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Abstract: The advent of Artificial Intelligence (AI) has had a broad impact on life to solve various
tasks. Building AI models and integrating them with modern technologies is a central challenge for
researchers. These technologies include wearables and implants in living beings, and their use is
known as human augmentation, using technology to enhance human abilities. Combining human
augmentation with artificial intelligence (AI), especially after the recent successes of the latter, is
the most significant advancement in their applicability. In the first section, we briefly introduce
these modern applications in health care and examples of their use cases. Then, we present a
computationally efficient AI-driven method to diagnose heart failure events by leveraging actual
heart failure data. The classifier model is designed without conventional models such as gradient
descent. Instead, a heuristic is used to discover the optimal parameters of a linear model. An analysis
of the proposed model shows that it achieves an accuracy of 84% and an F1 score of 0.72 with only
one feature. With five features for diagnosis, the accuracy achieved is 83%, and the F1 score is 0.74.
Moreover, the model is flexible, allowing experts to determine which variables are more important
than others when implementing diagnostic systems.

Keywords: Artificial Intellience; data mining; gradient decent; feature selection; heart disease

1. Introduction

The key part of modern technologies, including in health care, is a micromachine,
a tiny machine or device, typically on the order of micrometers (millionths of a meter).
It has wide applications, including in medicine, electronics, and manufacturing [1]. The
use of micromachines to enhance human capabilities, while still in the realm of science
fiction, is an active area of research and development that may have significant potential to
improve the capabilities of individuals. The term human augmentation refers to the use of
technology to enhance the capabilities of the human body [2] and can be achieved through
wearable devices, such as smart glasses or fitness trackers, and body implants based on
micromachines, such as cochlear implants or artificial limbs. The potential applications of
these technologies are diverse, ranging from improving communication and mobility for
people with disabilities to improving athletic performance or access to information and
other digital services.

Human augmentation devices need to be extremely small for practical implementation.
One such device is the microchip or implantable microchip, which is typically implanted
in the human body through an injection to record or transmit data about various aspects
of the body such as blood pressure or symptoms as the controller of an artificial human
organ. Numerous implementations have been developed over the past several decades.
For example, the worldwide count of cochlear implants exceeds 700,000. Fifty-four percent
of adults who fell ill with COVID-19 reported no or only partial recovery of their sense of
smell. The E-Nose project was started in 2011 and is aimed at helping people who have
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lost their sense of smell. The working principle is similar to that of cochlear implants,
which transmit signals to a small array of electrodes. However, this project faces several
problems. The human nose can distinguish 1 trillion odors from 400 different receptors,
and the such devices will be very expensive to produce [3]. A similar invention, sensors,
which are commonly used to collect data from industrial processes and control them, are
a leading-edge technology to collect data from deep brain activities and prevent serious
health issues, such as brain hemorrhage. One successful implementation of such a sensor
is neuropixels, which has been researched since the 1950s. Unlike in other implantable
sensors, the shafts of neurpixels are unusually small, about 23µm thick and 1 cm long,
making the devices suitable for brain implantation. These devices can record the activities
of a single neuron for about six months [4].

In the last two decades, many technologies have been researched for implementing a
single connected system that can communicate in real time regardless of the distance. Such
systems usually have a complex structure with many parts. One unique and critical part
is the implantable microchip that continuously collects data without human intervention.
By using such a system, for example, a cardiologist can be informed within seconds of the
changes in the performance of the heart in patients with cardiovascular diseases and help
prevent a heart failure, which can lead to even death. Figure 1 shows the system concept
for the normal case for data acquisition and data transfer over the Internet. The system
has six main parts: a unique data source, including hospitals, homes, and rural areas; data
collection using microchips, implants, and wearables; data transfer using specialized apps;
preprocessing; and recording of conversations with AI helpers and physicians for real-time
diagnosis and treatment.

Hospitals

Rural
areas

Hospitals
Homes

Collecting
data

Collecting
data

Apps Apps

Data
preprocessing

Data
preprocessing

AI
helpers

AI
helpers

Physicians

Internet

Figure 1. Modern healthcare structure comprising the internet, wearables, implants, and AI
medical helpers.

In this paper, we propose a Machine Learning (ML) model on a heuristic approach
without additional theoretical assumptions to determine the optimal weights of a logistic
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regression model to diagnose heart failure in patients with heart disease. A summary of
the main contributions of the paper is given below:

• linear model parameters (feature weights) are calculated based on heuristics instead
of gradient descent;

• higher accuracies achieved in various metrics compared to previous research;
• feature ranking is determined based on heuristics, guaranteeing a single solution,

unlike Random Forest, and it does not suffer from the class inequality problem either.

The remainder of the paper is organized as follows: The second section reviews the
related work with an explanation of the results, limitations and differences between them
and this work. Then, we present the proposed linear model based on feature ranking with
its results and comparisons in the third section. The results are discussed in the fourth
section, and, finally, the conclusions are presented in the fifth section.

2. Related Work

Despite the recent advances in high-end technology in medicine, heart defects cause
more human deaths than other types of diseases. Cardiovascular disease statistics show
874,613 deaths, and in 2019, there was a death about every three and a half minutes in the
United States[5]. In the medical domain, numerous scientific studies have been carried out
over the years and solutions proposed to improve the quality of human life. Among them,
the implantable bio-nanochip technology has been used to treat heart and cardiovascular
diseases. The nanochip is programmable, i.e., it can be controlled with code [6]. Another
method of monitoring patients with heart failure remotely was devised by the Calhoun
Cardiology Center, which used a microchip of implantable sensors [7].

The recent successes of AI in many domains, including video, image, natural lan-
guage, and signal processing, have been attributed to the use of complex models, such as
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and others.
However, these models can fail when deployed in tiny nanochips, such as bio-nanochips,
because of the lack of computational resources. Works that leverage the CNN model for
diagnosing heart disease from phonocardiogram signals in real time have been proposed.
Studies [8–10] are audio and image-based models with high accuracy. However, the imple-
mentation of these models in the micromachines and nanochips in wearables and implants
often fails because of resource shortages. The extraction of multiple images and signals
and their transfer to a central server may be not be possible. Another similar research on
structural datasets employing CNN achieved more accurate results in various metrics [11],
but this model also needs more resources. Similarly, the authors in [12,13] suggested a
machine learning model employing data from two features, serum creatinine and ejection
fraction, to diagnose cardiovascular diseases in patients using statistical analysis such as
feature ranking, p-value tests based on linear regression and random forest.

In this work, as in previous research, we use feature ranking. However, the method
is based on heuristic algorithms instead of a statistical hypothesis, producing more stable
results and a slightly higher accuracy while leveraging fewer features. This methodology
has been widely used in several scientific papers for data mining and classification. It is
expressed as a linear regression model for binary classification:

y = wx + b (1)

where w ∈ Rn represents the parameters of the model, x represents input data, and b is a
bias term that is omitted in this study. To decide the class of the input data x, usually a
threshold with a value of 0.5 as a decision boundary is used. However, this study attempts
to find the boundary that maximizes certain criteria.

To determine the optimal parameters w in Equation (1), most research works employ
a gradient-decent method by minimizing an appropriate loss. In this case, it is a binary
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cross-entropy loss. In contrast, some other researchers have proposed a heuristic and
deterministic methodology to calculate the parameters w [14–17]:

y = tŵx (2)

where t ∈ {−1, 1} is the class direction and ŵ ∈ Rn are the optimal parameters of the
model calculated using feature ranking. Therefore, our approach does not require any
gradient-based optimization. The class directions of each feature in the model are found by
calculating every possible combination of {−1, 1} in previous works [14–17]. We propose a
new method by modifying this approach based on the results of heuristic feature ranking.

3. The Proposed Methodology

This section will provide an overall model with a modern working internet and an
AI-powered automatic classification task of heart failure diseases.

3.1. Heart Disease Data and the Proposed Model

During the experiments, we will use the heart failure dataset [12,13,18], which can be
considered as data received from remote sensors. The dataset consists of 290 instances de-
scribed by 13 features. The following Table 1 provides explicit information on each feature.
As can be seen from Table 1, some feature values, such as patient age, cannot be measured
using sensors, and some others are constant values, like the sex of patients. However, these
features provide some flexibility in determining their values. For example, patient age and
followed-period can be calculated within the devices and do not require extra resources.
This dataset requires that the patients with heart disease be followed up continuously to
enable prevention of early deaths. To achieve this purpose, we have a target feature: the
results for observed patients who died or survived during the observation period.

Table 1. Description of features of the heart failure dataset.

# Name of Feature Type of Feature

1 Age of the patient (Age) Integer
2 The patient has or does not have anemia (Anemia) Yes/no
3 Level of creatinine phosphokinase enzyme in the blood (mcg/L) (Crea-

tinine phosphokinase)
Real

4 The patient has or does not have diabetes (Diabetes) Yes/no
5 The patient has or does not have hypertension (High blood pressure) Yes/no
6 Percentage of blood leaving the heart at each contraction (Ejection

fraction)
Real

7 Platelets in the blood (kiloplatelets/mL) (Platelets) Real
8 Male or female (Sex) Binary
9 Level of serum creatinine in the blood (mg/dL) (Serum creatinine) Real
10 Level of serum sodium in the blood (mEq/L) (Serum sodium) Real
11 The patient smokes or does not smoke (Smoking) Yes/no
12 The follow-up period in days (Period) Integer
13 The patient deceased or survived during the follow-up period Target

(Death/Survived)

3.2. The Proposed ML Model

The proposed ML model reduces the number of features using heuristics derived
from data mining. Even with fewer features, it achieves almost the same accuracy as the
other standard models. This has advantages in real-time applications as it can decrease
laboratory analysis and device costs. Feature engineering and feature selection have many
aspects. Our analysis rates 12 features and the relationship of each feature to the target
values independently, replacing conventional methods such as logistic regression feature
ranking and statistical tests. Equation (3) ranks the feature importance for target values
independently. First, the values for one feature from the dataset are sorted. Then, we
include the target values according to the location of each selected value. For example,
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Table 2 presents 20 values of patient ages derived from rows 70 to 90 of the dataset. If the
target value equals 0, the patient survived during this period; otherwise, they died.

Table 2. Examples of raw values with the target event.

The raw objects

Time periods 41 58 85 65 69 60 70 42 75 55 70 67 60 79 59 51 55 65 44 57
Target values 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0

The sorted objects

Time periods 41 42 44 51 55 55 57 58 59 60 60 65 65 67 69 70 70 75 79 85
Target values 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1

The ranking involves dividing the sorted feature values into two disjoint intervals and
finding the border value by maximizing Equation (3). The maximum value of Equation (3)
for a single feature is assigned to its weight ŵi. Let u1

1 and u2
1 denote the number of

surviving and deceased patients in the first interval and u1
2 and u2

2 the number of surviving
and deceased patients in the second interval of feature xj.

f (xj) = max
c1<c2<c3

(
∑2

d=1 ∑2
i=1 ud

i (u
d
i − 1)

∑2
i=1 |Ki|(|Ki| − 1)

)(
∑2

d=1 ∑2
i=1 ud

i (|K3−i| − ud
3−i)

2|K1||K2|

)
(3)

where c1, c2, c3 are the minimum, border, and maximum values of the feature after dividing
the data into disjoint intervals [c1, c2], (c2, c3] in accordance. The solution of Equation (3)
lies in the interval [0, 1]. If it is equal to 1, then the objects of the two classes (surviving
and deceased) are located in different intervals. Moreover, the first and second brace
expressions in Equation (3) imply the inner-class similarity and difference respectively. The
Algorithm 1 below illustrates the steps for calculating the rank for a given feature.

Algorithm 1 Feature Ranking Algorithm

Input: x and y . x and y- values, labels of input feature
Output: w, b . Find max w values of Equation (3), and border b

w← 0, b← 0 . Initial values of output
l ← argsort(x)
i← 0
u1

1 = 0, u2
1 = 0, u1

2 = len(K1), u2
2 = len(K2) . Sub. and sup. indicate class and interval

while i < len(x) do
i← i + 1
u1]

y[l[i]] ← u1
y[l[i]] + 1 . The border moves to right. Increase by 1

u2
y[l[i]] ← u2

y[l[i]] − 1 . Decrease by 1 2nd interval
if x[l[i]] 6= x[l[i + 1]] then . Ensuring disjointablity of intervals

s← criterion(u, K) . Calculate the f by given u and K
if w < s then . If new border’s rank higher, then reassign

w← s, b← i
end if

end if
end while

We assume a function criterion exists in Algorithm 1. Given below is an example for
this function using the values in Table 2 based on choosing a probable best decision bound-
ary. The object numbers in Table 2 are 15 and 5 in two classes in accordance. In the current
case, we have a class-imbalance problem. At first glance, the first and second intervals
are [c1, c2] and (c2, c3]; refer the second part of the table. After the borders are defined, we
can calculate the object numbers of each class in every interval. As denoted above, u1

1 = 8,
u1

2 = 0, u2
1 = 7, u2

2 = 5 are the number of objects in classes and intervals respectively, where
the superscripts and subscripts indicate the interval and the class indices, respectively. The
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similarity and the difference can be computed as 8(8−1)+0(0−1)+7(7−1)+5(5−1)
15(15−1)+5(5−1) = 0.51 and

8(5−0)+0(15−8)+7(5−5)+5(15−7)
2·15·5 = 0.53, and the overall value of Equation (3) is 0.27, and the

binary accuracy is 65%, which is a little high.
Similar to logistic regression, the presented approach uses a feature border calculated

by the Algorithm 1 (a feature with the height rank) as a decision boundary instead of
determining the threshold, usually 0.5. It is important to remember that a decision based
on a single feature can have adverse effects, especially in medicine. In particular, if a
patient has cardiovascular disease, there is a high probability of death after a certain period.
Therefore, we include other features based on the ranking given by Equation (3) and the
difficulty of measuring them in real time; for instance, determining a patient’s age does not
call for any additional resources or effort, but platelets in the blood can be measured only in
test laboratories. To end this, we leverage Equation (4) as linear logistic regression instead
of leveraging gradient descent optimization with modification of Equation (2) is divided
into two sums for: quantitative and categorical features separately. Equation (4) transforms
all object feature values into a single value, which can used for further analysis by applying
Equation (3).

g(x(i)) = ∑
j∈I

tjwj
x(i)j − c2,j

c3,j − c1,j
+ ∑

j∈J
tjwjx

(i)
j (4)

where tj ∈ {−1, 1} is the class direction, wj is the value of Equation (3), c1,j, c2,j, c3,j are
the minimum, border, and maximum values of feature xj after dividing the entire range
into disjoint intervals [c1,j, c2,j], (c2,j, c3,j]. The class direction is implicit. The easiest way, as
introduced in the task of maximizing the value of Equation (3), is determining tj ∈ {−1, 1}
case by case, which is NP-complete [19,20]; for example, if there 12 features in the datasets,
then the number of total cases will be 212. This paper proposes to modify this limitation of
the existing method. Let us assume the first-class objects are located in the first interval
for each feature. To make this assumption work when the class intervals are misplaced,
we set the class direction ti = −1 and otherwise, we assign 1 to the class direction tj. To
apply Equation (4) to the categorical features, we preprocess them using a target encoder
with an important modification: the value of each category is replaced with its posterior
probability over the classes in Equation (5) [14].

xi
j =

p
(

xj = xi
j|yi ∈ K1

)
p
(

xj = xi
j|yi ∈ K1

)
+ p

(
xj = xi

j|yi ∈ K2

) (5)

We can group the features by using Equation (4) to obtain a single output for multiple
inputs, as in the logistic regression model. After we have the output values of the objects in
the training set, we apply Equation (3) to them to locate the border between two classes.
Based on the assumption of the object locations in the intervals, we can write Equation (6)
to predict new patients. We used the same approach for computing metrics using a single
feature in Table 3.

Predictor(x(new)) =

{
“Survived”, if g(x(new)) ≤ c2,g

“Dead”, otherwise
(6)
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Table 3. The average ranked importance of features derived from Equation (3) for 1000 executions.

Feature Rank by
Equation (3) t Precision Recall F1 Score Accuracy

Period 0.52 −1 0.84/0.83 0.65/0.64 0.73/0.72 0.85/0.84
Serum creatinine 0.34 1 0.63/0.60 0.48/0.46 0.54/0.51 0.74/0.72
Ejection fraction 0.33 −1 0.57/0.55 0.52/0.50 0.54/0.52 0.71/0.71
Serum sodium 0.30 −1 0.50/0.48 0.48/0.46 0.49/0.46 0.68/0.67
Age 0.30 1 0.50/0.48 0.43/0.42 0.46/0.44 0.68/0.67
Platelets in the blood 0.26 −1 0.40/0.35 0.38/0.33 0.39/0.33 0.62/0.59
High blood pressure 0.26 1 0.37/0.37 0.41/0.40 0.39/0.38 0.59/0.58
Anemia 0.25 −1 0.36/0.35 0.48/0.47 0.41/0.40 0.55/0.55
Creatinine phosphok-
inase

0.25 1 0.35/0.28 0.46/0.37 0.40/0.32 0.56/0.50

Diabetes 0.25 −1 0.33/0.28 0.52/0.45 0.40/0.34 0.51/0.46
Sex 0.25 1 0.33/0.28 0.50/0.43 0.39/0.33 0.52/0.47
Smoking 0.24 1 0.33/0.29 0.58/0.51 0.41/0.36 0.49/0.45

4. Experiments

In this section, we illustrate our findings based on the methodology described in the
previous section along with the outcomes of the comparison with other existing methods.

4.1. Data Preprocessing

According to Table 1, the dataset contains both categorical and numerical variables.
Therefore, before using the AI models, the data must be preprocessed by scaling the
numerical variables to intervals [−1, 1] and converting categorical variables to numerical
variables. Normalizing the numerical variables of different scales makes the AI models
scale invariant and increases the goodness of fit and generalizability. Normalization is
defined in several ways in statistics. For example, one of them is to fit variables at different
scales to one scale. There are several scaling methods. In this experiment, we use a max-min
scaling technique in the Formula (7) before predicting patients using the existing methods.

xj =
xj −min(xj)

max(xj)−min(xj)
(7)

where xj is any numerical feature. Similarly, there are many methods to encode categorical
variables into numerical variables, including one-hot, effect, binary, base-N, hash, and
target encoders. Because all categorical variables are binary, they are not required to be
encoded into numerical values.

4.2. Evaluation Metrics

We leverage four metrics to check the model performance, thus guaranteeing its
performance in production. In addition, during the training, we can extract patterns of the
model performance which can be used to find and fix failures. In the statistical analysis
and machine learning of the binary classification, the F1 score in Equation (8), Precision in
Equation (9), and Recall in Equation (10) are used together to determine the accuracy of the
classification problem [21].

Pr =
TP

TP + FP
(8)

Re =
TP

TP + FN
(9)

F1 =
2 · Pr · Re
Pr + Re

(10)
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where TP, FP, and FN are the number of True Positive, False Positive, and False Negative
predicted objects, respectively.

4.3. Results of Existing Algorithms

After the input data have been preprocessed, we can apply various well-known ma-
chine learning algorithms, including k-nearest neighbors (kNN), support vector machines
(SVM), Linear Classifiers, Random Forests, and Neural Networks (NN), and compare with
the proposed method. Many models can be employed in different situations, and we must
choose the best model for the problem. Table 4 depicts the results of 6 well-known methods
using all the features from the dataset. The last metric in Table 4 is accuracy, calculated as a
percentage of correctly predicted objects for all objects in the dataset. We split the dataset
into two subsets comprising 75% and 25% of the data for training and testing, respectively,
with a cross-validation technique of 4 folds. The values produced by scikit-learn library [22]
in Table 4 are the results for the training and testing sets. The Random Forests results are
the highest in precision and accuracy, while the Gradient Boosting Classifier results for
the Recall and F1 score metrics are the best among others. Even though a Multi-Layer
Perceptron (MLP) has 1000 neurons in a single hidden layer with fine-tuning, its results are
not applicable and are the lowest. Both training and test accuracies of Random Forest and
Gradient Boosting meet the requirements for production. However, they require all feature
values and can have a negative effect when acquiring all variables in real time.

Table 4. Numerical experiments on the heart failure dataset using scikit-learn.

Model Precision Recall F1 Score Accuracy

SVM 0.80/0.82 0.65/0.65 0.72/0.72 0.80/0.84
MLP 1.00/0.61 1.00/0.58 1.00/0.59 1.00/0.74
kNN (3-neighbors) 0.88/0.64 0.51/0.32 0.65/0.41 0.82/0.72
Nearest neighbor 1.00/0.48 1.00/0.38 1.00/0.42 1.00/0.66
Random Forest 0.93/0.85 0.74/0.65 0.83/0.73 0.90/0.85
Gradient Boosting Classifier 1.00/0.76 1.00/0.72 1.00/0.73 1.00/0.83

4.4. Results of the Proposed Method

We report our findings in two different forms: Table 3 depicts the importance of each
feature and its accuracy for the target as a single-feature decision-maker. Table 5 shows
the results of grouping of the features for building a predictor with various combinations
of features. The border c2 can be used as a classifier by leveraging it for a single-feature
decision as in a logistic regression model. The detailed steps for classification using the
single-feature values are given earlier.

Table 5. Group prediction results for 100 executions.

Feature Group Rank by
Equation (3) Precision Recall F1 Score Accuracy

Period, Serum creatinine 0.52 0.80/0.76 0.68/0.65 0.74/0.70 0.84/0.82
Period, Serum creatinine, Ejection fraction 0.53 0.80/0.79 0.70/0.69 0.75/0.73 0.85/0.84
Period, Serum creatinine, Ejection fraction, Serum sodium 0.53 0.81/0.78 0.69/0.67 0.74/0.72 0.85/0.83
Period, Serum creatinine, Ejection fraction, Serum sodium, Age 0.55 0.77/0.75 0.76/0.74 0.77/0.74 0.85/0.83
Period, Serum creatinine, Ejection fraction, Serum sodium, Age,
Platelets in the blood

0.54 0.81/0.78 0.70/0.68 0.75/0.73 0.85/0.84

Period, Age, High blood pressure 0.48 0.72/0.53 0.71/0.76 0.71/0.62 0.82/0.71
Period, Age, High blood pressure, Sex, Smoking 0.48 0.74/0.42 0.69/0.89 0.71/0.57 0.82/0.58

The results can be interpreted by experts in medicine and patterns can be identified
in datasets. For a specific case, according to the results of the proposed model based on
the dataset, Sex, Smoking do not have as much importance as Observed period. Now, we list
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some important properties of Equation (3), which determines the optimal border that can
be employed as a decision-making boundary for binary classification:

1. It does not require normalized data, i.e., it is scale invariant;
2. It determines the applicable border even in datasets that are class-imbalanced;
3. It can replace three metrics Precision, Recall, and F1 score, i.e., it is more stable;
4. It is unaffected by class locations in the two intervals;
5. It can be used to determine a fine-tuned threshold in logistic regression.

5. Discussion

The results show that the proposed architecture performs exceptionally well even with
one feature. Nevertheless, as mentioned earlier also, we encourage using more features to
get sufficient guaranteed results, especially in medicine. The proposed algorithm works
well on the datasets because of the following reasons. First, Equation (3) finds the most
separable intervals concerning getting a higher value for each feature. The highest value
is multiplied by the feature values and the feature’s class direction. Second, we estimate
each object by adding all their feature values based on their class locations in the intervals.
The values {−1, 1} can be determined by using the result of Equation (5). Finally, we
estimate each object by including the most ranked feature values step-by-step to get higher
performance. We use the estimation values of objects to predict test objects.

The current method results in Table 4 show that the highest accuracy for F1 is achieved
by Gradient Boosting Classifier. However, its overfitting rate of 0.27 is also the highest because
the gradient descent optimization can fit well on the training set. The Random Forest model
has the highest accuracy of 0.85, followed by SVM with 0.84. However, the existing models
presented in Table 4 use all feature values to predict the outcomes. In contrast, the proposed
method requires only up to 5 features to diagnose cardiovascular diseases. In addition,
the overfitting rates of the proposed method for all metrics are less than 0.04. Because the
dataset has class-imbalance and all results are provided with an F1 score, the accuracy of
the proposed method for this score is acceptable with up to 5 features as per Equation (3).

The major advantage of the proposed method is that experts can select the features
based on the facilities required and available for the proposed tests, such as their ranking or
the difficulty in getting the proper medical records for selected features. In contrast, other
methods require all the features. This feature selection process is not visible in Random
Forest because it selects objects and features randomly and repeatedly to achieve higher
accuracies [23]. Moreover, the proposed ranking is also useful for knowledge extraction.

6. Conclusions

We have proposed a ML model for the prediction of heart failure in patients with
cardiovascular disease. This method can be used in real time even with less information. We
have compared the results of the proposed method with those of several existing methods
with respect to four metrics. The results show that the proposed method predicts heart
failure better even if the dataset has class-imbalance. We have also suggested an overall
IoT structure to work with patients with cardiovascular diseases in real time in both online
and offline modes. Future work should be aimed at improving the model’s accuracy and
applying this approach to other tasks, such as transfer learning. One limitation of the
proposed method is that the model can perform well if the single-feature ranking rates are
reasonably high.
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