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Abstract: Malware propagation is a growing concern due to its potential impact on the security and
integrity of connected devices in Internet of Things (IoT) network environments. This study investi-
gates parameter estimation for Susceptible-Infectious-Recovered (SIR) and Susceptible–Infectious–
Recovered–Susceptible (SIRS) models modeling malware propagation in an IoT network. Synthetic
data of malware propagation in the IoT network is generated and a comprehensive comparison is
made between two approaches: algorithms based on Monte Carlo methods and Physics-Informed
Neural Networks (PINNs). The results show that, based on the infection curve measured in the
IoT network, both methods are able to provide accurate estimates of the parameters of the malware
propagation model. Furthermore, the results show that the choice of the appropriate method depends
on the dynamics of the spreading malware and computational constraints. This work highlights the
importance of considering both classical and AI-based approaches and provides a basis for future
research on parameter estimation in epidemiological models applied to malware propagation in
IoT networks.

Keywords: PINN; Monte Carlo; parameter estimation; malware propagation; IoT networks

1. Introduction

In an era of ever-expanding information technology and connectivity, cybersecurity
has become a key concern [1]. An environment conducive to the proliferation of cyber
threats has been created by the increasing interconnectedness of devices and systems
through Internet of Things (IoT) networks [2,3]. This interconnectivity, through the in-
tegration of smart devices into large-scale networks, has enabled the transformation of
virtually every aspect of society, from industry and healthcare to people’s daily lives. With
this technological revolution have come cybersecurity challenges [4]. New attacks and
vulnerabilities have emerged due to the breadth and diversity of IoT devices and their
ability to exchange data and communicate with each other. One of the most pervasive and
difficult to prevent threats is malware [5]. Malware comes in many forms, ranging from
malicious software that steals sensitive information to code designed to disable systems
and launch distributed denial of service (DDoS) attacks [6]. To ensure the security, privacy,
and reliability of IoT networks, the need to effectively detect and mitigate these threats
has become a critical imperative. Cyberattacks can have devastating consequences, from
disrupting essential services to exposing sensitive data and undermining trust in digital
systems [7]. As the IoT ecosystem continues to grow, the need for effective defense against
malware and other cyberthreats is becoming more urgent than ever. Applying epidemiolog-
ical models tailored to malware propagation in IoT networks offers a promising approach to
understanding and mitigating these threats [8]. Through the use of concepts and methods
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from epidemiology, it is possible to take into account the dynamics of malware propagation
and develop proactive defense strategies. A crucial step in the application of these epidemi-
ological models to real data is the estimation of propagation model parameters such as
transmission rate and recovery rate in the SIR model. There are a number of methods in the
literature that have been widely used by researchers to estimate these parameters, including
curve fitting [9,10], least squares [11,12], maximum likelihood [13,14], Monte Carlo Markov
chain [15,16], and PINNs [17,18], to name a few. The method chosen for estimation depends
on the available data, complexity of the model, and nature of the epidemic. In practice,
several approaches are often combined to obtain more accurate and robust estimates of
the propagation model parameters. Certain methods, such as PINNs and Monte Carlo-
based methods, have very useful advantages when only the number of infections over
time is available. These include adaptability to irregular data, incorporation of physical
equations, scalability, uncertainty estimation, or exploration of parameter space, among
others. However, in the same cases, where all that is available is the number of infections
over time, maximum likelihood and least squares have relevant disadvantages as well,
namely, high sensitivity to outliers, no information about uncertainty, non-optimality for
non-normal distributions, the need to know the distribution, lack of an available likelihood
function, etc. For this reason, we decided to compare PINNs and Monte Carlo methods
in this study, while excluding maximum likelihood and least squares methods from the
comparison. Comparing methods based on Monte Carlo techniques and Physics-Informed
Neural Networks (PINNs) for parameter estimation in SIR/SIRS models provides a unique
opportunity to determine which approach can provide robust and efficient defense in
detecting and mitigating malware in IoT networks.

Identifying malware spreading through IoT networks is crucial for developing effective
cyberattack mitigation strategies. Existing methodologies involve estimating parameters in
epidemiological models; however, estimating these parameters is challenging due to the
inherent difficulties in understanding and modeling malware characteristics [19]. Accu-
rately identifying malware parameters, such as propagation and recovery rates, is crucial
for anticipating behavior and implementing countermeasures. The limited availability
of actual attack data complicates cybersecurity efforts. Due to the sensitive nature of the
information and the lack of access to comprehensive records of security incidents, obtain-
ing representative datasets becomes a daunting task. This hampers the capabilities of
traditional estimation methods, which often rely on large and diverse datasets to produce
reliable results. The lack of relevant data can lead to inaccurate parameter estimates, ulti-
mately limiting the effectiveness of model-based defense strategies. Overall, overcoming
the challenges of parameter estimation in cybersecurity requires approaches that can cope
with uncertainty and incomplete data. The use of adaptive and flexible methods is essential
for the development of robust and reliable cyberdefense systems in a constantly evolving
environment [20]. Epidemiological models, such as the SIR and SIRS approaches, are used
to understand and predict the spread of disease in populations. The SIR model divides
individuals into three compartments, namely, susceptible, infected, and recovered, assum-
ing that when recovered they cannot be reinfected. The SIRS model adds an additional
compartment for individuals who become susceptible again after recovery. These models
can be adapted to analyze the spread of malware in IoT networks, where devices are
considered susceptible, infected, and recovered. The spread of malware depends on factors
such as device interaction and defense effectiveness. Adapting SIR and SIRS models to
cybersecurity provides a deeper understanding of malware propagation and a framework
for estimating critical parameters such as infection rate and recovery rate. This adaptation
offers a new perspective for analyzing and designing defense strategies against cyberthreats
in an increasingly connected environment.

The security of Internet of Things networks is a critical challenge in the digital domain.
From data loss to disruption of critical services, the spread of malware across these net-
works can be devastating. In order to combat this problem, it is essential to understand
how malware spreads. The estimation of the parameters in malware propagation models
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provides us with an invaluable tool for the anticipation, prevention, and mitigation of
attacks. It is possible to identify patterns and trends, evaluate the effectiveness of security
measures, and develop more efficient strategies to protect IoT networks by knowing the
number of people infected over time. This work is not only fundamental to cybersecurity;
it helps advance computing and protect privacy in an increasingly connected world. The
main objective of this study is to perform an exhaustive comparison between two param-
eter estimation methods based on Monte Carlo techniques and a PINN in the context of
SIR/SIRS models adapted to describe malware propagation in IoT networks. In the field of
cybersecurity and parameter estimation, the highlights of this research are the following:

• Our study provides a detailed and rigorous comparative evaluation of two well known
approaches to parameter estimation.

• We identify the benefits of both approaches as well as the time required to perform
parameter estimation. This information can help cybersecurity professionals to make
informed decisions and develop more efficient strategies to protect IoT networks.

• We hope to inspire other researchers to further explore the intersection of epidemi-
ology, cybersecurity, and data science by highlighting the benefits and limitations of
each approach.

Overall, our contributions aim to enrich the field of cybersecurity by providing a robust
comparative assessment and highlighting the utility of modeling techniques in mitigating
digital threats in IoT networks. This paper is organized as follows. Next, we present the
materials and methods in Section 2. Section 3 presents the setup of our simulations and
the results, along with a performance comparison of selected methods. Finally, Section 4
concludes the conducted research and proposes future lines of work.

2. Materials and Methods
2.1. Synthetic Data

The relevance of policy advice depends on the ability of a model to capture the
essential aspects of the system that are relevant to the problem at hand [21,22]. However,
modelers face a dilemma in determining the importance of each aspect. In [23], the
metaphor of large and small worlds was used to illustrate this process. The large world
represents a complex entity with partial, confusing, and ambiguous information. Models
are designed to understand, influence, manage, and control this intricate complexity [24].
On the other hand, the small world refers to the self-contained logical reality of the model,
where comprehensive corrective actions can be taken and their consequences tested under
both favorable and extreme conditions [25]. However, these logical consistency tests are
limited to the small world and cannot be directly applied to the large world. Validation
procedures are used to increase confidence in the applicability of the model to the large
world. However, navigating between these two worlds and recognizing their differences
remains a fundamental challenge in modeling. Finding the right balance and ensuring the
relevance of the model to the complexities of the real world is essential for effective policy
advice [26,27].

In epidemiological model identification, the large world is the data-generating process,
encompassing ecological interactions that contribute to infectious disease spread. However,
partial observations of this activity are limited. Incidence reports from surveillance entities
can provide time series data for model selection, which can be used to obtain parameter
estimates [28,29]. However, generating accurate incidence rates from a model is not enough
for validity, as it does not guarantee that all relevant factors have been considered or that
parameter estimates are close to actual quantities. To address this issue, synthetic data can
be used to represent the large world and ensure that both worlds are perfectly aligned.
The model used to estimate parameters is structurally identical to the data generation
process, preventing inconsistencies in the calibration process. The data generation process
is grounded in previous research in the field, and the workflow from producing synthetic
age-specific incidences to parameter estimation is detailed in [30].
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2.2. Data Generation and Mathematical Models

Mathematical models can simulate malware propagation based on models developed
to study infectious diseases. These models are compartmental, dividing the population
into different types of behavior based on disease characteristics. In the case of malware
propagation, these categories include susceptible, exposed, infectious, quarantined, and
recovered. These models can help to understand the dynamics of infection and its im-
pact on networks [31,32]. Such models include Susceptible–Infectious–Susceptible (SIS),
Susceptible–Infectious–Recovered (SIR), Susceptible–Infectious–Recovered–Susceptible
(SIRS), Susceptible–Exposed–Infectious–Recovered (SEIR), and SI and SIRS variants, to
name only a few [33,34]. The SIR and SIRS models are described in detail below.

SIR Model
The SIR system is a mathematical model used in epidemiology to describe the spread

of infectious diseases in a population. It has three main compartments: Susceptible (S), In-
fected (I), and Recovered (R). The key hyperparameters are the transmission rate (β), which
represents the rate at which susceptible individuals become infected upon contact with
infected individuals, and the recovery rate (γ), which represents the rate at which infected
individuals recover and move to the recovered compartment. These hyperparameters are
fundamental to understanding how an epidemic evolves, as they determine the dynamics
of the disease. By varying β and γ, different epidemiological scenarios can be analyzed and
disease control strategies evaluated. Here, S0, I0 are the initial values for S and I in time 0,
i.e., R(0), I(0).

dS
dt

= −βSI (1)

dI
dt

= βSI − γI (2)

dR
dt

= γI (3)

S(0) = S0, I(0) = I0, R(0) = 1− S0 − I0 (4)

SIRS Model
The SIRS system is a mathematical model used in epidemiology to describe the

dynamics of infectious disease in a population. It has three main sections: “Susceptible” (S),
individuals who are susceptible to infection; “Infectious” (I), infected individuals who are
capable of transmitting disease; and “Recovered” (R), individuals who have recovered from
infection and may become susceptible again over time. The SIRS system is characterized
by several key hyperparameters: the transmission rate β, which represents the rate of
infection; the recovery rate γ, which represents the speed of recovery; and the rate of loss of
immunity µ, which models the gradual loss of immunity over time. These hyperparameters
determine the dynamics of the system, and are critical for predicting disease spread and
evaluating control strategies; S0, I0 are the initial values for S and I in time 0, i.e., R(0), I(0).

dS
dt

= −βSI + δR (5)

dI
dt

= βSI − γI (6)

dR
dt

= γI − δR (7)

S(0) = S0, I(0) = I0, R(0) = 1− S0 − I0 (8)

2.3. Propagation Model Identification Methodology

While mathematical epidemiology can model the propagation of malware in a network
by requiring knowledge of the propagation dynamics, in reality, when malware is detected
the most readily available information is the number of infections in the network. This
means that in order to understand its propagation dynamics and mitigate its impact, the first
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task when malware is discovered in a network is to identify it. Several techniques exist in the
literature for this purpose, mainly based on statistical techniques and optimization [35–39].
A new strategy for estimating the parameters of dynamical systems using deep learning
has emerged in recent years. This technique consists of using neural networks, with the
loss function modified to take into account the equations that define the dynamical systems.
These neural networks are called PINNs, and are first described in [40]. PINNs have
been widely used to estimate the parameters of mathematical epidemiological models
used for modeling COVID-19 and performing parameter estimation [18,41], as well in
other fields [42–44]. After reviewing the state of the art, we propose a comparison between
Monte Carlo-based methods and PINNs to estimate the parameters of mathematical models
in order to accurately identify the dynamics of malware propagation in networks. This
approach was chosen because, among statistical parameter estimation techniques, Monte
Carlo-based inference has proven to be the most efficient; on the other hand, among the
parameter estimation techniques based on artificial intelligence, PINNs have proven to be
the most efficient. When the parameters of all known models have been estimated, the
shape of the infectee curve produced by the ideal model and the infectee curve measured
in the network with an MSE are evaluated. Note that the parameters must be between 0
and 1, otherwise, the model must be rejected. Assuming that δ > 0 is the tolerance, it can
be assumed that if the MSE of both curves is less than δ, we have successfully modeled the
spread of malware through the network. If none of the epidemiological models match the
one that is spreading in the network, it can be assumed that it is an unknown model, at
which point the task becomes modeling it mathematically and studying its stability and
equilibrium points.

2.3.1. Monte Carlo Method

We designed a Monte Carlo algorithm to estimate the parameters of the models
described in Section 2.2. In order to apply the theory of statistical inference, we assume
that the parameters are random variables when designing algorithms based on Monte
Carlo techniques [45]. The goal is to estimate the posterior distribution of the parameters,
referred to as π(θ|y), or the target distribution in the context of Bayesian analysis. The aim
is to locate the target distribution within the parameter space, i.e., to locate the regions of
the probability mass that describe the observations y, which can be described as calculating
the expectation of g:

Eπ(g) =
∫

g(θ)π(θ|y)dθ. (9)

In rare cases, it is possible to solve the expected value of a function analytically. How-
ever, when this is not possible, simulation methods can be used. When using simulation,
there is a general solution. This involves using Markov Chain Monte Carlo (MCMC)
techniques to estimate the quantities of interest. Using Markov chain simulations, the
desired values can be effectively calculated by simulating either from the true distribution
or some suitable surrogate distributions [46,47]. In order to improve the estimation accu-
racy of the developed algorithms, two loss functions are used: the mean square error (see
Algorithm 1), and another based on the log square error (see Algorithm 2). Both algorithms
have the same design, and rely on knowledge of malware propagation models to estimate
the unknown parameters using statistical inference with MCMC. In this way, a sample
of up to 50,000 cases is generated, and the algorithm’s solution to the infection curve is
compared with measurements taken from the network.
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Algorithm 1: Monte Carlo parameter estimation with MSE loss function
Input : model, t, data, n_iter=100, bounds=None
Output : best_params

1 best_loss← ∞;
2 best_params← None;

3 for _← 1 to n_iter do
4 params← random parameter values within the specified bounds;
5 params← [round(num, 3) for num in params];
6 fitted_params, _← curve_fit(model, t, data, p0=params, maxfev=50000);
7 loss←mean((data−model(t, ∗ f itted_params))2);
8 if loss < best_loss then
9 best_loss← loss;

10 best_params← fitted_params;
11 end
12 end
13 return best_params;

Algorithm 2: Monte Carlo parameter estimation with log square loss function
Input : model, t, data, n_iter=100, bounds=None
Output : best_params

1 best_loss← ∞;
2 best_params← None;

3 for _← 1 to n_iter do
4 params← random parameter values within the specified bounds;
5 params← round(params, 3);
6 fitted_params, _← curve_fit(model, t, data, p0=params, maxfev=50000);
7 loss← log_square_loss(data, model(t, fitted_params));
8 if loss < best_loss then
9 best_loss← loss;

10 best_params← fitted_params;
11 end
12 end
13 return best_params;

2.3.2. Physics-Informed Neural Networks

This section is based on the work conducted by Raissi et al. in Sections 2 and 4
of [40]. Their work uses deep neural networks as universal function approximators [48]
to tackle nonlinear problems without prior assumptions or linearisation. Automatic dif-
ferentiation techniques are used to differentiate neural networks with input coordinates
and model parameters [49], resulting in physics-informed neural networks. This approach
addresses various computational problems and introduces transformative technology for
data-efficient and physics-informed learning machines, numerical solvers, and data-driven
approaches for model inversion and system identification. In this work, we consider
parameterized and nonlinear partial differential equations of the general form

ut + N[u; λ] = 0, x ∈ Ω, t ∈ [0, T], (10)

where u(t, x) denotes the latent (hidden) solution, N[u; λ] is a nonlinear operator parame-
terized by λ, and Ω is a subset of RD. To illustrate how PINNs work, we examine the case
of the SIR model, i.e., we detail the data-driven parameter discovery for the SIR model.
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Let t ∈ R+ be the input of the PINN, and let f (t; θ) ∈ Rm+1
+ be the output of the PINN,

where m is the number of hidden layers. Based on the Kermack and McKendrick model [50],
the PINN model has the basic three-compartment SIR model with their parameters. Then,
the PINN output is

f (t; θ) =

[
f1(t; θ)
f2(t; θ)

]
(11)

where f1(t; θ), f2(t; θ) approximates S(t), I(t), respectively. Note that R(t) is completely
determined by the others, as R = N − S − I. Then, we can reduce the computational
complexity by reducing the system [S(t), I(t)]T shown in [18]. Assuming that no data are
available for compartments S and R and that {uk}K

k=0 is a discrete-time series of observa-
tions in compartment I at time tk, the MSE data loss is defined as

MSEdata =
1

K + 1

K

∑
k=0

(uk − f2(tk; θ))2 (12)

where MSE is the loss function.
Then, the inverse problem can be described as follows. For an incomplete dataset, the

PINN aims to learn a mapping from time t to each of the state variables in the existing
model. Thus, using the incomplete dataset, we can extrapolate the unknown time series of
the S and R compartments and learn the transmission dynamics represented by the values
of the SIR parameters β and γ. The PINN must access information from the pre-existing
model during training (i.e., the SIR model). Then, the subsystem can be written as

G
(

y,
dy
dt

; λ

)
=

dy
dt

+ N[y] = 0, (13)

where N[·] is generally a differential operator (though in the case of ordinary differential
equations it is possible for N[·] to represent a nonlinear function of the variable y) and

y(t) :=
[

S(t)
I(t)

]
,

dy
dt

=

[
dS(t)

dt
dI(t)

dt

]
, N[y] =

[
β
N SI

− β
N SI + γI

]
. (14)

If N[y; λ] depends on λ = (β, γ)T ∈ R2 with λ that are not known a priori, then

G(y, yt; λ) = yt + N[y; λ], t ∈ [0, T]. (15)

Therefore, in order to train the PINN effectively we need to minimize targets of the
following form:

minθ,λ(MSEdata(θ) + MSEG(θ, λ)), (16)

enabling the PINN to learn the model parameters from the data [18,40].
Note that if the system has initial conditions, then the function to be minimized is

minθ,λ(MSEdata(θ) + MSEG(θ, λ)) + MSEIC(θ). (17)

Here, we have constrained the parameters to be time-independent. If they were time-
dependent, it would be necessary to create a sliding window with an amplitude of α∆t
with α ∈ R to be passed as input to the PINN small frames as follows: (t, t + α∆t). For the
remaining models, it is sufficient to substitute the SIR equations for the model equations to
be studied.

3. Results and Discussion

This section presents and analyses the results of comparing two different approaches
for estimating malware propagation model parameters in a network, namely, Monte Carlo
(with both loss functions) and PINNs. The performance of both methods is evaluated in
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terms of their ability to estimate the parameters of the malware propagation model on the
basis of the infection curves generated in the network.

3.1. Experimental Setup

In order to compare the proposed methods, synthetic data were generated for the
selected malware propagation models SIR and SIRS; we chose these models because they
have the same compartments. The odeint Python function was used to generate the
synthetic data. This function applies the Runge–Kutta numerical method (4, 5) to the
systems of equations of the propagation models, and as a result provides the sequences
of solutions. In the case of the SIR model, it provides the solutions of susceptible (S),
infected (I), and recovered (R); for this comparison, however, we are only interested in the
infected, as in the real world there is usually only access to these measurements. Finally,
we evaluated the malware propagation models at time interval t ∈ [0, 2000]. To compare
the two approaches, the following data preprocessing steps were performed: (1) synthetic
infected curves were generated using the malware propagation model in a simulated
network, varying the parameters of interest; (2) artificial noise was added to the infected
curves to simulate real-world conditions and increase the complexity of the estimation
task using NumPy’s ’random.normal’ function, and the Monte Carlo method (with both
loss functions) was programmed in Python by creating two custom functions, as shown
in Algorithms 1 and 2; finally, the PINN test was conducted in Python with the deepxde
library to code the PINNs [51] on a desktop (CPU: Intel (R) Core (TM) i7-8700 CPU @
3.20 GHz; Memory: 16 GB; OS: Microsoft Windows 10 with 64 bits). PINNs have an input
layer of a single neuron, three hidden layers of 40 neurons each, and an output layer of
three neurons. The activation function is ‘tanh’ and the initialization of the neural network
weights is ‘Glorot uniform’. The optimizer was ‘Adam’, with a learning rate of 0.001 and
beta and gamma as the ‘external trainable variables’. The PINN had 10,000 iterations
on the data provided to it in each algorithm parameter estimation training loop. Finally,
before starting the experiments for both scenarios, two PINNs were trained, one with the
SIR model and the other with the SIRS model. Therefore, both PINNs were used in both
scenarios and their performance was investigated.

3.2. SIR Parameter Estimation

Consider malware propagating through a network according to a SIR model. In
this experiment, the initial conditions were S(0) = 0.99, I(0) = 0.01, and the parameters
were β = 0.8 and γ = 0.25 with time t ∈ [0, 2000]. Figure 1 shows the results of the
method Monte Carlo MSE (MC MSE). It can be seen that the MC MSE method estimates the
parameters after 52 s and generalizes the infected curve with the SIR (left) and SIRS (right)
models. The MC MSE method correctly identifies that the malware in this experiment
follows the SIR model, as can be seen in this figure.

On the other hand, the model followed by the malware in this experiment follows the
SIR model, according to the Monte Carlo model with a log-square loss function, which
estimates the parameters after 56 s (see Figure 2).

The results obtained in this experiment by the PINNs trained with the SIR model
(Figure 3 top left) and SIRS model (Figure 3 top right) show that they are able to estimate
the parameters in such a way that the infected curve produced by the PINN is equal to the
one measured in the network. However, in the parameter estimation, the PINN trained
with the SIRS model correctly estimates the parameters (Figure 3 bottom left); the PINN
trained with the SIR model (Figure 3 bottom right) correctly estimates β and γ, while for δ
it provides a different value in each simulation that is very close to 0 and sometimes even
negative. To illustrate this example, we have taken the average of the δ obtained in ten
simulations. The PINN trained with the SIR model took 154 s to estimate the parameters,
while the PINN trained with the SIRS model took 163 s.
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Figure 1. Data generated synthetically according to the SIR model with parameters β = 0.8 and
γ = 0.25 (blue). Data were generated using parameters calculated using the Monte Carlo MSE loss
function method for the SIR model and SIRS model (orange).

Figure 2. Data generated synthetically according to the SIR model with parameters β = 0.8 and
γ = 0.25 (blue). Data were generated using parameters calculated using the Monte Carlo log-square
loss function method for the SIR model and SIRS model (orange).

Finally, a comparison of the estimates from the three methods compared in this study
can be seen in Table 1. Both Monte Carlo-based methods correctly estimate the parameters
of the SIR model while finding parameters for the SIRS model that are outside the bounds
of these parameters, i.e., 0 ≤ β, γ, δ ≤ 1. On the other hand, PINN-SIR correctly identifies
the parameters, whereas PINN-SIRS is not able to estimate them, as was expected based on
to its training.
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Figure 3. Top: data synthetically generated according to the SIR model with parameters beta = 0.8
and gamma = 0.25 (blue). Data were created with the parameters calculated by the PINN for the SIR
model and SIRS model (orange). Bottom: parameters estimated by the PINNs trained with the SIR
model (left) and SIRS model (right).

Table 1. Estimated SIR and SIRS model parameters were obtained by each compared method.
Highlighted in red are the values that cannot be taken by the parameters since they are bounded
0 ≤ β, γ, δ ≤ 1.

Method SIR SIRS

MC MSE
β = 0.8 β= −1.49

γ = 0.25 γ = −1.49
δ = 1.46

MC Log Square
β = 0.8 β = −18.71

γ = 0.25 γ = −18.71
δ = 18.69

PINN
β = 0.8 β = 0.8

γ = 0.25 γ = 0.25
δ = 5.4× 10−4

3.3. SIRS Parameter Estimation

Consider malware propagating through a network according to the SIRS model. In
this experiment, the initial conditions were S(0) = 0.99, I(0) = 0.01 and the parameters
were β = 0.8, γ = 0.25 and δ = 0.1 with time t ∈ [0, 2000]. Figure 4 shows the results of the
MC MSE. It can be seen that the MC MSE method estimates the parameters after 53 s and
generalizes the infected curve with the SIR (left) and SIRS (right) models. The MC MSE
method cannot identify that the malware in this experiment follows a SIR model, although
it can identify the parameters of a SIRS model.
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Figure 4. Data generated synthetically according to the SIRS model with parameters β = 0.8, γ = 0.25
and δ = 0.1 (blue). Data were generated using parameters calculated using the Monte Carlo MSE
loss function method for the SIR model and SIRS model (orange).

In the case of the Monte Carlo log-square method, Figure 5 shows that it cannot
correctly estimate the parameters of either the SIR or SIRS model. This estimation took 71 s.

Figure 5. Data generated synthetically according to the SIRS model with parameters β = 0.8, γ = 0.25
and δ = 0.1 (blue). Data were generated using parameters calculated using the Monte Carlo MSE
loss function method for the SIR model and SIRS model (orange).

The results obtained in this experiment by the PINNs trained with the SIR model
(Figure 6 top left) and the SIRS model (Figure 6 top right) show that they are able to estimate
the parameters in such a way that the infected curve produced by the PINN is equal to
the one measured in the network, although the infected curve generated by PINN-SIR is
not exactly similar to the infected measurement made in the network. In the parameter
estimation tasks, the PINN trained with the SIRS model correctly estimates the parameters
(Figure 6 bottom left), while the PINN trained with the SIR model (Figure 6 bottom right)
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cannot estimate β or γ. The PINN trained with the SIR model took 152 s to estimate the
parameters, while the PINN trained with the SIRS model took 157 s.

Figure 6. Top: data synthetically generated according to the SIRS model with parameters beta = 0.8
and gamma = 0.25 (blue). Data were created with the parameters calculated with a PINN for the SIR
model and SIRS model (orange). Bottom: parameters estimated by the PINNs trained with the SIR
model (left) and SIRS model (right).

Finally, a comparison of the estimates from the three methods compared in this study
can be seen in Table 2. The MC MSE method correctly estimates the parameters of the SIRS
model while finding parameters for the SIRS model that are outside the bounds of these
parameters, i.e., 0 ≤ β, γ, δ ≤ 1. However, the MC log-square model is not able to estimate
the parameters. On the other hand, PINN-SIRS identifies the parameters, while PINN-SIR
is not able to estimate them, as was expected based on its training.

Table 2. Estimated SIR and SIRS model parameters were obtained by each compared method.
Highlighted in red are the values that cannot be taken by the parameters since they are bounded
0 ≤ β, γ, δ ≤ 1.

Method SIR SIRS

MC MSE
β = 0.7 β = 0.8

γ = 0.187 γ = 0.25
δ = 0.1

MC Log Square
β = 0.7 β = 1.9

γ = 0.18 γ = 1.22
δ = 5.83

PINN
β = 0.7 β = 0.8

γ = 0.187 γ = 0.25
δ = 0.1
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3.4. Discussion

In this study, we compared the performance of two methods based on Monte Carlo
techniques with different loss functions and PINNs to perform the task of estimating the
parameters of the propagation dynamics of malware spreading in a network. For this study,
we used the SIR and SIRS models, as they have the same compartments. However, if we had
only used Monte Carlo techniques we could have used any type of propagation dynamics
without the limitations that PINNs impose on the input data; e.g., if the input model is a
SIRS and the PINN is trained with a SIR, the ‘E’ compartment causes the PINN to make
an error. We observed that in most cases both Monte Carlo methods and PINNs produced
estimates very close to or even identical with the actual values. However, the PINNs had
difficulty in the case described in Section 3.2, involving parameter estimation for the SIR
model. In this case, both PINN-SIR and the PINN-SIRS made very good estimates of the
β and γ parameters; however, the δ parameter was wrong, although it produced a result
curve similar to the one measured in the network. As explained above, each simulation
performed with PINN-SIRS produced a new value of δ, as this PINN is designed to produce
a termination curve similar to the one it receives as input. In the case of the SIR model, both
methods based on Monte Carlo techniques correctly estimated the parameters, identifying
that in this case the propagation model followed by the malware in the network is a SIR
model. In the experiment described in Section 3.3, the MC-MSE method correctly estimated
the parameters of the SIRS model, while the MC-log-square method was unable to perform
the estimation task. On the other hand, the PINNs correctly identified the parameters of the
SIRS model. The computation time of these methods is a notable aspect of the comparison.
The PINNs took between 140 and 160 s in both cases, depending on the estimation task,
while both Monte Carlo methods took about 55 s. Although Monte Carlo methods are
iterative and stochastic in nature, requiring multiple simulations to obtain reliable results,
they are faster in this case. This may be because the libraries that allow neural networks to
perform fast parallel computations were not compatible with the desktop we used to run
the simulations. In conclusion, it is worth noting that for each malware propagation model
for which the parameters need to be identified, it is necessary to have a PINN trained
on that model. In contrast, with Monte Carlo-based methods it is sufficient to run one
function each time a statistical inference is made in each iteration. This can be a great
advantage when using computers that are not very powerful, while on newer computers
the computation times will be similar due to parallel computing.

In this paper, we have compared algorithms based on Monte Carlo techniques and
PINNs to solve the inverse problem in the area of malware propagation in IoT networks.
However, as discussed in Section 1, studies can be found that solve the inverse problem
and estimate the parameters of the ODEs. In the instance of algorithms utilizing Monte
Carlo techniques, relevant research can be found in other disciplines such as physics [15]
and chemistry [16], where the efficacy of these methods has been demonstrated. Never-
theless, our focus is specifically directed towards malware proliferation, as evident in our
implementation of statistical inference techniques and algorithmic design, which require a
rigorous theoretical basis. This comparison is infeasible because the algorithms employed
to unravel the inverse problems are tailored for each specific problem. Nonetheless, we
acknowledge that the Monte Carlo sampling methods are identical and the inference tech-
niques employed are comparable. With a few adaptations in algorithm design, it can be
expected that these algorithms would produce comparable accuracy. On the other hand,
when comparing our work to the current state of the art, it is apparent that PINNs are
utilized in numerous disciplines, including physics. However, we have identified several
instances where the inverse issue is resolved for SIR models, mainly in topics related to
COVID-19 [17,18]. The aforementioned works present certain advantages compared to the
problem we have tackled here. In our case, we possess knowledge regarding the overall
count of IoT sensors in the network, along with an estimated count of affected sensors,
presuming that a number of them might be dormant or even concealed by the malware.
On the other hand, research that implements PINNs in scenarios similar to COVID-19
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relies on data disseminated by health institutions, which simplifies the task of PINNs in
approximating the parameters [52].

4. Conclusions

The results of our comparison of the two studied methods shows that both have the
potential to estimate the parameters of propagation models in a network for subsequent
identification. The accuracy of both the Monte Carlo and PINN-based methods shows that
their parameter estimation capabilities allow them to estimate parameters close to those
used in the generation of the synthesized data. However, our numerical experiments show
that each method performs better in different aspects and contexts. Therefore, the choice
of the most efficient method for identifying malware propagation patterns in networks
depends on the nature of the parameters to be estimated and whether the model is known
or not; if it is not known, the PINN approach may have serious disadvantages. Notably,
this study has several limits. In the first place, the measurements that would be carried
out in a real scenario would imply that only the infected curves would be available, and
these would probably be incomplete. This would certainly have an impact on the behavior
of the models studied in this work for the estimation of the parameters. Furthermore, the
hyperparameters of the models based on Monte Carlo techniques and PINNs were not
optimized in this comparison, i.e., the same configurations were used in all experiments.
Finally, in our future work we intend to develop more advanced parameter estimation
methods based on the comparison presented in this paper and validate the models on real
data. Building on this research, we will develop hybrid algorithms based on MC techniques
and the other techniques described in the literature, e.g., least squares, maximum likelihood,
etc. In addition, we will open another line of research to improve the accuracy of the PINNs
in solving the inverse problem. The challenge in using both methods lies in the need for
prior knowledge of the models that propagate in the network; therefore, this will be one of
the main objectives of our research in our future work.
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