functionalities of the end devices. This shows the necessity of
adopting improved traffic filtering techniques to prevent unwanted resource utilization.

Any considered technique compromises one or many of the following to some extent:
security, power, latency, or traffic aggregation, and filtering. There should be a solution
that can more closely balance security operations and minimal operational power with
improved latency performance. By considering all these metrics, we propose a distributed
computational architecture with an enhanced security protocol.

3. Design of an Enhanced Lightweight Security Gateway Protocol for the Edge Layers

This lightweight security gateway protocol aims to enhance security operation by
ensuring operational latency preferences. In this section, in order to demonstrate the
proposed ELSGP protocol, we will explore the challenges of the existing edge server-based
edge layer architecture. Subsequently, we will present how the proposed IoT edge layer
architectural model mitigates the explored challenges. Finally, following the presentation
of the model, the ELSGP protocol will be presented.

3.1. Challenges of the Existing Edge Server-Based System

In many research studies and previous IoT computational models, edge layer servers
are proposed to assist constrained IoT devices. However, for this research paper, we
investigated edge server operations and discovered several challenges for edge-server
based IoT edge layer communication systems. These challenges include the following:

1. Edge server failure and its impact: In a highly populated IIoT system, an edge
server computes, stores, and controls data for many edge devices. The impact of the failure
of one server may cause a significant outage or it may increase the load on the other servers.

2. Handling diversified devices: In an industrial scenario, many heterogeneous
devices are controlled from or through the edge server. Therefore, the servers need to be
designed and configured according to the requirements of the system operations, which is
challenging if there is a requirement to maintain the diversified compatibilities.

3. Supporting multi-communication technologies: Several communication technolo-
gies need to be incorporated into the server system, which makes the server configuration
complex. Wi-Fi, Zigbee, Bluetooth, 6LoWPAN, 5G, and so on are the different kinds of
communication technologies that interconnect the edge devices to the system. Maintaining
the various technologies from the same server is truly complex and challenging.

3.2. The Proposed Model

The proposed model has been developed to make the edge server-based edge layer
architecture more distributed in terms of computation, security, and system operational
tasks. Figure 1 shows the proposed edge layer architecture. The end nodes are considered
as the IoT devices, which include edge IoT devices, operational sensors, and actuators.

In this architectural model, we have introduced a new network entity called a sub-
server, which is a server-like device that is not meant to replace an edge server but is
designed to enhance the capabilities of the constrained IoT devices. Implementing a
sub-server can help to achieve the following objectives:

To support lightweight communication and advanced encryption at the same time in
the edge layer.

To fulfill the latency requirement of sensitive traffic.
To reduce operational tasks at the edge server.
To achieve logical and physical isolation among the group of IoT devices to reduce

attack surfaces.

Technologies 2023, 11, 140 6 of 30

To enable a more distributed computational system.
To provide two-layer validation, i.e., primary and secondary validation (IoT device to

sub-server and sub-server to edge server). When the generated data travel from one logical
zone to another zone or (to or from) the edge server, this two-stage validation could help
to maintain privacy and isolate the devices of one logical group from other groups of the
same system.

Technologies 2023, 11, x FOR PEER REVIEW 7 of 32

Figure 1. The Architecture of the IoT edge layer.

The key differences between the zone and group concepts can be summarized as
follows: A zone is the physical segmentation of all operational nodes, whereas a group is
all about the logical segmentation of the devices. Grouping can be modified by system
control commands, whereas a zone is more resistant to change; a zone can only be changed
when a device is physically moved to another zone.

In an IoT system, an end device may need to transfer or receive data from other end
devices to execute an operation. Virtual grouping between end devices may require
fulfilling the security and independent communication requirements of a system. A group
of end devices from the same or different zones can exchange data without repeated
authentication processes, and it is expected to reduce the data transmission latency and
computation resource usage. In an IoT system, numerous heterogeneous devices perform
operational tasks together. Depending on the system requirements, these devices have
various attributes, which may create a complex operational environment. On the other
hand, among these devices, many homogeneities or operational dependencies exist. To
synchronize and secure system operations with the designed model, we have introduced
the idea of grouping.

According to the proposed protocol, a logical grouping (as shown in Figure 2)
categorizes end devices based on attributes and predesigned group policy to isolate the
group devices from other groups and secure intra-group communication. The devices in
a local zone can be the members of a group, but the devices of a group may not be
members of a local zone. Group members of a particular group are modifiable through
the group policy or under the local or remote administration. In contrast, A-Zone
members cannot be modified within the policy framework or local/remote administration
unless the physical changes happen in the zone. However, The ZID can be determined via
the system admin or through a predetermined group policy.

Figure 1. The Architecture of the IoT edge layer.

The end nodes will have client principles, and the Sub-servers will have both server
and client principles. Participating sensors in the network can act like a typical sensor
network wherein the communication channels can be established in a wired or wire-
less medium. However, according to this designed architecture, the formation of a
wired/wireless sensor network(s) should follow the developed principles, which are
elaborated in Section 3.2.1.

Based on a system requirement, one or many edge servers can act as the coordinating
server(s). Both sub-server and edge servers should have gateway features, and these
features are elaborated in Sections 3.2.3 and 3.2.4. As is the case with the typical IoT
architecture, the edge servers are connected to a cloud-based server or a remote server.

3.2.1. Concept of Zones and Groups

In the proposed model, every IoT device is directly connected to a sub-server through
a wired or wireless medium. A zone is determined as a physical group of IoT devices that
are directly connected and administrated through or from a sub-server. Every end device
within a zone should contain the same Zonal ID. Here, the zonal ID is denoted as ZID.
According to the proposed model, every ZID of a particular network should be configured
identically to the others. The ZID can be determined by the system admin or through a
predetermined group policy.

The key differences between the zone and group concepts can be summarized as
follows: A zone is the physical segmentation of all operational nodes, whereas a group
is all about the logical segmentation of the devices. Grouping can be modified by system
control commands, whereas a zone is more resistant to change; a zone can only be changed
when a device is physically moved to another zone.

In an IoT system, an end device may need to transfer or receive data from other
end devices to execute an operation. Virtual grouping between end devices may require
fulfilling the security and independent communication requirements of a system. A group
of end devices from the same or different zones can exchange data without repeated

Technologies 2023, 11, 140 7 of 30

authentication processes, and it is expected to reduce the data transmission latency and
computation resource usage. In an IoT system, numerous heterogeneous devices perform
operational tasks together. Depending on the system requirements, these devices have
various attributes, which may create a complex operational environment. On the other
hand, among these devices, many homogeneities or operational dependencies exist. To
synchronize and secure system operations with the designed model, we have introduced
the idea of grouping.

According to the proposed protocol, a logical grouping (as shown in Figure 2) catego-
rizes end devices based on attributes and predesigned group policy to isolate the group
devices from other groups and secure intra-group communication. The devices in a local
zone can be the members of a group, but the devices of a group may not be members
of a local zone. Group members of a particular group are modifiable through the group
policy or under the local or remote administration. In contrast, A-Zone members cannot be
modified within the policy framework or local/remote administration unless the physical
changes happen in the zone. However, The ZID can be determined via the system admin or
through a predetermined group policy.

Technologies 2023, 11, x FOR PEER REVIEW 8 of 32

Figure 2. Edge layer logical groups of end devices.

3.2.2. Implementation of Microservices
In a complex IIoT environment, heterogeneous devices need to be operated and

maintaining the quality of service (QoS) of the system is challenging. In various contexts,
conventional edge computing cannot fulfill the QoS [15]. Therefore, researchers are
currently focusing on implementing µs in IoT systems due to their multitudinous
properties, including scalability, modularity, resiliency, and compatibility in
heterogeneous devices [15].

In the proposed model, multiple operations need to be conducted at different levels
of the system, which could make the system more complex. µs can be implemented to
resolve this problem and simplify the operational tasks. From protocol translation services
to the different kinds of gateway operations in the edge layer, µs can be implemented to
make the system more simplistic, resilient, and constrained resource-compatible.

To rescue the operational and computational tasks in a cloud–edge-based hybrid
environment, numerous applications need to be processed at the edge to fulfill the latency
requirement, and monolithic services can be replaced with µs [33]. The µs will be
deployed in a sub-server and edge server according to the predetermined policy
framework.

However, maintaining the dependency relationship within the µs is complex in a
large IIoT system, as a large amount of data needs to be transferred among the adjacent
µs [33]. In a µs-based system, every service request and response should have a unique
identifier, i.e., a correlation ID [34]. Managing and coordinating these unique request
processing identifiers requires additional computational resources.

In this distributed computation-based architecture, to make the µs more simplistic,
the µs-based applications are processed into two phases. In phase 1, only the relational
services will be deployed and operated at the sub-server. The relational services may vary
from one sub-server to another sub-server. This way, the transition of redundant data and
the processing of redundant operations can be stopped. In phase 2, only the adjacent µs
need to be deployed. The adjacent µs also may vary from one edge server to another edge
server.

3.2.3. Gateway Functions at Sub-Server (Phase 1)
The end devices are constrained in nature. These devices have limited computational

power, operate on light-power batteries, and have less memory in use. The main purpose
of the sub-server is to assist the end devices with processing, memorizing, and optimizing
power consumption. Many lightweight gateway protocols have been designed to

Figure 2. Edge layer logical groups of end devices.

3.2.2. Implementation of Microservices

In a complex IIoT environment, heterogeneous devices need to be operated and
maintaining the quality of service (QoS) of the system is challenging. In various con-
texts, conventional edge computing cannot fulfill the QoS [15]. Therefore, researchers
are currently focusing on implementing µs in IoT systems due to their multitudinous
properties, including scalability, modularity, resiliency, and compatibility in heterogeneous
devices [15].

In the proposed model, multiple operations need to be conducted at different levels of
the system, which could make the system more complex. µs can be implemented to resolve
this problem and simplify the operational tasks. From protocol translation services to the
different kinds of gateway operations in the edge layer, µs can be implemented to make the
system more simplistic, resilient, and constrained resource-compatible.

To rescue the operational and computational tasks in a cloud–edge-based hybrid
environment, numerous applications need to be processed at the edge to fulfill the latency
requirement, and monolithic services can be replaced with µs [33]. The µs will be deployed
in a sub-server and edge server according to the predetermined policy framework.

However, maintaining the dependency relationship within the µs is complex in a large
IIoT system, as a large amount of data needs to be transferred among the adjacent µs [33].
In a µs-based system, every service request and response should have a unique identifier,

Technologies 2023, 11, 140 8 of 30

i.e., a correlation ID [34]. Managing and coordinating these unique request processing
identifiers requires additional computational resources.

In this distributed computation-based architecture, to make the µs more simplistic, the
µs-based applications are processed into two phases. In phase 1, only the relational services
will be deployed and operated at the sub-server. The relational services may vary from
one sub-server to another sub-server. This way, the transition of redundant data and the
processing of redundant operations can be stopped. In phase 2, only the adjacent µs need
to be deployed. The adjacent µs also may vary from one edge server to another edge server.

3.2.3. Gateway Functions at Sub-Server (Phase 1)

The end devices are constrained in nature. These devices have limited computational
power, operate on light-power batteries, and have less memory in use. The main purpose
of the sub-server is to assist the end devices with processing, memorizing, and optimizing
power consumption. Many lightweight gateway protocols have been designed to establish
communication with the other internal or external devices of a system. These protocols
have different characteristics and implementation methods to establish communication
among the devices. Many access requests come from the external network of the existing
system, though this is not applicable to the in-use lightweight protocols. For example, if a
web command passes to the IoT system, it usually passes with HTTP/HTTPS protocols.
However, the HTTP/HTTPS is not a lightweight protocol; thus, it may need to be converted
into a lightweight protocol like COAP or MQTT [35]. A protocol translation may come into
operation to convert the conventional protocols to the lightweight protocols or lightweight
protocols to the conventional protocols.

Transmitting external requests: Transmitting, executing, and deploying external re-
quests from a different zone, group, or network requires passing through the various
predetermined security points of a particular system to ensure the security requirements.
In this circumstance, implementing lightweight compatibility with end devices becomes
more challenging. Security operations such as authentication, authorization, data request
validation, and encryption require additional computation. Sub-servers control down-
stream communication (with the end IoT devices), as they can act as a parent device. As a
parent device, a sub-server should act like the head-point that responds to the upstream
data request, encrypts the transmitted data, encapsulates it, supports the implementation
of VPN tunneling, and validates the requests.

Validating requests: In an unprotected environment, IoT devices can become the
entry point for an attacker to gain access, which may disrupt the whole system. Therefore,
validating the upstream data can be an effective solution to reduce this vulnerability.
This type of validation includes analyzing data packet patterns, validating access tokens,
handling unknown access and unknown data pattern, and validating unique identifiers
like ZID, Dynamic DID, and the correlation ID for µs (if µs have been adopted).

Gateway Load balancing: In Figure 1, we present our proposed IoT edge layer archi-
tecture, in which sub-servers are interconnected as well as connected with the edge server.
To deploy load balancing, the execution command operated by the local/remote server
or the edge server (depending on the system architecture and deployment policy), the
sub-servers will interact with the load balancing control command and share the deployed
tasks among them. The sub-servers also exchange their load status with the parent edge
server and within the predetermined sub-server group members. This way, the entire
system is deployed based on a distributed processing architecture.

Adopting microservices: In heterogeneous IoT systems, researchers have shown more
interest in adopting µs instead of a monolithic architecture. However, implementing and
managing the µs in a large and complex environment requires some additional processing,
which may increase the use of processing resources at a particular stage. To avoid the
additional processing requirements from the end devices, we introduced the concept of a
sub-server. The sub-server manages every unique µs request and response on behalf of the
end devices, exempting the end devices from additional data processing or computational

Technologies 2023, 11, 140 9 of 30

resource usage. Converting the existing system solution to a smart solution is always
challenging. The existing independent system solutions or monolithic legacy system
solutions can still be transformable with the µs [36].

Adopting Software-defined gateway functions: A software-defined gateway (SDG)
is designed to focus on industrial interconnections to converge with heterogeneous de-
vices [30]. We adopted the software-defined IoT gateway to automate and dynamically
manage the edge network for flexibility and easy programmability [37].

3.2.4. Gateway Functions at Edge Server (Phase 2)

In this architecture, the gateway has some smart functions, including protocol transla-
tion between different used protocols, executing µs, executing policy framework, filtering,
and processing generated data at the edge before sending it to the remote server or cloud,
executing an external operational command, and managing the logical groups of the inter-
nal devices. Regarding our proposed model, the gateway functions at the edge server are
presented below.

Transmitting external requests: The proposed model is a gateway-centric local network
wherein an edge server is the ultimate edge gateway device for transmitting external
requests. In this gateway-centric local network, the dependent devices act as the client.
The sub-server itself provides a client-supporting functionality as well as a parenting
functionality to the end devices. To execute the gateway functions of an edge gateway
to the end devices, the corresponding sub-server passes the gateway functions to the
end devices. This property of a sub-server can be denoted as Transparent mode; for the
edge gateway, it becomes Server mode, and for the end devices, it is Client mode. In
summary, in our proposed protocol, these three tire devices have three different modes:
Server, Transparent, and Client. The edge gateway and the end devices operate only on the
Server and Client mode, respectively, but the sub-server can perform in two modes: Client
or Transparent.

Managing the encryption decision: In an IoT environment, it is very challenging to
implement a robust encryption method through all IoT communication channels. To imple-
ment strong security, strong encryption needs to be implemented. The implementation of
encryption depends on the security requirement. The decision to execute encryption from
lightweight to strong [38] depends on the security requirement of the policy framework.

Protocol translation: In an IoT network, Different protocols are used to manage, con-
trol, and execute the command and establish a connection between external and internal
networks. In large and complex heterogeneous IIoT networks, various independent proto-
cols are implemented. Achieving synchronization and interoperability within this large
variety of protocols are challenging [39].

Managing logical groups: A logical group enables the devices to logically isolate one
group of devices from another. Managing and interconnecting devices within a logical
group ensures the implementation of the group policy and other relevant policies. By
implementing grouping techniques, devices (including sub-servers) from different zones
can be compiled into a group, enhancing security, manageability, and interoperability and
enforcing the group policy among the group members. According to our proposed model,
an edge server locally assigns coordinates and manages the associated end device groups.
An edge server also maintains a correlation with the external devices corresponding to
other edge servers to form a group. These external device groups can be called extended
groups. The operational and security features of both types of groups (immediate and
extended) can be defined through a related group policy in the policy framework.

Dynamic load distribution and balancing: The motivation for introducing the sub-
server is to assist the edge server with operational and computational tasks. Dynamic load
distribution can be used to reduce the workload from the edge server. As the hub of the
local IoT system of the proposed model, an edge server executes commands regarding
dynamic load distribution and load balancing depending on the availability of the end
nodes, traffic transmission channel preferences, system preferences, and deployment policy.

Technologies 2023, 11, 140 10 of 30

Filtering the generated data: To avoid overwhelming the whole IoT system, the
filtering functions filter the routine or unnecessary data and send the critical and infrequent
data away for future analysis and development purposes. Traffic filtering techniques
are implemented to optimize the network traffic to comply with the available network
bandwidth. The filtering techniques used for the proposed protocol were developed via
categorizing, prioritizing, and processing the generated traffic based on traffic attributes
and the generating device.

Adopting Microservices: At the edge server, the µs are coordinated and deployed
to the associated sub-servers based on the operations that need to be performed. Every
microservice deployment and operation can be identified with a unique correlation ID
that correlates with a processing request. In this IoT service model, the functions of
the µs include (but are not limited to) authentication, protocol translation, managing
logical groups, software-defined gateway functions, ABAC operations, deploying filtering
decisions, managing, and deploying core policy framework.

Adopting SDN-enabled gateway functions: In the context of evaluating IoT networks
and network management features, SDNs have become a promising form of technology
for enhancing the programmability, resiliency, and security of an IoT network [37]. SDN-
enabled gateway functions are adopted to execute advanced gateway functions. The control
commands of remote or cloud servers are managed at the edge server and sub-server for
execution at the edge network. In the proposed model, the developed policy framework
defines the SDN-enabled gateway functions.

3.2.5. ELSGP Operational Flow and Policy Framework

Connectivity, privacy, security, adoption with open standards, device and data hetero-
geneity, and interoperability are the key concerns for the evaluation of IoT domains [40].
We have developed a prototype of a policy framework based on the above-mentioned key
concerns of IoT domains. We focused on the IIoT domain for the development of the policy
framework. To demonstrate and execute the policy framework functions in the proposed
model, we developed algorithms with the main functions of the designed ELSGP.

In Figure 3, we present a flowchart of the used ELSGP operational streams. The ELSGP
operations followed the developed policy framework. The flow of the policy framework ex-
ecution is illustrated, along with several identical operations, which include the following:
developing ABAC operations; defining protocol translation requirements and operational
flow; transmitting traffic filtering decisions; authentication requirements; secure tunneling
requirements; the deployment process of the software-defined gateway functions; defining
and developing gateway operations (if software-defined gateway functions are not de-
ployed); developing group, zonal, and network policies (depends on the executing model;
here, we have considered our proposed model); and designing and developing µs.

The policy framework deployment depends on the nature of the device. Our devel-
oped model contains three types of devices at the edge layer: end devices (end IoT devices
like sensors and actuators), a sub-server, and edge servers.

Dynamic policy generation, adjustment, and enforcement are currently being re-
searched for the deployment of various software-defined functionalities [41]. To alleviate
the critical challenges via the use of the designed ELSGP protocol, a policy is dynamically
deployed on each node and communication channel based on the predefined modular
functions, functional IDs, and device IDs.

3.3. Design of ELSGP

The ELSGP was designed with six basic functions: attribute-based access control,
authentication, dynamic load balancing and distribution, dynamic interoperability function,
traffic filtering, and secure Tunneling. Algorithms were developed based on the functions
of the proposed ELSGP.

Technologies 2023, 11, 140 11 of 30Technologies 2023, 11, x FOR PEER REVIEW 12 of 32

Figure 3. Operational flow chart of ELSGP and policy framework.

3.3.1. Authentication
In the edge server gateway, several security operations need to be processed and

validated at the edge layer [42]. Edge-based authentication will increase data
communication security among the nodes [18]. Untrusted request management is one of
the security operations that needs to be conducted before processing the generated data
from an end node [42].

Figure 3. Operational flow chart of ELSGP and policy framework.

3.3.1. Authentication

In the edge server gateway, several security operations need to be processed and
validated at the edge layer [42]. Edge-based authentication will increase data communica-
tion security among the nodes [18]. Untrusted request management is one of the security
operations that needs to be conducted before processing the generated data from an end
node [42].

Technologies 2023, 11, 140 12 of 30

The proposed ELSGP authentication process is designed with three parameters: MAC,
DID, and an access token. In this protocol, to enhance security and access control, every
operating device in the IoT system network will have multiple DID, which a sub-server
will manage. An edge server will manage the access token. The DID will be allocated
dynamically depending on the system security requirement. A single DID will expire
depending on the defined operating time to authenticate one or more operational request(s).
In this scenario, the DID can be allocated dynamically, and the dynamically deployed
device ID is denoted as DDID. An AND operation between MAC and DID/DDID will
authenticate the node requests and the node-generated data. IoT device communication
WITHIN a logical group or a system zone will be validated via MAC, DID/DDID, and
the access token (determined depending on system security level and lightweight weight
performance requirement).

The authentication process is facilitated via the use of two algorithms. The first al-
gorithm is for access token distribution and validation, and the second algorithm calls
the described functions in the access token distribution and validation algorithm to the
authentication algorithm. The authentication process cannot be independently conducted,
but it depends on the participating protocol(s) to finalize the authentication process
(Algorithms 1 and 2).

Algorithm 1 Access Token Distribution and Validation

1. F(ATD)//Defining Access Token Distribution function
2. F(ATV)//Defining Access Token Validation function
3. DID, ZID, NID//Defining Device ID, Zone ID, and Network ID
4. F(DDID)//Defining function for Dynamically defined device ID
5. Get_Source ()//Function for Identifying source operating device
6. Get_Destination ()//Function for Identifying destination operating device
7. Initialize F(DDID)//Operation at Sub-server
8. Step A: Get pattern
9. Define DDID Bitstream format
10. Step B: Set DDID
11. Generate DDID
12. Allocate DDID
13. Step C: Reset DDID
14. Define Reset Period//the reset function triggering interval
15. Repeat {Generate DDID
16. Allocate DDID}
17. Initialize F(ATD)//Operation at edge server
18. Step A: Get_Source ()
19. Get DID/F(DDID)
20. Get ZID, NID and MAC
21. Step B: Get_Destination ()
22. Get DID/F(DDID)
23. Get ZID, NID and MAC
24. Step C: Generate AT//Access token (AT) generating operation
25. Re-Generate AT
26. Step D: Distribute AT//(AT) distributing operation
27. Sync regenerated AT
28. Initialize F(ATV)//Operation at edge server
29. Step A: Verify AT Timestamp
30. Step B: Verify AT Bitstream
31. Step C: Validate AT
32. If
33. Step A AND Step B = True
34. Else
35. validation unsuccessful

Technologies 2023, 11, 140 13 of 30

It is essential to establish a trust relationship between an end node and a server to
validate the generated traffic from a trusted device. Our developed access token validation
and distribution technique can be an effective solution to establish a strong trust relationship
between the server and the end IoT nodes. The end devices are allocated with the device
ID. Depending on the system preference, the allocation can be either statically user-defined
or dynamically system-defined. For dynamic device ID allocation, a sub-server operation,
the function F(DDID) is used. The second function, F(ATD), is for access token distribution,
an edge server operation. The third and the final function of the algorithm is to validate the
distributing access token. The two main steps of this function are to verify the timestamp
of the received and generated access token and verify the bitstream.

The bitstream of an access token is predefined but should not be identifiable by an
end device or an operating sub-server. The access token bitstream can be verifiable at the
edge server, which is expected to enhance the trustworthiness between the transmitting
devices without additional computing requirements at the end device. In Algorithm 2,
function F1_Auth is initialized for establishing the authentication and protocol translation
functions. F1_Auth executes the access token distribution, validation, and dynamic device
ID allocation functions, as presented in Algorithm 2.

This authentication process is only for authenticating end devices and the generated
traffic from the nodes (not the user). User authentication will be performed with the
used protocol.

Algorithm 2 Authentication and Dynamic Interoperability functions

1. F1_Auth () // Defining Authentication function
2. F2_IO () // Defining interoperability (IO) function
3. F(P) // Defining protocol translation function
4. deployment_id // unique deployment id as µs identity
5. P// operating protocol
6. Initialize F1_Auth
7. Initialize F(ATD) // For both server and client
8. Initialize F(ATV)
9. Validate DID, ZID, NID // For both server and client
10. Initialize F(DDID) // If the system authentication requirement allowed
11. If Check result is TRUE
12. Authorize device
13. Authorize generated Traffic
14. Check IO requirement
15. If check returns True
16. Initialize F2_IO ()
17. Get system configuration information
18. Get deployment_id
19. Request µs // from cloud or remote server
20. Get µS// operation at edge server, getting the requested µs
21. Deploy µS //Deploy µs operation at Sub-server
22. Initialize F(P)
23. If F(P) = Success
24. Get P //The operating communication protocol(s) P
25. Get entities of the operating protocol
26. Authorize protocol translation service
27. Else stop translation function to find protocol entities
28. Else stop IO function
29. Else Reject Authentication request

3.3.2. Dynamic Interoperability Function

In a real IIoT environment, many communication protocols and operational standards
are outlined, which makes interoperability and scalability more challenging [43]. Recent

Technologies 2023, 11, 140 14 of 30

research has uncovered several solutions to the interoperability problem, including protocol
proxy, protocol translation, and middleware or MiddleBridge [39,44,45].

Example Scenario

An IIoT system can be operated via the use of various protocols, such as CoAP,
MQTT, REST, AMQP, HTTP, HTTPS, WebSocket, and so on. In this sample scenario, we
assume an IIoT system is operated with A and B protocols. Protocol A complies with
advanced encryption, where the computational requirement is much higher than the
maximum operational requirement of the end devices. Therefore, a much lighter protocol,
protocol B, is used for the end devices. Various portions of the edge layer of the system
are operated with some legacy solution. An edge server converts the transmitted traffic
between protocols A and B.

The existing problems of the IIoT system include the fact that the edge layer is vulnera-
ble to low-security exposure, requires massive operational tasks for translating the protocol,
is hugely complex in terms of system management and maintenance (not dynamic), and
makes it very hard to adopt safer and new technology due to the legacy solutions. The
system requirement is to mitigate these existing problems.

Existing solutions: Middleware or MiddleBridge is hardware that works as a protocol
converter. However, the middleware solution is mainly adaptable with network-layer
protocols but not with the application layer protocols, and this is one of the limitations
of middleware [39]. Using a protocol proxy is another solution for the interrogatability
problem, but the protocol proxy solution is not efficient enough in an IIoT environment
wherein the number of participants is high [39,44]. Protocol translation can mitigate the
limitations of the middleware and protocol proxy techniques. Protocol translation is
required where two or more protocols (from network layer protocol to application layer
protocols) are used to establish communication. This translating mechanism bridges two
different protocols that can convert the proprietary aspects of the entities or the data
standard of a protocol to a different protocol [45]. Executing a large operation every time at
the edge layer and securing seamless interconnection and configuration compatibility for
the heterogeneous end devices can be challenging for the protocol translation.

The developed interoperability functions: The interoperability function should be
secure, dynamic, and compatible with various end device configurations (including legacy
solutions) while using the least amount of operational tasks possible. The interoperability
operation can also securely convey remote control commands to the edge layer. The
developed interoperability gateway function supports strong encryption up to the edge
layer distribution point (sub-server) and complies with the enhanced lightweight security
protocols when an end device communicates with a remote/cloud server (or with another
end device of a different network). The implementation of these security features also
depends on the adopted policy framework or the system security level and the lightweight
performance requirements.

A master server (according to the proposed model, the master server is an edge
server) will execute the configurations of the interoperability function. Depending on
the system configuration information of an IIoT edge layer, the µs deployment will vary.
All the interoperability functions will be deployed as one or many µs. Every different µs
deployment should have a unique deployment ID. By sharing the system configuration
information, the master server will request the deploying file, which should be stored in
a remote/cloud server. For example, in the Azure cloud service, the deployment ID is
denoted as a parameter named deploymentid, which is needed to execute deploy the JSON
file [46]. Once the system environment is changed, the interoperability function executes
different deployment files with the associated µs. The master server deploys the µs to a
designated device (according to the proposed model, the designated device is a sub-server),
and the designated device executes µs to all the associated end devices.

In Algorithm 2, F2_IO is denoted as the interoperability function. The steps of initializ-
ing F2_IO are getting the system configuration information and requesting the deploying µs.

Technologies 2023, 11, 140 15 of 30

If the µs discover the protocol translation requirement, the function F(P) is executed to find
the operating protocol. If different protocols participate in completing the communication,
then the protocol translation function F(P) requires translating theparticipating protocol
entities. For example, two protocols participate to establish communication where one
protocol needs to be transformed into another. The protocol translating function translates
the entities of one protocol into another protocol’s entities. If one protocol establishes the
communication, then the protocol translation function cannot be executed.

Referring to the above sample scenario, for the interoperability between protocols
A and B, the F(P) function can be dynamically executed. The associated deployment file
can be executed by obtaining the system configuration information, including the legacy
solution. The deployment can be recorded with deployment ID for similar use. Repeated
system management and maintenance tasks can be performed dynamically.

3.3.3. Attribute-Based Access Control (ABAC)

Every operating device can be identified with its individual identification (ID) depend-
ing on the attribute of the device, which is called the attribute tag (ATAG), to control the
device’s access to a system network. The ATAG must incur a light overhead to fulfill the
network bandwidth requirement(s) and the round-trip delay.

To validate the ABAC operation, an ATAG along, with an Authentication function
(F1_Auth), will authenticate the device access request to join onto a network as shown in
Algorithm 3, communicating with the other network devices, validating the generated or
received data, and executing and validating the control command.

Algorithm 3 Attribute-based access control

1. F3_ABAC () // Defining Attribute based access control function
2. ATAG // Defining Attribute TAG from Attribute policy
3. R_F3 () // function for defining the rules from the policy
4. Begin
5. Initialize F3_ABAC ()
6. Initialize R_F3 ()
7. If R_F3 () = Success
8. Check ATAG
9. If F1_Auth () AND ATAG = True
10. Allow traffic flow
11. Else
12. Reject traffic flow
13. Else
14. Stop F3_ABAC ()
15. Acknowledge error initialization
16. end

3.3.4. Traffic Filtering

The traffic filtering function of the designed protocol is to optimize the network traffic
to comply with the bandwidth requirement. Categorizing, prioritizing, and processing
the generated data based on the attributes and filtering the repeated traffic are the key
functions of the traffic filtering process shown in Algorithm 4.

In the traffic filtering function, transmitted traffic is categorized into four types: regular
traffic, priority traffic, flooding traffic, and unknown traffic, denoted as T, PT, FT, and
UT, respectively. Periodic traffic can be defined as regular traffic. At a certain interval,
periodic traffic indicates the status of known events. The traffic filtering function F4_TF () is
developed with four subfunctions: a traffic classifier, priority function, summary function,
and traffic analyzer function. Traffic filtering policies may vary in different IoT systems.
The subfunctions operate according to the rules defined in the traffic filtering policy. The

Technologies 2023, 11, 140 16 of 30

traffic analyzer subfunction categorizes the transmitted traffic as unknown traffic if the
nature of the traffic cannot be determined with predefined rules.

Algorithm 4 Traffic Filtering

1. T, PT, FT, UT //regular traffic, priority traffic, flooding traffic, unknown traffic
2. F4_TF ()// Defining the traffic filtering function
3. Traffic_Filtering_Policy // defining traffic filtering policy
4. TC ()// defining Traffic classifier function
5. PF ()// defining priority function
6. SF () // defining summery function
7. TA ()// Traffic analyzer function
8. Begin
9. Initialize F4_TF ()
10. Initialize TC ()
11. If TC ()→ T = true
12. Deploy Traffic_Filtering_Policy
13. Elseif TC ()→ PT = true
14. Execute PF () AND
15. Deploy Traffic_Filtering_Policy
16. Elseif TC ()→ FT = True
17. Execute SF () AND
18. Deploy Traffic_Filtering_Policy
19. Else TC ()→ UT =True
20. Stop UT // stop unknown traffic flow
21. Execute TA ()
22. If TA () =False //Traffic analyzer function return
23. Block UT
24. Update Traffic_Filtering_Policy
25. Else
26. Allow UT
27. End

3.3.5. Secure Tunneling

The proposed protocol aims to validate internal communication (within a system zone)
and external communication (with devices or servers out of a system zone). Device identity
parameters, encapsulating function, and secure tunneling policies will be used to establish
a secure tunnel between two nodes of different networks or system zones.

In Algorithm 5, the secure tunneling function is denoted as F5_ST (). The subfunction
P () is initialized to establish a logical path between the source and destination devices,
where several identification parameters are used for accomplishing the functional operation.
Depending on the level of the secure tunneling preferences, a secure communication tunnel
can be formed in three ways: a full strong encrypted state, a lightweight state, and a
policy-defined state.

Full strong encrypted state: A full strong encrypted state is formed when the source
and destination devices are connected with a strongly encrypted tunnel. Enc () is required
to outline the steps of forming a secure tunnel where the parameter Enc_Dec is needed to
define which protocol will be used for the strongly encrypted tunneling protocol, such as
Secure Shell (SSH) or Secure Socket Tunneling Protocol (SSTP), an internet protocol security
(IPsec). However, in an IoT environment, these protocols are not used to establish a secure
connection between two devices due to the constrained nature of the IoT devices. These
protocols are only used temporarily to connect with devices to execute control commands.
For example, Amazon Web Services (AWS) IoT secure tunneling is formed for a short-term
to set up a secure connection with a remote IoT device [47].

Technologies 2023, 11, 140 17 of 30

Algorithm 5 Secure Tunneling

1. F5_ST ()// Defining the secure tunneling function
2. O, G, Z, N //Object, Group, Zone, and network
3. Encap_Dcap, Enc_Dec // Encapsulation and encryption requirement value
4. Tunnel_sec // the secure tunneling policy
5. Encap(), Dcap (), Enc_t ()// defining encapsulation, decapsulation, encrypted tunneling

functions
6. P() // network path defining function
7. Begin
8. Initialize F5_ST ()
9. Get O, G, Z, N // for Source
10. Get O, G, Z, N // for destination
11. Initialize P ()
12. Get Logical path // between source and destination
13. If Encap_Dcap= true // at lightweight state
14. Initialize Encap() // For transmitting traffic
15. Get keys// for device itself and next-hop device (from Source)
16. Set XOR // XOR operation between the key and data
17. O→ Z→ G→ N //Defining encapsulation order
18. Initialize Dcap ()// For retrieving traffic
19. O← Z← G← N // //Defining decapsulation order
20. Get keys // for device itself and next-hop device (from Destination)
21. Set XNOR // XNOR operation between the key and received data, for

retrieving transmitted traffic
22. Else
23. Stop Encap()
24. Stop Dcap ()
25. If Enc_Dec= true
26. Get protocol
27. Initialize Enc_t ()
28. End if
29. If Tunnel_sec =true // at lightweight state
30. Execute Tunnel_sec
31. End if
32. End

Lightweight state: At a very low computing stage in which a full strong encrypted
tunnel cannot be created, a secure encapsulation method can be applied to transmit traffic
between a source and a destination device. In the above-listed algorithm, we presented
a method of secure tunneling wherein the parameter Encap_Dcap is required to identify
the lightweight state. If the channel is required to form with a lightweight state, then
the parameter Encap_Dcap returns True and the subfunction Encap() is initialized. In the
lightweight state, two secret keys are exchanged within the source and destination end.
One key is for the source device itself and the other key is for the next-hop device (where
the hop count is 1). An XOR operation is set between the exchanged key and the device-
generated data frame. This process is repeated at the next-hop device but with different
keys. Data encapsulation is formed using this order O→ Z→ G→ N. Data decapsulation
is for the destination, which is directed using the reverse order, followed by an XNOR
operation to retrieve the received data frame.

Policy-defined state: A policy-defined state is also part of the solution, this arrange-
ment fulfills the requirement of balancing full strong encryption and a lightweight state.
Tunnel_sec defines the secure tunneling policy, which includes the participating protocol
and policy that applies to the configured network segments. The policy deployment file
will be defined with a unique deployment ID for future reuse.

Technologies 2023, 11, 140 18 of 30

3.3.6. Dynamic Load Distribution and Balancing

The function of dynamic load distribution and balancing depends on several parame-
ters of the edge servers and sub-servers. The parameters are divided into two categories:
load information parameters and load status parameters. The load information parameters
include the number of operating sub-servers, the load threshold values for each edge server,
the load threshold values for each sub-server, the health check threshold values, the task
queue threshold values for each edge server, and the task queue threshold values of each
participating sub-server. The health check value depends on the CPU capacity, power
status, channel status, computing time, and system preference.

The load status parameters include health check current values, current load at the
designated sub-server, the current task queue value of the designated edge server, the
current task queue value of the designated sub-server, and identifying the sub-server(s)
available for load sharing. In Algorithm 6, the dynamic load distribution and balancing
function is split into three steps: obtaining the load information parameter, obtaining the
load status, and defining the load balancing and distribution function.

Algorithm 6 Dynamic load distribution and balancing

1. F6_dldb ()// Defining the Dynamic load distribution and balancing function
2. Step A Get load information parameters
3. Nss //number of sub-servers
4. L //load threshold value for edge server
5. l //load threshold value for sub-server
6. ht //health check threshold values
7. TQt //Task queue threshold value of an edge server
8. tqt //Task queue threshold value of a sub-server
9. Step B Get load status parameters
10. h //current health check values
11. cl //current load at designated sub-server
12. CL //current load at designated edge server
13. TQ //Current task queue value of the designated edge server
14. tq// Current task queue value of the designated sub-server
15. ls //available sub-server(s) for load sharing
16. Step C Balance load
17. Initialized F6_dldb()
18. if (CL ≥ L or TQ≥ TQt)
19. Calculate ∆L // ∆L←(CL-L)
20. Select ls
21. If cl <l AND ht <h AND tq<tqt
22. Endif
23. Distribute ∆L∝ ∆l or ∆TQ∝ ∆ tq //∆TQ←(TQ-TQt) and

∆tq←(tqt–tq)
24. Update load parameters
25. Update status parameters
26. Else repeat Step c

In step C, the load balancing and distribution function is defined. If a server exceeds
its load threshold value or task queue threshold value, then F6_dldb () is initialized. A sub-
server is selected for load sharing if the current load value is less than the threshold value
AND health check values are better than the threshold value AND the current task queue
value is less than the threshold value. The exceeded load of an edge server ∆L distribution
is proportional to the ∆l (difference between the threshold load and the current load of a
sub-server), and ∆TQ is distributed with the proportion of ∆tq. The load information and
status parameters are updated according to the executed modifications.

Technologies 2023, 11, 140 19 of 30

4. Analysis and Evaluation

In this section, we analyze and evaluate the performance and features of the designed
protocol based on simulation studies. Section 4.1 presents the mathematical modeling of
the distributed computational system. Section 4.2 presents our analysis of the developed
algorithm. An evaluation of the features with several fault models is presented in Section 4.3.
We also present a probability analysis, an explanation of the simulation process, and a
comparison and evaluation of the findings, respectively, in Sections 4.4–4.6.

4.1. Modeling of the Distributed Computational System

A distributed model is required to enhance the performance of a system by reducing
the load from the centralized servers. Assume that an edge layer of a system has NI number
of IoT devices, NSS number of sub-servers, and NES number of edge servers. Therefore, the
total number of nodes, N, in the edge layer of the system is equal to the sum of the numbers
of IoT devices, sub-servers, and edge servers. Therefore N = NI + NSS + NES. With this
distributed system architecture, the number of the nodes must follow the following order:
NI > NSS > NES.

The IoT nodes are directly connected with an adjacent sub-server, which accumulates
the number of IoT nodes under each sub-server. Therefore, the number of adjacent IoT
nodes with the sub-servers will be as follows:

NI =
Nss

∑
1

(
INSS

)
Here, INSS represents the number of adjacent IoT nodes with each sub-server. If we

denote the number of nodes including the sub-server itself as SS, then

ES =
NES

∑
1

(
SSNES + 1

)
Similarly, if we denote the number of nodes including the edge server itself as ES, then

all sub-servers and IoT devices are considered to be nodes. In other words, the total number
of nodes in the edge layer of a system N is equal to the accumulation of the numbers of
nodes adjacent to each edge server ES.

In a nutshell, the hierarchical modeling and topological definition of the distributed
commutation system are presented here. In an edge layer, all the operations need to be
performed with resiliency, adaptability, stability, reliability, and effectiveness. Considering
all these metrics, modeling presents how every functioning node will be interconnected in
the edge layer of a system.

4.2. Analysis of the Algorithm

We present the formulation of the protocol features relating to the computational
complexity of IoT devices. Here, computational complexity determines the resources
required to execute the algorithm and dependent functions.

4.2.1. Access Token Distribution and Validation

In a predefined period, the frequency of generating DDID is denoted as Fp; the period
is defined according to the system requirements and policies. The generated DDID is
considered to be the periodic traffic, which is the subclass of one of the classified traffic
types in Section 3.3.4. For the frequency, Fp of DDID allocation per defined period p, we
assume ns number of time slots, where every time slot duration is t. The p and FP can be
defined as follows:

p =
ns

∑
1

tns

Technologies 2023, 11, 140 20 of 30

Fp =
∑ns

1 tns

t
or Fp =

p
t

To calculate the amount of traffic generated due to the distributed access token, the
associated parameters need to be determined. According to the algorithm developed in
Section 3.3.1, four different types of identification information are associated with access
token distribution and validation: DID, MAC, ZID, and NID. We assume the average size of
the packets associated with the identity information as Ip, which contains the information
of DID, MAC, ZID, and NID. Then, the size traffic overhead TOA is as follows:

TOA = Ip

However, if the DID is generated dynamically after a predetermined period, the packet
size will be [DID]Fp. During the communication initializing time, other identification
information is required, including MAC, ZID, and NID. The packet size is denoted as Ipex,
which contains the information excluding DDID. The amount of traffic overhead can be
calculated as follows:

TOA = Ipex + [DID]Fp

Therefore, the traffic overhead due to the access token distribution and validation can
be calculated as follows:

TOA = [Ipex + [DID]Fp] || [Ip]

4.2.2. Dynamic Interoperability and Secure Tunneling

The authentication function is completed with the access token validation result. The
authentication function is initialized if the validation result returns True. In Sections 3.3.1
and 3.3.2, we presented the authentication and dynamic interoperability mechanism. The
interoperability function requires system configuration information from every associated
node, which initiates the associated end IoT nodes to generate packets in response to the
request. We assume that the volume of traffic generated with the interoperability function
is TIO.

Secure tunneling creates a logical path between the source and destination devices. A
logical path can be defined in three ways, namely, a full strong encrypted state, a lightweight
state, and a policy-defined state (we introduced these states in Section 3.3.5). Based on
the system preferences, one of these processes will be executed. Among the three, the full
strong encrypted state consumes the most resources, and the lightweight state requires
the least. The resources include memory, processing unit, communication unit, and power
sources [48].

If we consider the average traffic overhead due to establishing a logical path as TES,
TLS, and TPS for the full strong encrypted state, lightweight state, and policy-defined state,
respectively, then the traffic overhead due to secure tunneling, TST, can be calculated
as follows:

TST = [TES] || [TLS] || [TPS]

If we assume TO as the total traffic overhead of the proposed ELSGP protocol, then TO
can be calculated as follows:

TO = TOA + TIO + TES

4.3. Fault Analysis

The failure of one or multiple critical devices may cause substantial losses, and the
impact may spread throughout the system. To analyze faults, we considered several well-
recognized fault models, including the Byzantine fault model, the Transient fault model,
and cascading failure. The well-known Byzantine fault model was chosen to interpret the
resiliency against fault nodes (due to identified vulnerability, affected with known or unknown
attacks, infected with malware, exhibiting malicious behavior, and so on). Transient faults

Technologies 2023, 11, 140 21 of 30

and cascading failure cause the instability of a system. We considered both faults as these
faults because both may cause tremendous impacts throughout a system. All these three fault
models and the remediation processes against the faults are elaborated on below.

4.3.1. Byzantine Fault

Byzantine faults derive from the Byzantine General Problem (Castro et al., 1999).
With this problem, in a distributed system, a component fails to perform or appears with
imperfect information. The node that is seemingly malfunctioning is called a Byzan-
tine node. To tolerate the fault, the number of faults should be fewer than 1/3 of the
total nodes [49]. In other words, if a system has f number of fault nodes, there will be
(1 + 3f) number of nodes to tolerate the fault. This fault tolerance is essential because of the
increasing attacks and arbitrary behavior of malicious nodes. To enhance fault resiliency,
we developed a Trust and Priority Impact relation, which is presented in the following
sub-section (Section 4.3.2).

4.3.2. Trust and Priority Impact Relation

Depending on the significance of the tasks, the viability of resources for security
operations, and the threats and vulnerability protection mechanisms, we determined
different degrees of trust, as shown in Table 1. Here, the lower the value of the degree of
trust, the higher the trustworthiness, and we consider the degrees of trust as Dt.

Table 1. Different degrees of trust.

Degree of Trust Types of Nodes

Dt
4 End nodes/IoT devices/sensors/actuators

Dt
3 Sub-server

Dt
2 Edge server

Dt Remote server/control server/cloud

Priority impact factor: The priority impact factor is the inverse of the degree of trust,
which presents the impact of the faultiness of a node. We assume the priority impact factor
as Pi and p as the power of degree of trust a node; therefore,

pi =
1

Dp
t

If we consider n as the number of nodes, then the priority impact of the faultiness of
nodes can be presented as follows:

pi =
∑n

0 (p n f n)

n
During the fault scenario, other nodes will determine Pi; here, a higher value of Pi

means the higher the impact of the faultiness, and a lower Pi means the lower the impact of
the faultiness. We calculate the degree of trust for n number of devices using the following:

1
Dt

p =
∑n

1 (pn fn)

n

Dt
p =

n
∑n

1 (pn fn)

Dt = p

√
n

∑n
1 (pn fn)

where n is the number of devices with the same degree of trust. If we consider a group
of devices with different p, then the Dt of the group of devices can be calculated as the
multiplication of the Dt values with different p values.

Technologies 2023, 11, 140 22 of 30

4.3.3. Transient Faults

Transient faults are very hard to prevent because they occur for a limited duration due
to many reasons (including malfunctioning, power outage, a network being busy, and so
on), and the system comes back to normal when the fault disappears [50]. No prevention
mechanism was introduced into our distributed computing model. However, we have
adopted a fault mitigation mechanism to provide resilience to the system. The mitigation
process is made up of four stages, all of which are presented below.

1. Get: exchange the system log among the non-faulty nodes.
2. Diagnose: diagnose the log to identify the cause of the fault.
3. Organize: plan a fault resolution process.
4. Commit: execute the predetermined resolution plan and acknowledge the fault reso-

lution status from the faulty node(s).

With these four stages, a system will mitigate the transient fault. During the Get
process, the packets for the logs are categorized as priority traffic, as defined in Section 3.3.4.

4.3.4. Cascading Failures

Cascading failures cause devastating consequences for a system. A cascading event
happens with a node and triggers the event in other nodes [51]. Ref. [51] conducted a
systematic review of fault modeling and analyzed the mitigation process by considering
and understanding the cause of the failure. To ensure resiliency and reliability in the
distributed computational system, we developed an isolation mechanism as a part of the
access token validation and distribution process, which will enhance the security of the
system and mitigate the cascading failure. In Section 3.2.1, we presented the concept of
zones and groups, which will isolate a physical or logical group from others. By observing
the nature of the failure, cascading failures trigger a domino-like chain effect. Although
there is a chance that the failure can be contained within a portion of the system, the
isolation technique will prevent the fault from spreading to a larger system portion or to
the whole system elements. Hence, the mitigation mechanism can ensure reliable resiliency
against failures.

4.4. Probability Analysis

When some of the system components behave arbitrarily and show unpredictable
behavior, it generates traffic in response to the unstable condition (the categories of the
generated traffic were presented in Section 3.3.4). With this uncontrolled scenario, the
components are recognized as faulty. We assume that the probability of f number of faulty
devices in a system is equal to p(f). Hence, the probability of non-faulty devices is equal to
(1 − p(f)). If we assume that faultiness is a discrete event that happens within a period, P,
then the probability of faultiness can be calculated as follows:

P(fP) =
|FTstart − FTend|

P

P(fP) =
F∆T
P

where FTstart is presented as the fault start time, FTend as the fault end time, and F∆T as
the duration of the fault. If we assume a fault event with responding traffic ft and the
probability of generating traffic while responding to the faultiness as P(ft), then it can be
calculated as the sum of the probability of each type of traffic. Therefore,

P(ft) = P(fut)+P
(

fpt
)
+P
(

f f t

)
Here, fut, fpt, f f t represent the fault event with responding unknown, priority, and

flooding traffic accordingly, and P(fut), P
(

fpt
)
, P
(

f f t

)
presents the probability of obtain-

ing corresponding traffic within the calculated period. During the arbitrary or unstable

Technologies 2023, 11, 140 23 of 30

condition, if any of these three types of traffic is generated, then the probability of faultiness
is equal to the probability of obtaining responding traffic. Hence,

P
(

fp
)
= P(ft)

4.5. Explanation of the Simulation Process

The performance of the proposed protocol was evaluated with the OMNET++ simula-
tor by evolving a simulation scenario. We selected several performance metrics to compare
the protocol’s results with that of other protocols, including CoAP, MQTT, and DDS.

4.5.1. Simulation Scenario

Regarding the simulation environment, a sample network topology with 19 nodes,
including 12 end IoT nodes, 4 sub-server nodes, 2 edge server nodes, and 1 remote server,
was created. Table 2 shows the chosen simulation parameters.

Table 2. Chosen values for different simulation parameters.

Parameter Name Value

Number of nodes 19
Packet count 5551

Link layer protocol Address Resolution Protocol (ARP)
Simulation time 100 s

Module used Simple and Compound
Framework INET

Power modules INET Energy modules
Mobility Static

Link Eth100M

Using this example scenario, the simulation process was conducted 12 times for 100 s
to achieve a 95% confidence interval. With the simulation results, node(s) may not act as
faulty, leading to the generation of results without considering faults. Performance metrics
were defined using appropriate parameters to extract and record results.

4.5.2. Simulation Results

Figure 4 shows the average end-to-end delay and mean end-to-end delay. The graph
plots 5551 packets for 100 s, and these generated packets travel a maximum of five hops to
arrive at the destination node. For the first 30 s, the graph shows an unstable end-to-end
delay line, which is due to the uneven traffic overhead, but subsequently, it becomes more
stable. The mean value of end-to-end delay is recorded as 0.01099 s, which is equal to
10.99 ms. Note: the result of end-to-end delay does not consider propagation delay as the
delay is very insignificant.

Figure 5 presents the proportion of power consumption by each end node over time.
It is clearly observable that the plotted line shows mostly steady state conditions, although
there is some instability due to the initial data processing on each node for the first 30 s. The
mean value of the proportion of power consumption is noted as 0.00894 of 100 J (energy
storage module of INET used in each end node). In other words, the energy consumption
rate is 0.894 J/s.

Technologies 2023, 11, 140 24 of 30

Technologies 2023, 11, x FOR PEER REVIEW 25 of 32

Link layer protocol Address Resolution Protocol (ARP)
Simulation time 100 s

Module used Simple and Compound
Framework INET

Power modules INET Energy modules
Mobility Static

Link Eth100M

Using this example scenario, the simulation process was conducted 12 times for 100
s to achieve a 95% confidence interval. With the simulation results, node(s) may not act as
faulty, leading to the generation of results without considering faults. Performance
metrics were defined using appropriate parameters to extract and record results.

4.5.2. Simulation Results
Figure 4 shows the average end-to-end delay and mean end-to-end delay. The graph

plots 5551 packets for 100 s, and these generated packets travel a maximum of five hops
to arrive at the destination node. For the first 30 s, the graph shows an unstable end-to-
end delay line, which is due to the uneven traffic overhead, but subsequently, it becomes
more stable. The mean value of end-to-end delay is recorded as 0.01099 s, which is equal
to 10.99 ms. Note: the result of end-to-end delay does not consider propagation delay as
the delay is very insignificant.

Figure 4. Graph of end-to-end-delay and end-to-end delay (mean).

Figure 5 presents the proportion of power consumption by each end node over time.
It is clearly observable that the plotted line shows mostly steady state conditions, although
there is some instability due to the initial data processing on each node for the first 30 s.
The mean value of the proportion of power consumption is noted as 0.00894 of 100 J
(energy storage module of INET used in each end node). In other words, the energy
consumption rate is 0.894 J/s.

Figure 4. Graph of end-to-end-delay and end-to-end delay (mean).

Technologies 2023, 11, x FOR PEER REVIEW 26 of 32

Figure 5. Graph of proportion of power consumption per IoT node.

Figure 6 illustrates the average throughput per end node over time. It can clearly be
observed that the average throughput is noted as a non-steady state condition for the first
few seconds, which is due to the uneven packet volume and processing time.

Figure 6. Graph of throughput and mean throughput.

The simulation results show that the mean throughput value for the end nodes is
444,080.0 bytes per second, which is equivalent to 3.553 Mbps. Figure 5 shows the plotted
values for the 5551 packets transmitted across the different end nodes for 100 s. Here, the
parameter of the probability of faultiness is taken randomly between 0.0 and 0.9, where a
lower value corresponds to a lower likelihood of being faulty and a higher value
corresponds to a higher probability of being faulty. Because of a node failure, the model
generates some corresponding traffic to mitigate the faults, which causes the simulated
throughput results to be uneven.

4.6. Comparison and Evaluation of the Findings
Our comparison of the performance metrics of the ELSGP with other competing

protocols, including CoAP, MQTT, and DDS, were based on our simulation results and

Figure 5. Graph of proportion of power consumption per IoT node.

Figure 6 illustrates the average throughput per end node over time. It can clearly be
observed that the average throughput is noted as a non-steady state condition for the first
few seconds, which is due to the uneven packet volume and processing time.

The simulation results show that the mean throughput value for the end nodes is
444,080.0 bytes per second, which is equivalent to 3.553 Mbps. Figure 5 shows the plotted
values for the 5551 packets transmitted across the different end nodes for 100 s. Here,
the parameter of the probability of faultiness is taken randomly between 0.0 and 0.9,
where a lower value corresponds to a lower likelihood of being faulty and a higher value
corresponds to a higher probability of being faulty. Because of a node failure, the model
generates some corresponding traffic to mitigate the faults, which causes the simulated
throughput results to be uneven.

Technologies 2023, 11, 140 25 of 30

Technologies 2023, 11, x FOR PEER REVIEW 26 of 32

Figure 5. Graph of proportion of power consumption per IoT node.

Figure 6 illustrates the average throughput per end node over time. It can clearly be
observed that the average throughput is noted as a non-steady state condition for the first
few seconds, which is due to the uneven packet volume and processing time.

Figure 6. Graph of throughput and mean throughput.

The simulation results show that the mean throughput value for the end nodes is
444,080.0 bytes per second, which is equivalent to 3.553 Mbps. Figure 5 shows the plotted
values for the 5551 packets transmitted across the different end nodes for 100 s. Here, the
parameter of the probability of faultiness is taken randomly between 0.0 and 0.9, where a
lower value corresponds to a lower likelihood of being faulty and a higher value
corresponds to a higher probability of being faulty. Because of a node failure, the model
generates some corresponding traffic to mitigate the faults, which causes the simulated
throughput results to be uneven.

4.6. Comparison and Evaluation of the Findings
Our comparison of the performance metrics of the ELSGP with other competing

protocols, including CoAP, MQTT, and DDS, were based on our simulation results and

Figure 6. Graph of throughput and mean throughput.

4.6. Comparison and Evaluation of the Findings

Our comparison of the performance metrics of the ELSGP with other competing
protocols, including CoAP, MQTT, and DDS, were based on our simulation results and the
performance results reported in several sources in the literature [21,52,53]; the limitations
of the performance evaluation are also presented in this section.

4.6.1. Comparison and Evaluation

To measure the performance of the comparable protocols, throughput, end-to-end
delay, and power consumption were considered valuable metrics. Figure 7 compares the
measured throughput of ELSGP against the other protocols. This comparison only shows
the achieved throughput for the IoT nodes, the average of which was 3.553 Mbps per node,
whereas CoAP, DDS, and MQTT show averages of 2.02, 1.62, and 2.38 Mbps, respectively.
In other words, the throughput of the IoT node with ELSGP shows a value that is 75.89%
higher than that of CoAP, 49.28% higher than that of MQTT, and more than double of the
throughput of DDS.

Technologies 2023, 11, x FOR PEER REVIEW 27 of 32

the performance results reported in several sources in the literature [21,52,53]; the
limitations of the performance evaluation are also presented in this section.

4.6.1. Comparison and Evaluation
To measure the performance of the comparable protocols, throughput, end-to-end

delay, and power consumption were considered valuable metrics. Figure 7 compares the
measured throughput of ELSGP against the other protocols. This comparison only shows
the achieved throughput for the IoT nodes, the average of which was 3.553 Mbps per node,
whereas CoAP, DDS, and MQTT show averages of 2.02, 1.62, and 2.38 Mbps, respectively.
In other words, the throughput of the IoT node with ELSGP shows a value that is 75.89%
higher than that of CoAP, 49.28% higher than that of MQTT, and more than double of the
throughput of DDS.

Figure 7. Throughput comparison.

Figure 8 shows a comparison among the protocols in terms of end-to-end delay. The
graph shows that the lowest delay is for ELSGP at 10.99 ms. The main objective of
distributed computation is to enhance the computing capabilities of edge layer nodes to
achieve high performance for real-time operations. As shown in Figure 8, ELSGP achieves
minimum delay within the existing lightweight protocols.

Figure 8. Comparison of end-to-end delay.

Obviously, low traffic overhead reduces energy consumption, and it gives leverage
to utilize the energy for power-constrained devices. Figure 9 illustrates that the average
power consumption rate per IoT node using ELSGP is 0.894 J/s, which is more than two
times and more than five times less in comparison to the rate of CoAP and DDS,
respectively. The results also show that the power consumption rate using ELSGP is 10.6%
lower than the rate using MQTT.

Figure 7. Throughput comparison.

Figure 8 shows a comparison among the protocols in terms of end-to-end delay.
The graph shows that the lowest delay is for ELSGP at 10.99 ms. The main objective of
distributed computation is to enhance the computing capabilities of edge layer nodes to
achieve high performance for real-time operations. As shown in Figure 8, ELSGP achieves
minimum delay within the existing lightweight protocols.

Technologies 2023, 11, 140 26 of 30

Technologies 2023, 11, x FOR PEER REVIEW 27 of 32

the performance results reported in several sources in the literature [21,52,53]; the
limitations of the performance evaluation are also presented in this section.

4.6.1. Comparison and Evaluation
To measure the performance of the comparable protocols, throughput, end-to-end

delay, and power consumption were considered valuable metrics. Figure 7 compares the
measured throughput of ELSGP against the other protocols. This comparison only shows
the achieved throughput for the IoT nodes, the average of which was 3.553 Mbps per node,
whereas CoAP, DDS, and MQTT show averages of 2.02, 1.62, and 2.38 Mbps, respectively.
In other words, the throughput of the IoT node with ELSGP shows a value that is 75.89%
higher than that of CoAP, 49.28% higher than that of MQTT, and more than double of the
throughput of DDS.

Figure 7. Throughput comparison.

Figure 8 shows a comparison among the protocols in terms of end-to-end delay. The
graph shows that the lowest delay is for ELSGP at 10.99 ms. The main objective of
distributed computation is to enhance the computing capabilities of edge layer nodes to
achieve high performance for real-time operations. As shown in Figure 8, ELSGP achieves
minimum delay within the existing lightweight protocols.

Figure 8. Comparison of end-to-end delay.

Obviously, low traffic overhead reduces energy consumption, and it gives leverage
to utilize the energy for power-constrained devices. Figure 9 illustrates that the average
power consumption rate per IoT node using ELSGP is 0.894 J/s, which is more than two
times and more than five times less in comparison to the rate of CoAP and DDS,
respectively. The results also show that the power consumption rate using ELSGP is 10.6%
lower than the rate using MQTT.

Figure 8. Comparison of end-to-end delay.

Obviously, low traffic overhead reduces energy consumption, and it gives leverage to
utilize the energy for power-constrained devices. Figure 9 illustrates that the average power
consumption rate per IoT node using ELSGP is 0.894 J/s, which is more than two times and
more than five times less in comparison to the rate of CoAP and DDS, respectively. The
results also show that the power consumption rate using ELSGP is 10.6% lower than the
rate using MQTT.

Technologies 2023, 11, x FOR PEER REVIEW 28 of 32

To sum up, based on the observed performance comparisons, ELSGP shows robust
performance in terms of throughput, end-to-end delay, and energy consumption.

Figure 9. Comparison of energy consumption.

4.6.2. Limitations of Performance Evaluation
The proposed protocol was designed based on the aforementioned developed

distributed computational model, whereas the comparative protocols were developed for
a traditional edge layer architecture. Hence, the comparison results may not truly reflect
the performance of each protocol, and the observed results may be higher or lower than
the actual results.

We have presented three different types of faultiness. In this study, the nature of
faultiness was considered to be as presented in Section 4.3. However, a fault can only be
defined with a set of predetermined random probabilistic values.

5. Conclusions
With the rapid expansion of IoT and IoT-dependent systems, risks associated with

security breaches, vulnerabilities, and threats are also rising. Due to constrained resources
such as memory, processing unit, energy source, and bandwidth, IoT devices have limited
capabilities to perform security operations like authentication, encryption, incident
response, and other critical operations. This open research problem highlights the
significance of adopting a lightweight security protocol based on a distributed
computational architecture that can function within the limited capabilities of IoT devices.

5.1. Summary of the Contributions
This research article proposed an enhanced lightweight security gateway protocol

based on a developed distributed computational model. A summary of the contributions
of this study is provided below.

By scrutinizing the characteristics of IoT devices and system requirements, we
developed a distributed computational model for the edge layer (described in Sections
3.2.3, 3.2.4 and 4.1). This model introduces a new type of node called a sub-server, which
functions as an edge server but does not substitute it. The purpose of a sub-server is to
distribute the computation power to perform the functions of the edge devices more
efficiently and enhance the security operations. Along with the sub-server, the end nodes,
edge server, and remote server are also members of this hierarchical model.

The proposed protocol has six operational features: access token distribution and
validation, authentication and dynamic interoperability, attribute-based access control,
traffic filtering, secure tunneling, and dynamic load distribution and balancing. The access
token distribution and validation features demonstrate how different levels of
identifications and validations are required to establish a trust relationship between nodes.
Authentication enables the securely establishment of connectivity and allows for the
transmission of traffic between two nodes. In a heterogeneous system, devices are

Figure 9. Comparison of energy consumption.

To sum up, based on the observed performance comparisons, ELSGP shows robust
performance in terms of throughput, end-to-end delay, and energy consumption.

4.6.2. Limitations of Performance Evaluation

The proposed protocol was designed based on the aforementioned developed dis-
tributed computational model, whereas the comparative protocols were developed for a
traditional edge layer architecture. Hence, the comparison results may not truly reflect the
performance of each protocol, and the observed results may be higher or lower than the
actual results.

We have presented three different types of faultiness. In this study, the nature of
faultiness was considered to be as presented in Section 4.3. However, a fault can only be
defined with a set of predetermined random probabilistic values.

5. Conclusions

With the rapid expansion of IoT and IoT-dependent systems, risks associated with
security breaches, vulnerabilities, and threats are also rising. Due to constrained resources
such as memory, processing unit, energy source, and bandwidth, IoT devices have lim-
ited capabilities to perform security operations like authentication, encryption, incident
response, and other critical operations. This open research problem highlights the signifi-
cance of adopting a lightweight security protocol based on a distributed computational
architecture that can function within the limited capabilities of IoT devices.

Technologies 2023, 11, 140 27 of 30

5.1. Summary of the Contributions

This research article proposed an enhanced lightweight security gateway protocol
based on a developed distributed computational model. A summary of the contributions
of this study is provided below.

By scrutinizing the characteristics of IoT devices and system requirements, we developed
a distributed computational model for the edge layer (described in Sections 3.2.3, 3.2.4 and 4.1).
This model introduces a new type of node called a sub-server, which functions as an
edge server but does not substitute it. The purpose of a sub-server is to distribute the
computation power to perform the functions of the edge devices more efficiently and
enhance the security operations. Along with the sub-server, the end nodes, edge server,
and remote server are also members of this hierarchical model.

The proposed protocol has six operational features: access token distribution and vali-
dation, authentication and dynamic interoperability, attribute-based access control, traffic
filtering, secure tunneling, and dynamic load distribution and balancing. The access token
distribution and validation features demonstrate how different levels of identifications and
validations are required to establish a trust relationship between nodes. Authentication
enables the securely establishment of connectivity and allows for the transmission of traffic
between two nodes. In a heterogeneous system, devices are operated with more than
one communication protocol and operational standard, and the interoperability function
enables compatibility with various end device configurations (including legacy solutions)
(as discussed in Sections 4.3.1 and 4.3.2). The ABAC operations are also a part of au-
thentication, which enables (through the use of attribute tags) the authentication of the
device access request for joining onto a network, communicating with the other network
devices, validating the generated or received data, and executing and validating the con-
trol command (as discussed in Section 3.3.3). The traffic filtering function facilitates the
deployment of traffic filtering policies to reduce the volume of unwanted traffic (as shown
in Section 3.3.4). Among the features of ELSGP, a secure tunnel enables the establish-
ment of a logical path between the sending and receiving ends. The ELSGP consists of
three different states: the full encrypted state, the lightweight state, and the policy-defined
state (as presented in Section 3.3.5). Lastly, a dynamic load distribution and balancing
function was developed with two different types of parameters—load information and
load status parameters—which allow for the balancing and distribution of loads within
policy-defined sub-servers and edge servers (as described in Section 3.3.6).

Considering the variability of system requirements, ELSGP adopts a policy frame-
work that can define the protocol features according to the requirements, which also in-
cludes microservice deployment and software-defined operations. This study also showed
fault mitigation mechanisms for Byzantine, cascading, and transient faults (as noted in
Sections 4.3 and 4.4).

The evaluation and comparison results show that ELSGP shows enhanced perfor-
mance in terms of throughput, end-to-end delay, and power consumption. In a nutshell,
by studying the variability of system requirements, operational performance, and fault
resiliency, it can be said that ELSGP could be a viable solution for the IoT edge layer.

Our proposed protocol is very adaptable; thus, it can be used to improve performance
in time-critical real-world scenarios in the manufacture of plants, the processing of plants,
industrial inspection and vision processing, highly IoT-intensified warehouses, healthcare
(surgical centers), and anywhere where real-time data processing, local decision-making,
and enhanced security for edge environments would be required.

5.2. Future Scope

This research article was the first step to develop a lightweight protocol under a
distributed computational model. In future work, we will focus on investigating a number
of open research problems. The notable future research directions can be summarized
as follows:

Technologies 2023, 11, 140 28 of 30

We would like to further investigate the performance of the proposed protocol. For
this study, we evaluated its performance under different conditions. Still, further analysis
could be performed by re-evaluating the protocol performance via comparisons with other
relevant metrics and, if required, identifying and rectifying the required modifications of the
protocol design. Performance may vary with different network sizes, mobility patterns, and
system requirements. We simulated and evaluated the proposed protocol’s performance
under predetermined fault conditions and a known environment, but the findings may vary
under unknown conditions. The mobility of the operating devices and the characteristics
of the communication channels may also have an impact on the performance. Our future
investigations regarding performance analysis will consider these conditions.

The development of a high-performance and cost-effective sub-server, such as the
one that was implemented into our proposed protocol (e.g., a sub-server adapted from a
Raspberry pi 4, an Arduino board, or a newly designed device), is beyond the scope of this
paper; however, this could be an interesting direction for future research articles to explore.

Author Contributions: Conceptualization, M.M.R.; methodology, M.M.R.; validation, M.M.R. and
J.G.; formal analysis, M.M.R.; investigation, M.M.R.; writing—original draft preparation, M.M.R.;
writing—review and editing, J.G.; supervision, J.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A Survey on IoT Security: Application Areas, Security Threats,

and Solution Architectures. IEEE Access 2019, 7, 82721–82743. [CrossRef]
2. Williams, R.; McMahon, E.; Samtani, S.; Patton, M.; Chen, H. Identifying vulnerabilities of consumer Internet of Things (IoT)

devices: A scalable approach. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics
(ISI), Beijing, China, 22–24 July 2017. [CrossRef]

3. Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE
Access 2018, 6, 78238–78259. [CrossRef] [PubMed]

4. Kirupakar, J.; Shalinie, S.M. Situation Aware Intrusion Detection System Design for Industrial IoT Gateways. In Proceedings of
the 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Chennai, India, 21–23 February 2019.

5. Buchanan, W.J.; Li, S.; Asif, R. Lightweight cryptography methods. J. Cyber Secur. Technol. 2017, 1, 187–201. [CrossRef]
6. Celebi, H.B.; Pitarokoilis, A.; Skoglund, M. Low-Latency Communication with Computational Complexity Constraints. In

Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 27–30
August 2019. [CrossRef]

7. Iqbal, W.; Abbas, H.; Daneshmand, M.; Rauf, B.; Bangash, Y.A. An in-depth analysis of IoT security requirements, challenges, and
their countermeasures via software-defined security. IEEE Internet Things J. 2020, 7, 10250–10276. [CrossRef]

8. Khan, M.N.; Rao, A.; Camtepe, S. Lightweight Cryptographic Protocols for IoT-Constrained Devices: A Survey. IEEE Internet
Things J. 2021, 8, 4132–4156. [CrossRef]

9. Cherif, A.; Belkadi, M.; Sauveron, D. A Lightweight and Secure Data Collection Serverless Protocol Demonstrated in an Active
RFIDs Scenario. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–27. [CrossRef]

10. Sha, K.; Yang, T.A.; Wei, W.; Davari, S. A survey of edge computing-based designs for IoT security. Digit. Commun. Netw. 2020, 6,
195–202. [CrossRef]

11. Wang, Y.; Tang, M.; Zhou, S.; Tan, G.; Zhang, Z.; Zhan, J. Performance Analysis of Heterogeneous Mobile Edge Computing
Networks with Multi-core Server. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology
(ICCT), Nanning, China, 28–31 October 2020. [CrossRef]

12. Minoli, D.; Sohraby, K.; Kouns, J. IoT security (IoTSec) considerations, requirements, and architectures. In Proceedings of the
2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017.
[CrossRef]

https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/isi.2017.8004904
https://doi.org/10.1109/ACCESS.2018.2884906
https://www.ncbi.nlm.nih.gov/pubmed/35531371
https://doi.org/10.1080/23742917.2017.1384917
https://doi.org/10.1109/iswcs.2019.8877142
https://doi.org/10.1109/JIOT.2020.2997651
https://doi.org/10.1109/JIOT.2020.3026493
https://doi.org/10.1145/3274667
https://doi.org/10.1016/j.dcan.2019.08.006
https://doi.org/10.1109/icct50939.2020.9295920
https://doi.org/10.1109/ccnc.2017.7983271

Technologies 2023, 11, 140 29 of 30

13. Yang, H.; Alphones, A.; Zhong, W.-D.; Chen, C.; Xie, X. Learning-Based Energy-Efficient Resource Management by Heterogeneous
RF/VLC for Ultra-Reliable Low-Latency Industrial IoT Networks. IEEE Trans. Ind. Inform. 2020, 16, 5565–5576. [CrossRef]

14. Zhong, C.L.; Zhu, Z.; Huang, R.G. Study on the IOT Architecture and Gateway Technology. In Proceedings of the 2015 14th
International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Guiyang,
China, 18–24 August 2015. [CrossRef]

15. Jin, W.; Xu, R.; You, T.; Hong, Y.-G.; Kim, D. Secure Edge Computing Management Based on Independent µs Providers for
Gateway-Centric IoT Networks. IEEE Access 2020, 8, 187975–187990. [CrossRef]

16. El Kaed, C.; Khan, I.; Berg, A.V.D.; Hossayni, H.; Saint-Marcel, C. SRE: Semantic Rules Engine for the Industrial Internet-Of-Things
Gateways. IEEE Trans. Ind. Inform. 2018, 14, 715–724. [CrossRef]

17. Shah, T.; Venkatesan, S. Authentication of IoT Device and IoT Server Using Secure Vaults. In Proceedings of the 2018 17th
IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018. [CrossRef]

18. Pardeshi, M.S.; Yuan, S.-M. SMAP Fog/Edge: A Secure Mutual Authentication Protocol for Fog/Edge. IEEE Access 2019, 7,
101327–101335. [CrossRef]

19. Daniel, D.A.; Roslin, S.E. Data validation and integrity verification for trust-based data aggregation protocol in WSN. Microprocess.
Microsyst. 2021, 80, 103354. [CrossRef]

20. Zhou, L.; Su, C.; Yeh, K.-H. A Lightweight Cryptographic Protocol with Certificateless Signature for the Internet of Things. ACM
Trans. Embed. Comput. Syst. 2019, 18, 1–10. [CrossRef]

21. Rajeesh Kumar, N.V.; Mohan Kumar, P. Application of SDN for Secure Communication in IOT environment. Comput. Commun.
2020, 151, 60–65. [CrossRef]

22. Zhang, Y.; He, D.; Li, L.; Chen, B. A lightweight authentication and key agreement scheme for Internet of Drones. Comput.
Commun. 2020, 154, 455–464. [CrossRef]

23. Wazid, M.; Das, A.K.; Kumar, N.; Vasilakos, A.V.; Rodrigues, J.J.P.C. Design and Analysis of Secure Lightweight Remote User
Authentication and Key Agreement Scheme in Internet of Drones Deployment. IEEE Internet Things J. 2019, 6, 3572–3584.
[CrossRef]

24. Singh, J.; Gimekar, A.; Venkatesan, S. An efficient lightweight authentication scheme for human-centered industrial Internet of
Things. Int. J. Commun. Syst. 2019, 36, e4189. [CrossRef]

25. Zhu, L.; Yang, Z.; Li, M.; Liu, D. An Efficient Data Aggregation Protocol Concentrated on Data Integrity in Wireless Sensor
Networks. Int. J. Distrib. Sens. Netw. 2013, 9, 256852. [CrossRef]

26. Razaque, A.; Rizvi, S.S. Secure data aggregation using access control and authentication for wireless sensor networks. Comput.
Secur. 2017, 70, 532–545. [CrossRef]

27. Siddiqui, F.; Beley, J.; Zeadally, S.; Braught, G. Secure and lightweight communication in heterogeneous IoT environments. Internet
Things 2021, 14, 100093. [CrossRef]

28. Chze, P.L.R.; Leong, K.S. A secure multi-hop routing for IoT communication. In Proceedings of the 2014 IEEE World Forum on
Internet of Things (WF-IoT), Seoul, Republic of Korea, 6–8 March 2014. [CrossRef]

29. De Azevedo, R.; Machado, G.R.; Goldschmidt, R.R.; Choren, R. A Reduced Network Traffic Method for IoT Data Clustering.
ACM Trans. Knowl. Discov. Data 2021, 15, 1–23. [CrossRef]

30. Jiang, X.; Lora, M.; Chattopadhyay, S. An Experimental Analysis of Security Vulnerabilities in Industrial IoT Devices. ACM Trans.
Internet Technol. 2020, 20, 1–24. [CrossRef]

31. Haddadi, H.; Christophidesy, V. SIOTOME: An Edge-ISP Collaborative Architecture for IoT Security. In Proceedings of the 1st
International Workshop on Security and Privacy for the Internet-of-Things (IoTSec), Orlando, FL, USA, 17–20 April 2018.

32. Sachan, A.; Kumar, N.; Adwiteeya, A. Light Weighted Mutual Authentication and Dynamic Key Encryption for IoT Devices
Applications. In Proceedings of the 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques
(ICICT), Ghaziabad, India, 27–28 September 2019. [CrossRef]

33. Chen, L.; Xu, Y.; Lu, Z.; Wu, J.; Gai, K.; Hung, P.C.K.; Qiu, M. IOT µs deployment in edge-cloud hybrid environment using
reinforcement learning. IEEE Internet Things J. 2021, 8, 12610–12622. [CrossRef]

34. Stévant, B.; Pazat, J.-L.; Blanc, A. QoS-aware autonomic adaptation of microservices placement on Edge Devices. In Proceedings of
the 10th International Conference on Cloud Computing and Services Science, Prague, Czech Republic, 7–9 May 2020. [CrossRef]

35. Amaran, M.H.; Noh, N.A.M.; Rohmad, M.S.; Hashim, H. A comparison of lightweight communication protocols in robotic
applications. Procedia Comput. Sci. 2015, 76, 400–405. [CrossRef]

36. Wolfart, D.; Assunção, W.K.G.; da Silva, I.F.; Domingos, D.C.P.; Schmeing, E.; Villaca, G.L.D.; Paza, D.D.N. Modernizing legacy
systems with µs: A roadmap. In Proceedings of the Evaluation and Assessment in Software Engineering, Trondheim, Norway,
21–23 June 2021. [CrossRef]

37. Morabito, R.; Beijar, N. A framework based on SDN and containers for dynamic service chains on IOT Gateways. In Proceedings
of the Workshop on Hot Topics in Container Networking and Networked Systems, Los Angeles, CA, USA, 25 August 2017.
[CrossRef]

38. Toshihiko, O. Lightweight Cryptography Applicable to Various IoT Devices. NEC Tech. J. 2017, 12, 67–71.
39. Derhamy, H.; Eliasson, J.; Delsing, J. IOT interoperability—On-demand and low latency transparent multiprotocol translator.

IEEE Internet Things J. 2017, 4, 1754–1763. [CrossRef]

https://doi.org/10.1109/TII.2019.2933867
https://doi.org/10.1109/dcabes.2015.56
https://doi.org/10.1109/ACCESS.2020.3030297
https://doi.org/10.1109/TII.2017.2769001
https://doi.org/10.1109/trustcom/bigdatase.2018.00117
https://doi.org/10.1109/ACCESS.2019.2930814
https://doi.org/10.1016/j.micpro.2020.103354
https://doi.org/10.1145/3301306
https://doi.org/10.1016/j.comcom.2019.12.046
https://doi.org/10.1016/j.comcom.2020.02.067
https://doi.org/10.1109/JIOT.2018.2888821
https://doi.org/10.1002/dac.4189
https://doi.org/10.1155/2013/256852
https://doi.org/10.1016/j.cose.2017.07.001
https://doi.org/10.1016/j.iot.2019.100093
https://doi.org/10.1109/wf-iot.2014.6803204
https://doi.org/10.1145/3423139
https://doi.org/10.1145/3379542
https://doi.org/10.1109/icict46931.2019.8977672
https://doi.org/10.1109/JIOT.2020.3014970
https://doi.org/10.5220/0009319902370244
https://doi.org/10.1016/j.procs.2015.12.318
https://doi.org/10.1145/3463274.3463334
https://doi.org/10.1145/3094405.3094413
https://doi.org/10.1109/JIOT.2017.2697718

Technologies 2023, 11, 140 30 of 30

40. Intel. Policy Framework for the Internet of Things (IOT). Intel. 2014. Available online: https://www.intel.com/content/dam/
www/public/us/en/documents/corporate-information/policy-iot-framework.pdf (accessed on 4 January 2022).

41. Phung, P.H.; Truong, H.-L.; Yasoju, D.T. P4SINC—An execution policy framework for IOT services in the edge. In Proceedings of
the 2017 IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, USA, 25–30 June 2017. [CrossRef]

42. Peng, C.; Chen, J.; Vijayakumar, P.; Kumar, N.; He, D. Efficient Distributed Decryption Scheme for IoT Gateway-based Applications.
ACM Trans. Internet Technol. 2021, 21, 1–23. [CrossRef]

43. Lee, C.-H.; Wu, Z.-L.; Chiu, Y.-T.; Chen, V.-S. Heterogeneous industrial IOT integration for manufacturing production. In
Proceedings of the 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Taipei,
Taiwan, 3–6 December 2019. [CrossRef]

44. Akasiadis, C.; Pitsilis, V.; Spyropoulos, C.D. A multi-protocol IOT platform based on open-source frameworks. Sensors 2019,
19, 4217. [CrossRef]

45. da Cruz, M.A.; Rodrigues, J.J.; Lorenz, P.; Solic, P.; Al-Muhtadi, J.; Albuquerque, V.H.C. A proposal for Bridging Application
Layer Protocols to HTTP on IOT Solutions. Future Gener. Comput. Syst. 2019, 97, 145–152. [CrossRef]

46. Vijayma. Azure IoT Edge Task—Azure Pipelines. Azure Pipelines|Microsoft Docs. 2021. Available online: https://docs.
microsoft.com/en-us/azure/devops/pipelines/tasks/build/azure-iot-edge?view=azure-devops (accessed on 4 January 2022).

47. Yarali, A. IOT: Platforms, Connectivity, Applications and Services. Amazon. 2018. Available online: https://docs.aws.amazon.
com/iot/latest/developerguide/secure-tunneling.html (accessed on 4 January 2022).

48. Zahoor, S.; Mir, R.N. Resource Management in pervasive internet of things: A survey. J. King Saud Univ. Comput. Inf. Sci. 2021, 33,
921–935. [CrossRef]

49. Castro, M.; Liskov, B. Practical byzantine fault tolerance. In OSDI ’99: Proceedings of the Third Symposium on Operating Systems
Design and Implementation, New Orleans, LA, USA, 22 February 1999; USENIX Association: Berkeley, CA, USA, 1999; Volume 99,
pp. 173–186.

50. Lee, Y.-L.; Arizky, S.N.; Chen, Y.-R.; Liang, D.; Wang, W.-J. High-availability computing platform with Sensor Fault Resilience.
Sensors 2021, 21, 542. [CrossRef] [PubMed]

51. Xing, L. Cascading failures in internet of things: Review and Perspectives on Reliability and Resilience. IEEE Internet Things J.
2021, 8, 44–64. [CrossRef]

52. Guaman, Y.; Ninahualpa, G.; Salazar, G.; Guarda, T. Comparative Performance Analysis between MQTT and CoAP Protocols
for IoT with Raspberry PI 3 in IEEE 802.11 Environments. In Proceedings of the 2020 15th Iberian Conference on Information
Systems and Technologies (CISTI), Seville, Spain, 24–27 June 2020. [CrossRef]

53. Bansal, M.; Priya. Performance comparison of MQTT and CoAP protocols in different simulation environments. In Inventive
Communication and Computational Technologies; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany,
2020; pp. 549–560. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/policy-iot-framework.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/corporate-information/policy-iot-framework.pdf
https://doi.org/10.1109/ieee.iciot.2017.23
https://doi.org/10.1145/3414475
https://doi.org/10.1109/ispacs48206.2019.8986308
https://doi.org/10.3390/s19194217
https://doi.org/10.1016/j.future.2019.02.009
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/build/azure-iot-edge?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/build/azure-iot-edge?view=azure-devops
https://docs.aws.amazon.com/iot/latest/developerguide/secure-tunneling.html
https://docs.aws.amazon.com/iot/latest/developerguide/secure-tunneling.html
https://doi.org/10.1016/j.jksuci.2018.08.014
https://doi.org/10.3390/s21020542
https://www.ncbi.nlm.nih.gov/pubmed/33451105
https://doi.org/10.1109/JIOT.2020.3018687
https://doi.org/10.23919/cisti49556.2020.9140905
https://doi.org/10.1007/978-981-15-7345-3_47

	Introduction
	Background and Related Work
	IoT Edge Architecture
	Related Work

	Design of an Enhanced Lightweight Security Gateway Protocol for the Edge Layers
	Challenges of the Existing Edge Server-Based System
	The Proposed Model
	Concept of Zones and Groups
	Implementation of Microservices
	Gateway Functions at Sub-Server (Phase 1)
	Gateway Functions at Edge Server (Phase 2)
	ELSGP Operational Flow and Policy Framework

	Design of ELSGP
	Authentication
	Dynamic Interoperability Function
	Attribute-Based Access Control (ABAC)
	Traffic Filtering
	Secure Tunneling
	Dynamic Load Distribution and Balancing

	Analysis and Evaluation
	Modeling of the Distributed Computational System
	Analysis of the Algorithm
	Access Token Distribution and Validation
	Dynamic Interoperability and Secure Tunneling

	Fault Analysis
	Byzantine Fault
	Trust and Priority Impact Relation
	Transient Faults
	Cascading Failures

	Probability Analysis
	Explanation of the Simulation Process
	Simulation Scenario
	Simulation Results

	Comparison and Evaluation of the Findings
	Comparison and Evaluation
	Limitations of Performance Evaluation

	Conclusions
	Summary of the Contributions
	Future Scope

	References

