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Abstract: Lung disease is a respiratory disease that poses a high risk to people worldwide and
includes pneumonia and COVID-19. As such, quick and precise identification of lung disease is
vital in medical treatment. Early detection and diagnosis can significantly reduce the life-threatening
nature of lung diseases and improve the quality of life of human beings. Chest X-ray and computed
tomography (CT) scan images are currently the best techniques to detect and diagnose lung infection.
The increase in the chest X-ray or CT scan images at the time of training addresses the overfitting
dilemma, and multi-class classification of lung diseases will deal with meaningful information and
overfitting. Overfitting deteriorates the performance of the model and gives inaccurate results. This
study reduces the overfitting issue and computational complexity by proposing a new enhanced
kernel convolution function. Alongside an enhanced kernel convolution function, this study used
convolution neural network (CNN) models to determine pneumonia and COVID-19. Each CNN
model was applied to the collected dataset to extract the features and later applied these features as
input to the classification models. This study shows that extracting deep features from the common
layers of the CNN models increased the performance of the classification procedure. The multi-class
classification improves the diagnostic performance, and the evaluation metrics improved significantly
with the improved support vector machine (SVM). The best results were obtained using the improved
SVM classifier fed with the features provided by CNN, and the success rate of the improved SVM
was 99.8%.

Keywords: CNN; deep learning; activation; lung disease; pneumonia; COVID-19

1. Introduction

Lung disease is a leading cause of death across the globe, and pneumonia, one of the
most common infectious diseases, is also one of the leading causes of mortality world-
wide [1]. Pneumonia is an infection that occurs in the lungs, and every year it affects
approximately 7% of the global population, and four million patients face mortality risks [2].
Using imaging tests can help doctors diagnose abnormalities. However, lung disease is on
the rise, making it difficult for doctors to diagnose it due to a shortage of radiologists. Early
detection and diagnosis reduce life-threatening conditions and improve quality of life [3].

Respiratory system symptoms are the first indicator of pneumonia [4]. An X-ray of
the chest, a CT scan, a blood gas analysis, and a complete blood image are all methods
used to diagnose pneumonia. Medical professionals can view the internal structures of the
body using chest X-rays and computed tomography (CT) images. It is possible for medical
professionals to fail to diagnose minor lesions [5]. It has been shown that chest X-ray images
and CT scans are sensitive to pneumonia and infectious diseases, like COVID-19 [6].

By using computer-aided diagnosis (CAD), diagnosis times can be reduced, and
diagnostic convenience can be increased. Diagnostic performance is improved with CAD
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systems, which minimize misreading and allow medical professionals to provide precise
diagnoses. Using CT scan images and chest X-ray images obtained from lung-infected
disease patients, deep learning models have provided more efficient results than traditional
models [7]. In this work, the proposed CAD system extracts the most efficient features of
pneumonia and contributes positively to classification results. Image processing-based
feature extraction is complex compared to deep learning models, and the performance of
these models surpasses the traditional models.

The Infnet model [8] was focused on lung infection segmentation and failed in terms
of clinical management as it frequently needed to classify and then segment the infected
area for further treatment. Unet [9] segments the COVID-19 infected regions but fails to con-
duct the semantic segmentation in order to estimate clinical management, the robustness,
and the performance. The transfer learning approach [10] segments the COVID-19 lung
infection but fails to reduce the computational complications. The coronavirus pandemic
affected many people across the world and created great challenges for international health
management [11,12]. As such, continual screening, earlier diagnosis, and timely actions are
significant for controlling the spread of disease, as well as for reducing mortality. An exact
segmentation of all kinds of lung infections could help the health professionals or doctors
to prescribe the correct specific treatment. CNN models evaluate many attributes of the
mammalian visual context that were not visible and identified by radiologists [13].

CNN models achieve high accuracy for image datasets by adjusting weights and
parameters [14,15]. In [16], the authors implemented the CNN model and achieved 70%
classification accuracy. Similarly, the CNN model was implemented to classify pneumonia
cases with 98% accuracy [17]. The Inception v3 [18,19] model also identified as a potential
model to classify pneumonia [20]. Other studies implemented nine different transfer
learning approaches to classify COVID-19 and pneumonia and achieved 95% accuracy [21].
Using EMCNet to extract the features and later applying the ensemble approach to classify
COVID-19 cases achieved an accuracy of 98.91% [22]. Furthermore, transfer learning
classifiers help to identify COVID-19 with an accuracy of 81% [23].

CNN models do have some restrictions, though. In order to attain observable perfor-
mance, CNN models require extensive network training. Additionally, the dataset being
used for training should include all the different sample variants so that the model can be
simply generalized to previously unknown data, although this is not always attainable.
Overfitting, which results in generalization mistakes, may happen if DL-based models are
trained on a smaller dataset. To overcome this drawback, we proposed an improved kernel
in the CNN, which reduces the overfitting.

Most state-of-the-art models focus on the binary classification of either pneumonia
or COVID-19, and limited research on the multi-class classification of COVID-19 and
pneumonia from a chest X-ray and CT scan images has been carried out. The major
limitation of the existing works is prioritizing the dataset before feeding it to the classifier.
This study proposed an improved kernel convolution function to improve accuracy and
reduce complexity. Later, the proposed improved SVM can better classify the lesions and
reduce the complexity, which increases accuracy.

Motivation
The detection of the infected lung regions from the chest X-ray and the CTscan images

provides high potential for increasing classical healthcare planning to tackle lung diseases,
like COVID-19. In the existing studies, the infected lung region is frequently unclear and,
thus, it is very complicated for doctors and healthcare professionals to differentiate the
normal images from the infected images. This motivated us to propose an approach for the
identification of the lung infected areas in CT scan and chest X-ray images.

Research Contributions

1. We propose an improved integrated image enhancement approach to enhance the
image contrast.

2. We propose an improved kernel in the stacking CNN to detect lung infection using
CT scans and chest X-rays.
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3. The proposed model is compared to the existing models utilizing the CT scan and
chest X-ray images.

4. A comparison of the proposed model with other models shows that the proposed
models have the highest performance.

The rest of the paper is organised as follows. Section 2 describes the dataset collection
and the proposed approach in detail. Results analysis and comparison with the existing
models are presented in Section 3. Section 4 discusses the advantages of the proposed
work. Section 5 concludes the proposed work and the future work needed to overcome the
limitations of the proposed work.

2. Methods

We aim to categorize CT scans and chest X-rays into different severity categories in
the current study. An automated system for assessing lung disease severity was discussed.
According to current research, the modified CNN architecture improved the accuracy of
lung disease classification. We divided the methodology into three phases: pre-processing,
segmentation, and classification. In the data pre-processing phase, we proposed an en-
hanced Gaussian distribution to improve the lesions’ visual contents. In the segmentation
phase, we proposed an enhanced CNN model to segment the lesions in the CT scan and
chest X-ray images. After segmentation, we performed multi-class classification by imple-
menting the improved SSVM. An illustration of the proposed approach flow can be found
in Figure 1.
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Figure 1. Methodology flow.

2.1. Dataset

CT scan images were collected with three different sources [24–26]. We removed the
repeated images and unrelated body parts (e.g., head) that are not related to the lung. The
cleaned final dataset contains 1043 CT scan images, and each class consists of pneumonia
(n = 359), normal (n = 333), and COVID-19 (351) samples.

Additionally, 5935 chest X-ray images from two different source are collected [17,18].
We divided the training and testing data in the ratio of 85:15, which consist of 4747 for
training and 1188 for testing. This training dataset consists of 3 classes: 63 images of
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COVID-19, 1266 normal, and 3418 pneumonia chest X-ray images. This testing dataset
consists of 3 classes: 16 images of COVID-19, 317 of normal, and 855 of pneumonia chest
X-ray images. Table 1 tabulates the splitting of training and testing sets of chest X-ray and
CT scan datasets.

Table 1. Dataset image distribution.

Class
Chest X-ray CT Scan

Training Testing Training Testing

Normal 1266 317 266 67

Pneumonia 3418 855 287 72

COVID-19 63 16 281 70

Total 4747 1188 834 209

2.2. Data Pre-Processing

In this study we used the improved ensemble approach to enhance the images with
the integration of two approaches of top hat filtering and a Wiener filter. Given a database
of k images, it is represented as Dk. Each image is defined as Ik(p, q) with dimension PXQ,
where P and Q have a value of 512. Figure 2 shows the unprocessed and the processed CT
scan images. The mathematical operation of the top hat filtering is as follows:

It(p, q) = Ik(p, q)− (Ik(p, q)os) (1)

where s represents a structuring element with value 21 and o denotes the opening operator.
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Equation (1) improves the contrast of the image. Next, an improved Weiner filter
is used to remove the noise in the medical images. The mathematical representation is
as follows:

Wm(p, q) =
w(p.q)

|w(p, q)|2 + λ
(2)

where W(p, q) = e

√
(

p3+q3

2s2 )
, λ is constant with value 1, and Wm is the minimized error for

the Weiner filter.
Finally, to obtain the enhanced image for further processing, we integrate the results

of Equations (1) and (2), as follows:

Ie(p, q) = (It(p, q) + Wm(p, q))− Ik(p, q) (3)
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2.2.1. Enhanced CNN

We developed an enhanced CNN model to detect lung illness accurately. The pro-
posed model consists of convolution blocks and includes the improved kernel convolution
function, drop-out layer, and dense layers. Figures 3 and 4 show the overall enhanced
stacked CNN and detailed convolution kernel functioning.

Technologies 2023, 11, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Image enhancement. (a) Unprocessed images and (b) processed images. 

2.2.1. Enhanced CNN 
We developed an enhanced CNN model to detect lung illness accurately. The pro-

posed model consists of convolution blocks and includes the improved kernel convolution 
function, drop-out layer, and dense layers. Figures 3 and 4 show the overall enhanced 
stacked CNN and detailed convolution kernel functioning. 

 
Figure 3. Enhanced stacked CNN model. 

All layers in the proposed model receive input from the prior ones and pass along 
their feature mappings to all subsequent layers. Instead of adding the layer’s incoming 
and outgoing feature maps, the proposed method concatenates them. As a result, the pro-
posed model is split up into dense blocks, where the filter numbers may change inside a 
block, but the feature map dimensions never change. The transition layers, which are the 
layers between the blocks, go through batch normalization in order to reduce the number 
of channels by 50%. However, the proposed model requires fewer parameters and allows 
feature reuse, which makes the networks smaller. 

The proposed model encourages the reuse of features by creating dense relationships 
between layers inside a dense block. A robust feature transmission between layers is made 
possible by the dense connections, which also increase the gradient flow. The computa-
tional efficiency of the proposed model is also improved by the fact that it has many fewer 
trainable parameters. The bias and skewness caused by the asymmetric class distribution 
were reduced by proportionally adjusting the class weights. Additionally, early stopping 
was used to address the overfitting problem while preserving the convolution neural 

Figure 3. Enhanced stacked CNN model.

Technologies 2023, 11, x FOR PEER REVIEW 6 of 19 
 

 

network’s generalization ability. Additionally, the last few layers of the proposed model 
were adjusted to better match the learnt high-level properties. 

The deep feature map was extracted in the proposed model by concatenating the fea-
ture map outputs from the final convolutional layer of the sacked CNN models along the 
channels. To provide flexibility to the stacking model and reduce generalization error, we 
used a fully connected neural network as a meta-learner. The final scores were then cal-
culated by concatenating the final feature maps and running them through the softmax 
activation. 

To obtain the channels of the maps to the same depth, 1 × 1 pointwise convolution 
was first applied to each of these feature maps. These maps were then provided to five 
stacks as input feature embedding. The final output was then obtained by flattening the 
final feature map and running it through a dense layer with softmax activation. Stacking 
works by determining the biases in relation to a given training set. A final classification 
layer with Sigmoid activation and a few fully connected layers with rectified linear unit 
(ReLU) activation were added to the model to improve its performance on the dataset. To 
achieve a better outcome than the individual forecasts, we have combined the predictions 
from the sub-models in this case. We combined the CNN models into a single one by con-
catenating them, and we then added two dense layers with the softmax and ReLU activa-
tion functions. 

 
Figure 4. Convolution kernel functioning. 

Enhanced Kernel Convolution 
In order to guarantee feature independence during stacking modelling, the deep fea-

tures were extracted from trained models. The model can fit the training data more accu-
rately according to the increased model complexity, which lowers the bias. The proposed 
models learn extensive independent aspects about the data by combining the deep feature 
maps, which enables the models to generalize more effectively on the test database. The 
proposed feature extractor’s depth-wise separable convolution requires fewer parame-
ters, which reduces overfitting. The proposed model’s dense block enables improved gra-
dient propagation and feature sharing. The proposed models have fewer parameters, 
since they used meta-learners after the convolutional layers. Algorithm-1 presents the en-
hanced kernel function algorithm. 

Figure 4. Convolution kernel functioning.

All layers in the proposed model receive input from the prior ones and pass along
their feature mappings to all subsequent layers. Instead of adding the layer’s incoming and
outgoing feature maps, the proposed method concatenates them. As a result, the proposed
model is split up into dense blocks, where the filter numbers may change inside a block,
but the feature map dimensions never change. The transition layers, which are the layers
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between the blocks, go through batch normalization in order to reduce the number of
channels by 50%. However, the proposed model requires fewer parameters and allows
feature reuse, which makes the networks smaller.

The proposed model encourages the reuse of features by creating dense relationships
between layers inside a dense block. A robust feature transmission between layers is
made possible by the dense connections, which also increase the gradient flow. The
computational efficiency of the proposed model is also improved by the fact that it has
many fewer trainable parameters. The bias and skewness caused by the asymmetric class
distribution were reduced by proportionally adjusting the class weights. Additionally, early
stopping was used to address the overfitting problem while preserving the convolution
neural network’s generalization ability. Additionally, the last few layers of the proposed
model were adjusted to better match the learnt high-level properties.

The deep feature map was extracted in the proposed model by concatenating the
feature map outputs from the final convolutional layer of the sacked CNN models along
the channels. To provide flexibility to the stacking model and reduce generalization
error, we used a fully connected neural network as a meta-learner. The final scores were
then calculated by concatenating the final feature maps and running them through the
softmax activation.

To obtain the channels of the maps to the same depth, 1 × 1 pointwise convolution
was first applied to each of these feature maps. These maps were then provided to five
stacks as input feature embedding. The final output was then obtained by flattening the
final feature map and running it through a dense layer with softmax activation. Stacking
works by determining the biases in relation to a given training set. A final classification
layer with Sigmoid activation and a few fully connected layers with rectified linear unit
(ReLU) activation were added to the model to improve its performance on the dataset. To
achieve a better outcome than the individual forecasts, we have combined the predictions
from the sub-models in this case. We combined the CNN models into a single one by
concatenating them, and we then added two dense layers with the softmax and ReLU
activation functions.

Enhanced Kernel Convolution

In order to guarantee feature independence during stacking modelling, the deep
features were extracted from trained models. The model can fit the training data more
accurately according to the increased model complexity, which lowers the bias. The
proposed models learn extensive independent aspects about the data by combining the
deep feature maps, which enables the models to generalize more effectively on the test
database. The proposed feature extractor’s depth-wise separable convolution requires
fewer parameters, which reduces overfitting. The proposed model’s dense block enables
improved gradient propagation and feature sharing. The proposed models have fewer
parameters, since they used meta-learners after the convolutional layers. Algorithm 1
presents the enhanced kernel function algorithm.

The latent dimensions of the kernel weights are defined using the kernel weights as
functions of the latent values. Each channel weight is represented by the proposed curves
weighted sum, as follows:

w(b) = ŵ[F� 2
π
∗ eu + e−u

eu − e−u (b + A) + C], b ∈ [−π,π] (4)

where b is the latent variable and is continuous, so the latent space becomes continuous,
w(b) represents the kernel weights based on constant b, and F, A, and C are the matrices.
The convolution operation is an integral operation from −π to π. Equation (5) is as follows:

x(b) = ∑dn∈D w(Dn, b)y(Dn)
T (5)

The curve parameters can be obtained with the convolution operations. The ReLU
activation function is used to process the features, and the operation becomes max (0,x(b)).



Technologies 2023, 11, 128 7 of 17

Algorithm 1: Enhanced Kernel Function

1. X = {}
2. for all F, A, C ∈ {Fj, Aj, Cj}
3. obtain the kernel convolution weights
4. w(b) < −w[F� 2

π ∗
eu+e−u

eu−e−u (b + A) + C]
5. evaluate the convolution with the enhanced kernel weights
6. X(b) < − ∑ Dn∈Dw(Dnfb) ∗ (Dn)

T

7. Discertize the dimensions of latent
8. For all b ∈ {b1, b2,. . .bn} do
9. X < −XU{}X(b)}
10. end for
11. end for
12. return list (X)

2.2.2. Classification

After extracting the features, the enhanced SVM classifies the lesions. Initially, the SVM
calculates the score for all the extracted features by using linear mapping on feature vectors
and uses this to evaluate the loss. The Algorithm 2 presents the improved SVM algorithm.

Algorithm 2: Improved SVM

1. Initialize the values in the training set.
2. Repeat for j = 1 to M

• Calculate the loss using the enhanced regularization for all values of j
• Compared the extracted regions in the liver images.

3. end for.
4. Repeat for every score vector j − 1 to M.

• Compute the weight and bias.
• argmax((w ∗ pj) + b)

5. end for.
6. Compute for all weights and finally evaluate the output.

The improved uses the linear mapping on extracted features to calculate the feature
score to the parts of the region of interest used to differentiate the lesion types, which helps
in the evaluation of loss function, which helps in obtaining the classification results.

3. Experimental Results

All experiments have been implemented on Keras. The data split was performed
based on an 80:20 ratio, where 80% of the data were used for training and 20% for testing
and implemented the proposed kernel convolution function in the CNN for the chest X-ray
images and CT scan images. Three classes of chest X-ray or CT scan images were used,
including healthy, COVID-19 affected, and patients with pneumonia.

3.1. Evaluation of Chest X-ray Dataset

Figure 5 shows the confusion matrix for the chest X-ray dataset. The proposed model
is compared with the existing models DeepCNN [27], Unet [9], nCONVnet [28], Dark-
net [29], infet [8], and Unet++ [30]. The proposed model accurately classifies 316 out of
317 and misclassifies 1 for the Normal class, accurately classifies 853 cases out of 855 and
misclassifies 2 for Pneumonia class, and accurately classifies 15 out of 16 and misclassifies
1 for the COVID-19 class. The DeepCNN model accurately classifies 305 for the Normal
class, accurately classifies 845 cases for Pneumonia class, and accurately classifies 10 for the
COVID-19 class. The Unet model accurately classifies 310 for the Normal class, accurately
classifies 848 cases for Pneumonia class, and accurately classifies 12 for the COVID-19
class. The nCONVnet model accurately classifies 315 for the Normal class, accurately
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classifies 850 cases for the Pneumonia class, and accurately classifies 15 for the COVID-19
class. The Darknet model accurately classifies 315 for the Normal class, accurately classifies
853 cases for the Pneumonia class, and accurately classifies 14 for the COVID-19 class. The
infet model accurately classifies 310 for the Normal class, accurately classifies 848 cases
for the Pneumonia class, and accurately classifies 12 for the COVID-19 class. The Unet++
model accurately classifies 315 for the Normal class, accurately classifies 852 cases for
the Pneumonia class, and accurately classifies 14 for COVID-19 class. From Figure 5, we
observed that the proposed model most accurately classifies the chest X-ray class followed
by the Unet++ and Darknet models.
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Figure 5. Confusion matrix comparison for the proposed model with the existing models for the
chest X-ray dataset.

The overall performance of the chest X-ray dataset is shown in Figure 6. Each violin
plot’s width corresponds to the frequency of the mean intensity. In general, the probability
that the images have the corresponding mean intensity increases with the width of the
violin plot. The intensity distribution still exhibits variance. The accuracy of the multi-class
lung infection classification from the X-ray images is99.8%. These findings demonstrate
how effectively the models identify lesions in chest X-ray images.
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The individual classifier performance for the chest X-ray dataset is shown in Figure 7.
The ISVM classifier shows the outstanding performance compared to the base classifiers of
k-nearest neighbor (KNN), naïve Bayes (NB), random forest (RF), and the standard support
vector machine (SVM).
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The chest X-ray dataset consists of three classes, i.e., Normal (healthy), COVID-19
affected, and patients with pneumonia.

The individual class categorization performance for the chest X-ray dataset is shown
in Figure 8.

3.2. Evaluation of CT Scan Dataset

Figure 9 shows the confusion matrix for the CT scan dataset. The proposed model is
compared with the existing models DeepCNN [27], Unet [9], nCONVnet [28], Darknet [29],
infet [8], and Unet++ [30]. The proposed model accurately classifies 67 out of 67 for the
Normal class, accurately classifies 71 cases out of 72 and misclassifies 1 for the Pneumonia
class, and accurately classifies 69 out of 70 and misclassifies 1 for the COVID-19 class. The
DeepCNN model accurately classifies 60 for the Normal class, accurately classifies 63 cases
for the Pneumonia class, and accurately classifies 61 for the COVID-19 class. The Unet
model accurately classifies 64 for the Normal class, accurately classifies 68 cases for the
Pneumonia class, and accurately classifies 67 for the COVID-19 class. The nCONVnet
model accurately classifies 64 for the Normal class, accurately classifies 70 cases for the
Pneumonia class, and accurately classifies 65 for the COVID-19 class. The Darknet model
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accurately classifies 65 for the Normal class, accurately classifies 68 cases for the Pneumonia
class, and accurately classifies 67 for the COVID-19 class. The infet model accurately
classifies 64 for the Normal class, accurately classifies 68 cases for the Pneumonia class, and
accurately classifies 67 for the COVID-19 class. The Unet++ model accurately classifies 65
for the Normal class, accurately classifies 70 cases for the Pneumonia class, and accurately
classifies 68 for the COVID-19 class. From Figure 9, we observed that the proposed model
most accurately classifies the chest X-ray class, followed by the Unet++ model.
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The overall performance of the CT scan dataset is shown in Figure 10. Each violin
plot’s width corresponds to the frequency of the mean intensity. In general, the probability
that the images have the corresponding mean intensity increases with the width of the
violin plot. The intensity distribution still exhibits variance. The accuracy of the multi-class
lung infection classification from the CT scan images is99.9%. These findings demonstrate
how effectively the models identify lesions in CT scan images.
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The individual classifier performance for the chest X-ray dataset is shown in Figure 11.
The ISVM classifier shows an outstanding performance when compared to the the base
classifiers, namely k-nearest neighbor (KNN), naïve Bayes (NB), random forest (RF), and
the standard support vector machine (SVM).
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The CT scan consists of three classes, i.e., Normal (healthy), COVID-19 affected, and
patients with pneumonia. The individual class categorization performance for the CT scan
dataset is shown in Figure 12.
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3.3. Performance Comparison

The model has been trained for 900 epochs on training data, and the proposed models
are trained for 900 epochs with batch sizes of 64. To determine how well the proposed
model would work and how often it would be used, every combination has been tested.
This has been accomplished by combining various models results in stacking systems,
which produces reliable forecasts while reducing the possibility of incorrect predictions.

The results of the comparison, which was performed in terms of accuracy, recall,
precision, AUC, and F1 score, are displayed in Figure 13. The table shows that the suggested
model exceeds all other models taken into consideration in terms of accuracy. The research
of [27] and [28] likewise used CT scan and X-ray images, and achieved accuracy rates of
98.23% and 99.87%, respectively; however, they used binary categorization. The Darknet
model was utilized in the study of [29], which solely used X-ray images, and 96.42%
accuracy was attained. In contrast to our proposed work, which combined CT scan and
X-ray images, the author of [8] reported an accuracy of 94.47% for the infet model. Our
proposed work employed 5935 CT scan images and 1043 X-ray images and reached 99.9%
and 99.8% accuracy, respectively, whereas the author of [30] used both CT scan and X-ray
images and achieved 99.57% and 99.47% accuracy, respectively. Our proposed model,
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however, has the highest accuracy and precision values for the three-class categorization of
chest CT images and X-ray images.
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Figure 15 shows the comparison results for models with and without image processing.
We compared the performance metrics, i.e., the accuracy, precision, recall, and F1-score for
the existing models, to the proposed model with and without image processing. For the
proposed model, the accuracy without image processing is 98.46%, and with image process-
ing it is 99.90%. The proposed model achieved the highest accuracy, followed by Unet++
with an accuracy of 99.57% with image processing and 98.26% without image processing.
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Statistical test
To prove that the proposed model performs better than the existing approaches, we

have performed the statistical hypothesis using the paired sample t-test [31]. The t-test
finds the significant difference between the sets of observations. It only allows for testing
the pairs of observations and a conclusion can be drawn. Therefore, we have compared
all the independent DL models and the proposed model, selecting two at a time with the
final stacking ensemble framework. The null hypothesis is assumed, as there exists no
significant difference between the performance of the individual models and the stacked
framework. On the other hand, an alternative hypothesis states there is a statistically
significant difference between the performances of the two compared models. All the
statistical trials are performed at a significance level of 5%, or the alpha is 0.05. The
obtained p-values are shown in Table 2. From the resulting p-values, which are all less than
0.05, we reject our assumed null hypothesis. This proves that the better performance of the
proposed model is statistically significant and not a result obtained by chance.

Table 2. Statistical test results.

Model p-Value

DeepCNN 0.01201

Unet 0.01818

NCONVnet 0.01217

Darknet 0.00402

Infet 0.00395

Unet++ 0.00245

Proposed (chest X-ray) 0.00135

Proposed (CT scan) 0.00129
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4. Discussion

Suppose that all of the features are connected to the final fully connected layer, which
results in an increase in the complexity of the training set. To overcome this issue, we
proposed kernel convolution functions used while training the model. The proposed kernel
convolution function reduces the computational overhead and enhances the network
compactness by regulating the number of feature maps. This study aimed to identify and
classify lung infections based on chest X-ray and CT scan images from different datasets.
The proposed kernel convolution functions outperform the existing predefined functions
with an accuracy of 99.8%, a sensitivity of 99.9%, and a specificity of 99% on chest X-ray
images and an accuracy of 99.9%, a sensitivity of 99.9%, and a specificity of 98% on CT
scan images.

Initially, all the images in the dataset were of different sizes; the images were resized to
225 × 225 using the RGB color. The hyperparameters were tuned to optimize the proposed
model. Model training can be accelerated, and the possibility of performance improved
using the kernel convolution function. There is no ideal batch size; we implemented the
experiments with various batch sizes. If we find the suitable batch size in addition to the
suitable activation function and hidden layers, the model will yield a high performance.
A batch size of 64 gives better results than batch sizes of 16 or 32. The batch size was set
to 64 for the CT scan images because this study’s CT scan image dataset was large. From
the previous studies, we observed that the batch sizes, in conjunction with the suitable
activation function and hidden layer, will yield a high performance. The parameters
adjusted to obtain the high-performance results are batch size (64), epochs (900), and
learning rate (0.001).

Hammoudi et al. [32] extracted pneumonia features using deep learning models,
namely Denset121, VGG16, VGG19, and Resnet50 for chest X-ray images, and classified
them using the SVMRBF to achieve an accuracy of 97.88%, 97.88%, 97.88%, and 97.88%,
respectively. Ibrahim et al. [33] implemented the Alexnet architecture via transfer learning
and achieved a classification accuracy of 98.19%, a precision of 97.29%, a recall of 97.29%,
and an F1-score of 97.29%.

One of the key limitations of the proposed approach is the small dataset, which is one
of the study’s shortcomings. However, in the future, the proposed performance should be
validated over a larger and more diversified dataset with more samples. We did not find
an increased risk of pneumonia infections, such as bronchopneumonia, in patients with
additional comorbidities. Future advancements of the suggested approach could include
employing 3D CT scans to train 3D CNN ensemble models.

5. Conclusions

This study proposed an enhanced feature extraction technique to minimize the ex-
traction error and an improved SVM classifier to classify the lesions using linear mapping.
The proposed model results were proven to outperform all the state-of-the-art models.
This study provided efficient accuracy results compared to the state-of-the-art models.
The manual identification and differentiation of COVID-19, pneumonia, and normal chest
X-rays and CT scans are time-consuming. The diagnostic results proved that the proposed
model achieved satisfactory diagnostic performance, which significantly assists the medical
professional in the decision-making process in the early stage of detection of the infection
itself, and timely treatment can alleviate the transmission of the infection and decrease
the risk of death. Automatic screening and differentiation of COVID-19, pneumonia, and
normal chest X-ray and CT scan images will significantly reduce the effort of the medical
professional and accelerate the diagnosis process.
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