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Abstract: This article introduces a novel asynchronous full adder that operates in an input–output
mode (IOM), displaying both monotonicity and an early output characteristic. In a monotonic
asynchronous circuit, the intermediate and primary outputs exhibit similar signal transitions as the
primary inputs during data and spacer application. The proposed asynchronous full adder ensures
monotonicity for processing data and spacer, utilizing dual-rail encoding for inputs and outputs, and
corresponds to return-to-zero (RtZ) and return-to-one (RtO) handshaking. The early output feature
of the proposed full adder allows the production of sum and carry outputs based on the adder inputs
regardless of the carry input when the spacer is supplied. When utilized in a ripple carry adder
(RCA) architecture, the proposed full adder achieves significant reductions in design metrics, such as
cycle time, area, and power, compared to existing IOM asynchronous full adders. For a 32-bit RCA
implementation using a 28 nm CMOS technology, the proposed full adder outperforms an existing
state-of-the-art high-speed asynchronous full adder by reducing the cycle time by 10.4% and the
area by 15.8% for RtZ handshaking and reduces the cycle time by 9.8% and the area by 15.8% for
RtO handshaking without incurring any power penalty. Further, in terms of the power-cycle time
product, which serves as a representative measure of energy, the proposed full adder yields an 11.8%
reduction for RtZ handshaking and an 11.2% reduction for RtO handshaking.

Keywords: digital circuits; arithmetic circuits; asynchronous circuits; logic design; low power; high
speed; CMOS

1. Introduction

Input–output mode (IOM) asynchronous circuits use delay-insensitive codes for data
encoding and rely on a four-phase handshake protocol for data communication. Unlike
synchronous circuits that depend on a clock signal, IOM asynchronous circuits operate
based on events, making them inherently more robust. This event-driven nature of IOM
asynchronous circuits provides them with increased resistance to process, voltage, and
temperature variations, making them more adaptable [1]. Moreover, IOM asynchronous cir-
cuits offer modularity and reduced vulnerability to electromagnetic interference compared
to synchronous circuits, which makes them suitable for security applications [2].

IOM asynchronous circuits can be categorized as quasi-delay-insensitive (QDI) and
non-QDI. QDI circuits rely on isochronic forks [3], which are electrical nodes from which
multiple wires may emerge, and the signal transitions on those wires are assumed to
occur simultaneously. This assumption has been found to hold good in the realm of
microelectronics and nanoelectronics [4]. Quasi-delay-insensitivity requires that all the
outputs of a circuit be generated only after all inputs have been received, and the internal
processing is fully completed. While this feature enhances the robustness of QDI circuits,
it also increases their implementation costs, such as area, delay, and power dissipation,
compared to non-QDI circuits.

There are different types of QDI circuits, namely strong indication and weak indica-
tion [5], as well as early output QDI circuits [6]. In strong indication circuits, all primary
inputs must be processed to produce all primary outputs. In contrast, weak indication
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circuits can process a subset of primary inputs to produce some primary outputs, but the
final primary output is produced only after processing the last primary input. Early output
circuits can process a subset of primary inputs to produce all primary outputs, particularly
when the spacer is applied. It is worth noting that early output circuits may or may not
be QDI. The assumption of isochronic forks applied to the primary inputs handles the
acknowledgment of delayed primary inputs in early output QDI circuits.

IOM asynchronous circuits that do not fall into the QDI category encompass relative-
timed circuits [7] and monotonous/monotonic circuits [8]. Relative-timed circuits operate
based on internal timing to sequence the inputs and generate the outputs, whereas mono-
tonic circuits only ensure the monotonicity of signal transitions within a circuit. Mono-
tonicity guarantees that rising signal transitions (say, from binary 0 to 1) on inputs result
in rising signal transitions on outputs, and falling signal transitions (say, from binary 1
to 0) on inputs result in falling signal transitions on outputs. A circuit may be monotoni-
cally increasing, monotonically decreasing, monotonically increasing and decreasing, or
non-monotonic. Synchronous circuits typically exhibit non-monotonic behavior, while
IOM asynchronous circuits generally display monotonic behavior. In this article, the term
‘monotonic circuits’ shall henceforth refer to asynchronous circuit implementations that are
monotonically increasing and decreasing, unless stated otherwise.

Monotonic circuits typically function as early output circuits but do not fall into the
QDI category, and they do not require the completion of internal processing to produce all
the primary outputs [9]. Compared to QDI asynchronous circuits, non-QDI asynchronous
circuits offer more flexibility, allowing for a reduction in circuit complexity and implemen-
tation costs in the design of asynchronous circuits. As a result, they could achieve superior
performance metrics. The proposed asynchronous full adder is a monotonic circuit that
enables significant optimizations to design metrics compared to existing asynchronous
full adders. An abridged version of this work has been accepted for presentation at the
IEEE MIEL 2023 conference [10], and this article is an extension that includes (100%) extra
results for RtO handshaking, in addition to the results for RtZ handshaking given in [10].
Further, a comparison between the calculated theoretical cycle time and the estimated
actual cycle time of asynchronous adders is given in this article. Towards this, the delay ex-
pressions governing the forward latency and reverse latency of various N-bit asynchronous
carry-ripple adders are also given as an Appendix in this article.

The subsequent sections of this article cover the following: Section 2 discusses the
fundamentals of IOM asynchronous circuit design. Section 3 provides an overview of the
existing literature on IOM asynchronous full adders. The design of the proposed IOM
asynchronous full adder is described in Section 4. In Section 5, the design metrics of
asynchronous adders implemented using different asynchronous full adders, including the
proposed design, are presented. Finally, Section 6 concludes this article.

2. IOM Asynchronous Circuit Design—Fundamentals

Figure 1a showcases the block diagram of a single stage of an IOM asynchronous
pipeline [1]. A pipeline stage comprises an asynchronous circuit that is positioned between
banks of input and output registers. The input registers may act as the output registers for a
preceding circuit in the pipeline, and the output registers may act as the input registers for a
subsequent circuit in the pipeline. The input registers are responsible for providing inputs
to the asynchronous circuit, which then processes the input and produces the output that is
subsequently directed to the output registers. A completion detector is used to indicate
the completion of production of all outputs by an asynchronous circuit. Example com-
pletion detectors corresponding to RtZ handshaking and RtO handshaking are shown in
Figure 1b,c, respectively—the handshaking schemes shall be discussed later in this section.
The completion detector associated with the output registers sends an acknowledgment
output (AckO) signal, which, after inversion, becomes the acknowledgment input (AckI)
signal that is used to enable the input registers to supply new inputs (data or spacer) to
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the asynchronous circuit for processing. The communication process between input and
output registers is called ‘handshaking’ in IOM asynchronous circuits.
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Figure 1. (a) Block diagram of an IOM asynchronous circuit stage—the critical data path is high-
lighted by the pink dashed line; (b) example input registers and completion detector corresponding
to RtZ handshaking; (c) example input registers and completion detector corresponding to RtO hand-
shaking; (d) a (representative) transistor-level realization of the 2-input Muller C-element, obtained
by incorporating feedback in an AO222 complex gate realized in static CMOS style. In (b,c), (X1,
X0) and (Y1, Y0) denote example dual-rail encoded inputs. The circles with the marking C on their
periphery represent C-elements in (b,c).
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The Muller C-element [11] is used as a register in an IOM asynchronous circuit. The
Muller C-element produces a binary 1 when all its inputs are binary 1 and a binary 0
when all its inputs are binary 0. If the inputs to a C-element are different, it would
maintain its current steady state. Assuming A and B are the inputs of a C-element, the
output of the C-element, say M, is expressed as M = AB + (A + B) M. The transistor-
level implementation of a 2-input Muller C-element is shown in Figure 1d, which can
be obtained by incorporating feedback in an AO222 complex gate realization [12]. Full-
custom transistor-level realizations of the C-element have been presented and analyzed
in [13,14], but these were not used as we have utilized a semi-custom realization of the
C-element shown in Figure 1d to implement IOM asynchronous RCAs comprising different
asynchronous full adders in a semi-custom design fashion at the gate-level.

The encoding of an IOM asynchronous circuit involves the utilization of a delay-
insensitive code [15], with the dual-rail code widely used to encode inputs and outputs. We
first explain the process of encoding an input/output using dual-rail encoding according
to RtZ handshaking and RtO handshaking before describing the handshaking schemes.
According to dual-rail encoding and RtZ handshaking [1], an input signal, S, is represented
by two wires or rails, namely S1 and S0. If the value of S is 1, it is encoded as S1 = 1 and
S0 = 0, whereas if S is 0, it is encoded as S0 = 1 and S1 = 0. These assignments are referred
to as ‘data.’ S1 = S0 = 0 represents the ‘ (zeroes) spacer’ that is inserted between two
consecutive data. In the context of RtZ handshaking, S1 = S0 = 1 is invalid and illegal since
the coding scheme should be unordered [16]. According to dual-rail encoding and RtO
handshaking [17], an input signal, S, is represented by two wires or rails, say S1 and S0. If
the value of S is 1, it is encoded as S1 = 0 and S0 = 1, whereas if S is 0, it is encoded as S0 = 0
and S1 = 1. These two assignments are referred to as ‘data.’ S1 = S0 = 1 represents the ‘ (ones)
spacer’ that is inserted between two consecutive data. In the context of RtO handshaking,
S1 = S0 = 0 is invalid and illegal since the coding scheme should be unordered [16].

Figure 1b,c highlights example dual-rail encoded inputs (X1, X0) and (Y1, Y0). In the
bank of input registers shown in Figure 1b,c, each C-element has one of its inputs tied to
the AckI signal, while its other input is connected to an encoded input rail. Figure 1b shows
an example completion detector that relates to RtZ handshaking. Here, the completion
detector consists of a series of 2-input OR gates in the initial level, where each OR gate
combines the respective dual rails of each encoded input. The outputs from these OR
gates are then fed into a C-element or a tree of C-elements to generate the AckO signal.
Figure 1c shows an example completion detector that relates to RtO handshaking. Here,
the completion detector consists of a series of 2-input AND gates in the initial level, where
each AND gate combines the respective dual rails of each encoded input. The outputs
from these AND gates are then fed into a C-element or a tree of C-elements to generate the
AckO signal.

We shall now explain the RtZ and RtO handshaking schemes. Concerning RtZ hand-
shaking, the initial step is setting AckI to 1 while AckO is at 0. This action triggers the input
registers to transmit the data to the asynchronous circuit for processing. During this phase,
one of the encoded input rails of the entire data bus will be set to 1, indicating that data
is being sent for processing by the asynchronous circuit. In the second phase, the output
registers will receive all the outputs generated by the asynchronous circuit and then send
an AckO signal of 1. In the third phase, the input registers will wait for AckI to become 0
and then supply the asynchronous circuit with the (zeroes) spacer for processing. Lastly,
in the fourth and final phase, the output registers will receive the spacer output from the
asynchronous circuit, and an AckO signal of 0 will be issued. This signifies the completion
of one data transaction and the readiness to initiate the next data transaction when AckI
subsequently becomes 1.

Concerning RtO handshaking, the initial step is setting AckI to 1 while AckO is at 0.
This action triggers the input registers to transmit the (ones) spacer to the asynchronous
circuit for processing. During this phase, all the encoded input rails of the entire data bus
will be set to 1, indicating that the spacer is being sent for processing by the asynchronous
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circuit. In the second phase, the output registers will receive all the outputs generated by
the asynchronous circuit and then send an AckO signal of 1. In the third phase, the input
registers will wait for AckI to become 0 and then supply the asynchronous circuit with the
data for processing, which implies one of the encoded input rails of the entire data bus will
be driven to 0. Lastly, in the fourth and final phase, the output registers will receive the
data output from the asynchronous circuit, and an AckO signal of 0 will be issued. This
signifies the completion of one data transaction and the readiness to initiate the next data
transaction when AckI subsequently becomes 1.

To ensure delay insensitivity in QDI circuits, a spacer is inserted between two input
data. On the other hand, by introducing a spacer between two input data for a monotonic
circuit, delay insensitivity can be achieved externally for handshaking purposes so that
data and spacer do not collide. Figure 1a shows an IOM asynchronous pipeline stage where
the primary timing parameter is the ‘cycle time,’ representing the duration required to
complete a single data transaction. The processing time for data (worst-case scenario) is
known as forward latency, while the processing time for the spacer (worst-case scenario)
is referred to as reverse latency. The forward latency may or may not be equal to the
reverse latency in an IOM asynchronous circuit, depending on the logic composition of the
asynchronous circuit. In an IOM asynchronous circuit, the cycle time is determined by the
sum of forward and reverse latencies. The critical data path governing the latency in an
IOM asynchronous circuit involves an input register bank and an asynchronous circuit,
which is emphasized by the pink dashed line in Figure 1a.

3. IOM Asynchronous Full Adders—A Survey

By cascading N full adders, it is possible to create an N-bit ripple carry adder (RCA).
Although the RCA demonstrates advantages, such as less area and low power compared to
other high-speed adders, it leads to relatively slower performance for synchronous design.
However, in the context of IOM asynchronous design, the RCA architecture becomes
valuable, especially due to some RCAs exhibiting a small reverse latency that is challenging
to attain with alternative adder architectures. Further, the RCA has the smallest area among
other adders, contributing to low power dissipation. We consider the RCA architecture here
as a platform to comparatively evaluate the performance of various IOM asynchronous
full adders.

A binary full adder takes two input bits and a carry input, producing a sum output
and any carry overflow. The output expressions of a dual-rail full adder, which corresponds
to RtZ handshaking, are presented in Equations (1) through (4). In the equations, the inputs
of the dual-rail full adder are represented by (X1, X0) and (Y1, Y0), along with the dual-rail
carry input represented by (C1, C0). The dual-rail sum output is denoted by (Sum1, Sum0),
while the dual-rail carry overflow, also called carry output resulting from the addition, is
denoted by (Carry1, Carry0).

Sum1 = X0Y0C1 + X0Y1C0 + X1Y0C0 + X1Y1C1 (1)

Sum0 = X0Y0C0 + X0Y1C1 + X1Y0C1 + X1Y1C0 (2)

Carry1 = X0Y1C1 + X1Y0C1 + X1Y1C0 + X1Y1C1 (3)

Carry0 = X0Y0C0 + X0Y0C1 + X0Y1C0 + X1Y0C0 (4)

We will now survey the existing IOM asynchronous full adders. By employing
different types of full adders, we provide a theoretical analysis of latency and cycle time for
various asynchronous RCAs. However, it is important to note that the theoretical modeling
of latency and cycle time for different asynchronous RCAs is only an approximation. This is
because the modeling only considers the delays of the building blocks (i.e., full adders) for
simplicity, while disregarding gate, interconnect, or parasitic delays. Also, the small delay
caused by the input register is not considered in the theoretical modeling for simplicity.
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The full adders of [18,19] demonstrate a strong indication property, and it is possible
to realize a strong indication full adder using the delay-insensitive minterm synthesis
method [20]. When these full adders are individually replicated and interconnected to
form N-bit RCAs, where N represents the adder size, such RCAs would exhibit the same
forward and reverse latency of O[N × DFA], where DFA represents the propagation delay
of a full adder. It should be noted that RCAs employing strong indication full adders
experience higher forward and reverse latencies due to maximum-length carry propagation
while processing both data and spacer. Consequently, the cycle time of these RCAs is
O[2 × N × DFA], resulting in significantly slower performance.

Reference [21] introduced a full-custom weak indication full adder design based on
static CMOS implementation, using 42 transistors. However, it is worth noting that the
pull-up network in this design involves a series stack of four PMOS transistors, which is not
considered optimal for modern CMOS technologies. Moreover, optimum transistor sizing
should be performed to make the full adder suitable for driving different loads. In contrast,
several existing asynchronous full adders are semi-custom gate-level designs that can be
quite conveniently realized using a standard cell library. Nonetheless, the C-element, which
is not part of a typical standard cell library, may be designed in a full-custom fashion [13,14]
or in a semi-custom fashion (as shown in Figure 1d) and used for implementation.

The full adders discussed in [22–24] demonstrate weak indication behavior. Also,
it is possible to realize a weak indication full adder using the delay-insensitive minterm
synthesis method [20]. The weak indication full adders presented in [20,22] exhibit a cycle
time of O[2 × N × DFA], with equal forward and reverse latencies of O[N × DFA]. This is
a result of the maximum carry propagation involved during the processing of both data
and the spacer. On the other hand, the weak indication full adders described in [23,24]
have a cycle time of O[(N + 2) × DFA], with a forward latency of O[N × DFA] and a reverse
latency of O[2 × DFA]. The reduction in reverse latency is achieved through biased weak
indication, where the responsibility of indicating all the adder inputs is assigned to the sum
output of the full adders, while the carry output is exempted from the indication.

A recent work [25] introduced three weak indication full adders, leveraging the
concept of binary sorting networks (SN). These full adders are labeled as the SN full adder,
SNFC full adder, and SNX full adder. However, it is worth noting that none of these full
adders were physically implemented in [25]. An N-bit RCA realized using SN full adder
would have a cycle time of O[2 × N × DFA], which indicates that its forward and reverse
latencies are equal. In contrast, N-bit RCAs realized using SNFC and SNX full adders
would have a cycle time given by O[(N + 2) × DFA], suggesting that their reverse latency is
significantly lower than their forward latency. This reduction in reverse latency is attributed
to the phenomenon of biased weak indication incorporated in SNFC and SNX full adders.

Reference [26] presented an early output QDI full adder. When this full adder is
replicated and interconnected to form an N-bit RCA, it will exhibit a forward latency of
O[N × DFA] and a reverse latency of O[2 × DFA]. Accordingly, the cycle time of the RCA
would be given by O[(N + 2) × DFA].

The early output QDI full adders discussed in [27] can be utilized to construct relative-
timed RCAs. Among these full adders, one is optimized for area, while the other is
optimized for latency. Consequently, the resulting RCAs exhibit a forward latency of
O[N × DFA] while achieving a minimized reverse latency of O[DFA]. The reduction in
reverse latency is made possible because all the full adders within the RCA can simultane-
ously produce the sum output without waiting for the carry input during the application of
the spacer, thus allowing for more efficient processing. The cycle time of the relative-timed
RCAs is calculated to be O[(N + 1) × DFA], which is theoretically the least among the cycle
times of existing IOM asynchronous RCAs.

4. Proposed Monotonic Asynchronous Full Adder

Figure 2 portrays the gate-level diagram of the monotonic asynchronous full adder
proposed corresponding to RtZ handshaking. The adder inputs are dual-rail encoded and
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represented by (X1, X0), (Y1, Y0), and (C1, C0), and the adder outputs are also dual-rail
encoded and denoted by (Sum1, Sum0) and (Carry1, Carry0). There are four intermediate
nodes, namely J1, J2, J3, and J4, which are highlighted in red. The proposed full adder
using dual-rail encoding comprises a total of eight gates, specifically four AO22 complex
gates, two AO21 complex gates, and two 2-input AND gates. The logic expressions gov-
erning the proposed full adder are given by Equations (5) to (8), where J1 = X0Y0 + X1Y1,
J2 = X0Y1 + X1Y0, J3 = X1Y1, and J4 = X0Y0.

Sum1 = J1C1 + J2C0 (5)

Sum0 = J1C0 + J2C1 (6)

Carry1 = J2C1 + J3 (7)

Carry0 = J2C0 + J4 (8)
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Figure 2. Gate-level realization of the proposed monotonic asynchronous full adder corresponding
to RtZ handshaking.

The two comprehensive example scenarios below demonstrate and explain the proposed
full adder’s monotonicity and early output characteristics corresponding to RtZ handshaking.

4.1. Scenario 1

When data is supplied, if either X0 and Y0 or X1 and Y1 are set to binary 1, J1 will
assume 1. Depending on whether C1 or C0 is 1, either Sum1 or Sum0 will assume 1,
respectively. Also, if X1 and Y1 or X0 and Y0 are both 1, Carry1 or Carry0 will assume
1, respectively. As a result, all signal transitions in the full adder during data processing
increase monotonically. Subsequently, when the (zeroes) spacer is supplied, even if X0 or
Y0 (or X1 or Y1) assumes binary 0, J1 will assume 0. Consequently, either Sum1 or Sum0
(whichever assumed 1 earlier) will assume 0 without waiting for C1 or C0 (whichever
became 1 earlier) to assume 0. Further, if X1 or Y1 (or X0 or Y0) assumes 0, J3 or J4
(whichever became 1 earlier) will assume 0, and either Carry1 or Carry0 (whichever
became 1 earlier) will assume 0 without both X1 and Y1 or X0 and Y0 assuming 0. This
demonstrates the early output nature and the monotonically decreasing property of the
proposed full adder during spacer processing.
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4.2. Scenario 2

When data is supplied, if either X0 and Y1 or X1 and Y0 assume 1, J2 will assume 1.
Depending on whether C0 or C1 is 1, either Sum1 or Sum0 will assume 1, respectively. Also,
if C1 or C0 assumes 1, either Carry1 or Carry0 will assume 1. Hence, all signal transitions
within the full adder during data processing increase monotonically. Subsequently, when
the (zeroes) spacer is supplied, even if X0 or Y1 (or X1 or Y0) assumes binary 0, J2 will
assume 0. Consequently, either Sum1 or Sum0 (whichever became 1 earlier) will assume
0 without waiting for C0 or C1 (whichever became 1 earlier) to assume 0. Additionally,
Carry1 or Carry0 (whichever became 1 earlier) will assume 0 without waiting for C1 or
C0 to assume 0. This further demonstrates the early output nature and the monotonically
decreasing property of the proposed full adder during spacer processing.

Figure 3 shows a screenshot of a portion of waveforms of a 32-bit asynchronous RCA
constructed using the proposed full adder that corresponds to RtZ handshaking. The dual-
rail 32-bit adder inputs are represented by (X311, X310), (X301, X300),. . . , (X01, X00) and
(Y311, Y310), (Y301, Y300),. . . , (Y01, Y00). The dual-rail 33-bit adder output is represented
by (SUM311, SUM310), (SUM301, SUM300),. . . , (SUM01, SUM00), and (CARRYOUT311,
CARRYOUT310), with the last output bit representing the carry overflow from the addi-
tion. In Figure 3, data buses X and Y represent the adder inputs, and the data bus SUM
represents the adder output. X comprises X311, X301, X291,. . . , X01, and Y comprises
Y311, Y301, Y291,. . . , Y01, and SUM comprises CARRYOUT311, SUM311, SUM301,. . . ,
SUM01. Example addition of two hexadecimal numbers is captured in Figure 3, which
is highlighted by the markers in the waveforms. The binary zeroes spacer separates two
input data in the case of RtZ handshaking, and hence, the spacer is produced between two
valid sum outputs in Figure 3.
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proposed asynchronous full adder, corresponding to RtZ handshaking.

The logical equivalent of the proposed full adder that corresponds to RtO handshaking
is shown in Figure 4. Figure 4 is obtained by replacing all the gates in Figure 2 with their
respective duals, as suggested in [17,28]. Reference [28] details, along with proofs, of how
an IOM asynchronous circuit that corresponds to RtZ handshaking can be converted into
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an equivalent circuit that corresponds to RtO handshaking and vice versa by using the
duals of logic gates (excepting for the C-element). Figure 4 uses the same number of gates
as in Figure 2. However, the AO22 complex gates, 2-input AND gates, and the AO21
complex gates of Figure 2 are replaced by their corresponding duals viz. OA22 complex
gates, 2-input OR gates, and OA21 complex gates, respectively, in Figure 4. The internal
nodes K1, K2, K3, and K4 are highlighted in red in Figure 4.
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Figure 4. Gate-level realization of the proposed monotonic asynchronous full adder corresponding
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The two comprehensive example scenarios below demonstrate and explain the proposed
full adder’s monotonicity and early output characteristics corresponding to RtO handshaking.

4.3. Scenario 3

When data is supplied, if either X0 and Y0 or X1 and Y1 are set to binary 0, K1 will
assume 0. Depending on whether C1 or C0 is 0, either Sum1 or Sum0 will assume 0,
respectively. If X1 and Y1 or X0 and Y0 are both 0, either Carry1 or Carry0 will assume
0, respectively. As a result, all signal transitions in the proposed full adder during data
processing are observed to be monotonically decreasing. Subsequently, when the (ones)
spacer is supplied, even if X0 or Y0 (or X1 or Y1) assumes binary 1, K1 will assume 1.
Consequently, either Sum1 or Sum0 (whichever assumed 0 earlier) will now assume 1
without waiting for C1 or C0 (whichever became 0 earlier) to assume 1. Further, if X1 or Y1
(or X0 or Y0) assumes 1, K3 or K4 (whichever became 0 earlier) will now assume 1. Also, if
X0 or Y0 and X1 or Y1 assumes 1, K2 will assume 1. With K2 and K3 or K2 and K4 assuming
1, Carry1 or Carry0 (whichever became 0 earlier) will now assume 1 regardless of C1 or C0
assuming 1, and without both X0 and Y0 or X1 and Y1 assuming 1. This demonstrates the
early output nature and the monotonically increasing property of the proposed full adder
during spacer processing.

4.4. Scenario 4

When data is supplied, if either X0 and Y1 or X1 and Y0 assume 0, K2 will assume
0. Depending on whether C0 or C1 is 0, either Sum1 or Sum0 will assume 0, respectively.
If C1 or C0 assumes 0, either Carry1 or Carry0 will assume 0, respectively. Hence, all
signal transitions in the proposed full adder during data processing are observed to be
monotonically decreasing. Subsequently, when the (ones) spacer is supplied, even if X0 or
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Y1 (or X1 or Y0) assumes binary 1, K2 will assume 1. Consequently, either Sum1 or Sum0
(whichever became 0 earlier) will now assume 1 without waiting for C0 or C1 (whichever
became 0 earlier) to assume 1. Further, if X1 or Y0 (or X0 or Y1) assumes 1, K3 or K4 will
assume 1. Thus, Carry1 or Carry0 (whichever became 0 earlier) will assume 1 without
waiting for C1 or C0 to assume 1. This also demonstrates the early output nature and the
monotonically increasing property of the proposed full adder during spacer processing.

Figure 5 shows a screenshot of a portion of waveforms of a 32-bit asynchronous
RCA constructed using the proposed asynchronous full adder that corresponds to RtO
handshaking. As mentioned earlier, the dual-rail 32-bit adder inputs are represented
by (X311, X310), (X301, X300),. . . , (X01, X00), and (Y311, Y310), (Y301, Y300),. . . , (Y01,
Y00). The dual-rail 33-bit adder output is represented by (SUM311, SUM310), (SUM301,
SUM300),. . . , (SUM01, SUM00), and (CARRYOUT311, CARRYOUT310), with the last
output bit representing the carry overflow from the addition. In Figure 5, data buses X
and Y represent the adder inputs, and the data bus SUM represents the adder output.
X comprises X310, X300, X290,. . . , X00, and Y comprises Y310, Y300, Y290,. . . , Y00, and
SUM comprises CARRYOUT310, SUM310, SUM300,. . . , SUM00. Example addition of
two hexadecimal numbers is captured in Figure 5, which are highlighted by the markers
in the waveforms. The binary ones spacer separates two input data in the case of RtO
handshaking, and hence, the ones spacer is produced between two valid sum outputs in
Figure 5.
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proposed asynchronous full adder, corresponding to RtO handshaking.

From Section 4.1 to Section 4.4, it may be observed that the proposed asynchronous
full adder, when incorporated in an N-bit RCA, would give rise to a forward latency of
O[N × DFA] and an optimal reverse latency of O[DFA], thus resulting in an optimized cycle
time of O[(N + 1) × DFA]. Although the early output full adders of [27] also result in a
similar cycle time magnitude when used to realize an N-bit RCA, nevertheless, compared
to the proposed full adder, the full adders of [27] incorporate more gates, including C-
elements and thus tend to occupy more area and dissipate more power. Further, the
proposed full adder has a reduced number of logic levels compared to the full adders
of [27], and this helps in a better optimization of forward and reverse latencies and the
cycle time in comparison.
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5. Implementation and Design Metrics

For physical realization, an IOM asynchronous circuit stage was implemented, consist-
ing of an input register bank and an asynchronous circuit (here, an RCA), as depicted in
Figure 1. A 32-bit addition was considered. It was assumed that AckI is supplied by the
environment. The RCA is used as a platform for evaluating the performance of various
full adders. Hence, many RCAs were realized by individually replicating and cascading
different full adders, corresponding to RtZ and RtO handshaking separately.

In the RCAs, the carry input to the first (least significant) full adder is set to 0. For
RtZ handshaking, this was achieved by connecting encoded rail C1 of the carry input to a
tie-to-low standard cell and connecting encoded rail C0 to the AckI signal. Hence, when
AckI = 1, C1 = 0, and C0 = 1 implies a carry input of 0 is given to the first full adder in the
RCA. On the other hand, when AckI = 0, C1 = C0 = 0 signifies the provision of the (zeroes)
spacer as the carry input to the first full adder in the RCA. For RtO handshaking, rail C1 of
the carry input was connected to a tie-to-high standard cell, and rail C0 was connected to
the AckI signal. Consequently, when AckI = 1, C1 = C0 = 1 signifies the provision of the
(ones) spacer as the carry input to the first full adder in the RCA. When AckI = 0, C1 = 1,
and C0 = 0 implies a carry input of 0 is given to the first full adder in the RCA. To realize the
full adders and RCAs, a semi-custom design approach was adopted by utilizing the gates
available in a 28 nm CMOS standard digital cell library [29]. The different asynchronous
RCAs were structurally described in Verilog HDL and then simulated, and their design
metrics were estimated. Since the standard cell library does not include a native C-element,
a semi-custom realization of the 2-input C-element involving the provision of feedback
in an AO222 complex gate (as shown in Figure 1d) was used to implement different full
adders, RCAs, registers, and completion detectors. However, the proposed full adder does
not require any C-element for its implementation, evident from Figures 2 and 4.

To estimate the design characteristics of different asynchronous RCAs consisting of
various full adders, we utilized a typical case high Vth (low leakage) standard cell library
specification [29], which features a supply voltage of 1.05V and an operating temperature
of 25 ◦C. To conduct simulations and estimate the design metrics, we used Synopsys EDA
tools. To perform functional simulations using VCS, we used a test bench containing ap-
proximately a thousand random data inputs (plus an equal number of spacer inputs), which
were supplied at a latency of 15 ns to accommodate the slowest RCA. Two test benches were
used, one corresponding to RtZ handshaking and an equivalent one corresponding to RtO
handshaking. The test benches included both data and spacer. The total power dissipation
was estimated based on the switching activity captured during the functional simulations.
Default wire loads were assumed, and a fanout-of-4 drive strength was assigned to all the
sum bits of the adders during the design metrics estimation. An advanced timing analysis
was performed using PrimeTime by employing a virtual clock to constrain the input and
output ports of the adders, although the clock itself was not physically implemented. Thus,
the clock being virtual did not contribute to the design metrics estimated. The forward
latency of the adders (which is equivalent to the standard critical path delay) was directly
estimated, while the reverse latency was estimated based on the path delays specified
in the timing reports. The cycle time, which represents the duration to complete a data
transaction, was determined as the sum of the forward and reverse latencies. The total
(average) power dissipation was estimated using PrimePower.

Table 1 displays the estimated design metrics for the IOM asynchronous RCAs realized
using different asynchronous full adders, including the proposed full adder. The design
metrics include forward latency, reverse latency, cycle time, area, and total power dissipa-
tion. The input registers and the completion detector remain the same for all the RCAs for
RtZ/RtO handshaking, with the only variation being the underlying adder logic. Therefore,
the variations in the design metrics of the RCAs can be attributed to the differences in the
full adder logic. For reference purposes and to discuss the results, adder legends RZ1 to
RZ14 (for RtZ handshaking) and RO1 to RO14 (for RtO handshaking) are used, as given
in Table 1. The adder legends represent various asynchronous RCAs comprising different
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asynchronous full adders, including the proposed full adder, which were discussed in
Sections 3 and 4.

Table 1. Design metrics of 32-bit asynchronous RCAs corresponding to RtZ and RtO handshaking,
implemented using a 28 nm CMOS technology.

Reference;
RCA Legend

Timing Parameters (ns)
Area
(µm2)

Power
(µW)Forward

Latency
Reverse
Latency Cycle Time

RtZ Handshaking

[18]; RZ1 * 14.70 14.70 29.40 2518.32 1446
[20]; RZ2 * 9.34 9.34 18.68 2493.93 1449
[20]; RZ3 # 8.31 8.31 16.62 2412.60 1445
[19]; RZ4 * 9.12 9.12 18.24 2282.47 1429
[22]; RZ5 # 7.07 7.07 14.14 2005.96 1415
[23]; RZ6 # 4.52 0.74 5.26 2087.28 1431
[24]; RZ7 # 3.40 0.82 4.22 2038.49 1421
[26]; RZ8 $ 3.19 0.70 3.89 1648.12 1405

[27]; RZ9 $% 3.14 0.73 3.87 1534.27 1396
[27]; RZ10 $ˆ 3.02 0.72 3.74 1648.12 1403
[25]; RZ11 #α 8.97 8.97 17.94 2103.55 1424
[25]; RZ12 #β 6.64 1.42 8.06 2282.47 1451
[25]; RZ13 #γ 6.20 1.04 7.24 2339.40 1437

RZ14 (Proposed) 2.87 0.48 3.35 1387.88 1381

RtO Handshaking

[18]; RO1 * 14.24 14.24 28.48 2518.32 1445
[20]; RO2 * 8.84 8.84 17.68 2363.80 1443
[20]; RO3 # 8.12 8.12 16.24 2347.53 1442
[19]; RO4 * 8.97 8.97 17.94 2282.47 1429
[22]; RO5 # 7.04 7.04 14.08 2005.96 1415
[23]; RO6 # 3.88 0.73 4.61 2087.28 1431
[24]; RO7 # 3.39 0.81 4.20 2038.49 1421
[26]; RO8 $ 3.02 0.70 3.72 1648.12 1404

[27]; RO9 $% 3.16 0.72 3.88 1534.27 1395
[27]; RO10 $ˆ 2.99 0.70 3.69 1648.12 1402
[25]; RO11 #α 9.05 9.05 18.10 2103.55 1424
[25]; RO12 #β 6.75 1.19 7.94 2282.47 1456
[25]; RO13 #γ 6.31 1.03 7.34 2339.40 1437

RO14 (Proposed) 2.85 0.48 3.33 1387.88 1380

* Uses strong indication full adder; # uses weak indication full adder. $ Uses early output full adder
(% AOPT_EO_FA, ˆ LOPT_EO_FA of [27]). α Uses SN full adder, β SNX full adder, and γ SNFC full adder
of [25].

The forward latency and reverse latency of RZ14 are approximately represented by
Equations (9) and (10), and the forward latency and reverse latency of RO14 are approxi-
mately represented by Equations (11) and (12) for an N-bit addition. Equations (9) to (12)
represent approximate delay models since interconnect and parasitic delays are not ac-
counted for in the theoretical delay modeling. In the equations, DRegister, DAO22, DAO21,
DOA22, and DOA21 denote the typical propagation delay of the register (which is a 2-input
C-element), an AO22 complex gate, an AO21 complex gate, an OA22 complex gate, and an
OA21 complex gate, respectively.

RZ14Forward_Latency = DRegister + (DAO22 + DAO21) + (N − 2) × DAO21 + DAO22 (9)

RZ14Reverse_Latency = DRegister + 2 × DAO22 (10)

RO14Forward_Latency = DRegister + (DOA22 + DOA21) + (N − 2) × DOA21 + DOA22 (11)
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RO14Reverse_Latency = DRegister + 2 × DOA22 (12)

In Equations (9) and (11), the first term on the right side denotes the delay associated
with an input register, which corresponds to the delay of a 2-input C-element. The second
term signifies the delay encountered in the first full adder to generate the carry output. The
third term represents the delay involved in carry propagation through (N − 2) full adders.
Finally, the fourth term accounts for the delay in the last full adder to generate the most
significant sum bit of the addition. In Equations (10) and (12), the first term on the right
side represents the delay of an input register, while the second term signifies the delay
incurred to produce the spacer sum output, which is produced simultaneously by all the N
full adders.

From Table 1, it is evident that the RCAs implemented using the proposed full adder
viz. RZ14 and RO14 exhibit the lowest forward latency and reverse latency, resulting in
the shortest cycle time compared to RCAs comprising other full adders for RtZ and RtO
handshaking, respectively. This is mainly because the proposed full adder does not contain
any C-element and, thus, has a relatively reduced logic complexity and fewer elements
in the critical data path. Furthermore, it may be recalled from the previous section that
the proposed asynchronous full adder is both monotonic and of the early output type.
Consequently, irrespective of the receipt of the carry input, the sum and carry outputs
of the proposed full adder can assume the spacer during the RtZ/RtO phase. Therefore,
the reverse latency of the RCA incorporating the proposed full adder is governed by the
delay of just one full adder, thus resulting in an optimal configuration. To affirm this
reasoning, we theoretically calculated the cycle time of RCAs comprising different full
adders and compared those with the actual (estimated) cycle time of RCAs for RtZ and RtO
handshaking; this comparison is illustrated in Figure 6a,b. For a theoretical calculation of
the cycle time, we used only the typical propagation delays given in the datasheet [29], and
interconnect delays and parasitics were not accounted for. Thus, a variation between the
theoretical and actual cycle times can be expected, as seen in Figure 6. However, Figure 6a,b
shows a good correlation and/or reflects a similar trend between the theoretical and
actual cycle time of almost all asynchronous RCAs comprising different asynchronous full
adders for RtZ and RtO handshaking, respectively. Equations underpinning the theoretical
calculation of cycle time for various asynchronous RCAs, which govern their forward
latency and reverse latency, are given in Appendix A.
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Figure 6. Comparison of theoretical (calculated) and actual (estimated) cycle time of various asyn-
chronous RCAs corresponding to (a) RtZ handshaking and (b) RtO handshaking. The X-axis specifies
RCA legends, and the Y-axis shows the cycle time.

The areas of the full adders utilized in RCAs RZ1 to RZ14 and RO1 to RO14 are
graphically represented in Figure 7a,b, with the red bar indicating the (optimized) area
occupancy of the proposed full adder. RZ14 and RO14 utilize the smallest area for RtZ
and RtO handshaking among their counterparts. This is attributed to the fact that the
proposed full adder employed in RZ14 and RO14 occupies less silicon in comparison to
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other asynchronous full adders, as depicted in Figure 7a,b. Unlike the other full adders,
the proposed full adder does not include the C-element in its logic implementation. This is
the reason for its reduced area occupancy. Consequently, due to its smaller area, RZ14 and
RO14 incorporating the proposed full adder dissipate less power in comparison to other
RCAs that employ different full adders, as seen in Table 1. It may be noted from Table 1 that
there is no big difference between the power dissipation of various RCAs. This is because
all the IOM asynchronous RCAs incorporate the monotonic cover constraint [1], which
results in the activation of one signal path from a primary input to a primary output.

Technologies 2023, 11, x FOR PEER REVIEW 15 of 21 
 

 

and RtO handshaking among their counterparts. This is attributed to the fact that the pro-
posed full adder employed in RZ14 and RO14 occupies less silicon in comparison to other 
asynchronous full adders, as depicted in Figure 7a,b. Unlike the other full adders, the pro-
posed full adder does not include the C-element in its logic implementation. This is the 
reason for its reduced area occupancy. Consequently, due to its smaller area, RZ14 and 
RO14 incorporating the proposed full adder dissipate less power in comparison to other 
RCAs that employ different full adders, as seen in Table 1. It may be noted from Table 1 
that there is no big difference between the power dissipation of various RCAs. This is 
because all the IOM asynchronous RCAs incorporate the monotonic cover constraint [1], 
which results in the activation of one signal path from a primary input to a primary out-
put. 

 
Figure 7. Area (in µm2) of asynchronous full adders used to realize various asynchronous RCAs 
corresponding to (a) RtZ handshaking and (b) RtO handshaking. The RCA legends given in Table 1 
are specified on the X-axis in (a,b). The area of the proposed full adder is highlighted by the red bar. 

In IOM asynchronous circuits, the energy metric, which is an important figure of 
merit for low-power design [30], is obtained by multiplying power dissipation and cycle 
time. Since power and cycle time are desirable to be minimized, the power–cycle time 
product is also desirable to be minimum. The power and cycle time given in Table 1 are 
multiplied and then normalized. The normalized power–cycle time product of the asyn-
chronous RCAs is plotted in Figure 8a,b, which corresponds to RtZ and RtO handshaking. 
To achieve normalization, the actual product of power and cycle time for each RCA is 
divided by the highest value of the power–cycle time product for RtZ and RtO handshak-
ing separately, which corresponds to RZ1 and RO1, respectively. In Figure 7a,b, the high-
est value of 1 for the normalized power–cycle time product indicates an inferior design in 
terms of energy efficiency. Thus, the smallest value of the normalized power–cycle time 
product represents the most energy-efficient design, which corresponds to RZ14 and 
RO14 comprising the proposed full adder with respect to RtZ and RtO handshaking. The 

Figure 7. Area (in µm2) of asynchronous full adders used to realize various asynchronous RCAs
corresponding to (a) RtZ handshaking and (b) RtO handshaking. The RCA legends given in Table 1
are specified on the X-axis in (a,b). The area of the proposed full adder is highlighted by the red bar.

In IOM asynchronous circuits, the energy metric, which is an important figure of merit
for low-power design [30], is obtained by multiplying power dissipation and cycle time.
Since power and cycle time are desirable to be minimized, the power–cycle time product is
also desirable to be minimum. The power and cycle time given in Table 1 are multiplied
and then normalized. The normalized power–cycle time product of the asynchronous
RCAs is plotted in Figure 8a,b, which corresponds to RtZ and RtO handshaking. To
achieve normalization, the actual product of power and cycle time for each RCA is divided
by the highest value of the power–cycle time product for RtZ and RtO handshaking
separately, which corresponds to RZ1 and RO1, respectively. In Figure 7a,b, the highest
value of 1 for the normalized power–cycle time product indicates an inferior design in
terms of energy efficiency. Thus, the smallest value of the normalized power–cycle time
product represents the most energy-efficient design, which corresponds to RZ14 and
RO14 comprising the proposed full adder with respect to RtZ and RtO handshaking. The
least values of normalized power–cycle time product are highlighted by the red bar in
Figure 8a,b.

According to Table 1, among the existing designs, RZ10 and RO10 utilizing the latency-
optimized early output full adder from [24], known as LOPT_EO_FA, demonstrate a
shorter cycle time for RtZ handshaking and RtO handshaking, respectively. In comparison
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with RZ10, RZ14, incorporating the proposed full adder, achieves a 10.4% reduction in
cycle time, a 15.8% reduction in area, and an 11.8% reduction in the power–cycle time
product for RtZ handshaking with no power penalty. Likewise, in comparison with RO10,
RO14, incorporating the proposed full adder, achieves a 9.8% reduction in cycle time, a
15.8% reduction in area, and an 11.2% reduction in the power–cycle time product for RtO
handshaking with no power penalty. Between RZ14 and RO14 (which is the proposed full
adder corresponding to RtZ and RtO handshaking), there is no notable difference in terms
of the design metrics, and both are competitive designs.
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6. Conclusions

The full adder serves as a fundamental component, i.e., a building block in arithmetic
circuits. This article introduced a novel IOM asynchronous full adder, which is both
monotonic and of the early output type. The RCA was considered as a platform to evaluate
the performance of various asynchronous full adders, and it was found that the proposed
full adder performs better than existing gate-level asynchronous full adders across all the
design metrics. In future studies, it would be worthwhile to explore the usefulness of the
proposed full adder in efficiently implementing other computer arithmetic operations, such
as, say, multiplication, to enhance the performance of IOM asynchronous multipliers.
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Appendix A

The theoretical cycle time of various asynchronous RCAs, depicted in Figure 6 for
RtZ and RtO handshaking, is calculated from their forward and reverse latencies, which
are expressed by the generic equations given below. The RCA legends are maintained
the same, as specified in Table 1 given earlier. In Equations (A1) to (A56), DCE2, DOR2,
DOR3, DOR4, DAO21, DAO22, DAO222, DAND2, DAND3, DAND4, DOA21, DOA22, and DOA222
denote the typical propagation delays of a 2-input C-element, a 2-input OR gate, a 3-input
OR gate, a 4-input OR gate, an AO21 complex gate, an AO22 complex gate, an AO222
complex gate, a 2-input AND gate, a 3-input AND gate, a 4-input AND gate, an OA21
complex gate, an OA22 complex gate, and an OA222 complex gate, respectively. DRegister
is equivalent to DCE2, and DBuffer represents the propagation delay of a non-inverting
buffer with a minimum drive strength pertaining to [29]. N signifies the adder size in
Equations (A1) to (A56).

(a) Theoretical Expressions of Forward Latency of various IOM N-bit Asynchronous RCAs
corresponding to RtZ Handshaking

RZ1Forward_Latency = DRegister + (3 × DCE2 + DOR2 + 2 × DOR3) + {(N − 1) × (2 × DCE2 + 2 × DOR3)} (A1)

RZ2Forward_Latency = DRegister + (2 × DCE2 + DOR4) + {(N − 1) × (DCE2 + DOR4)} (A2)

RZ3Forward_Latency = DRegister + (2 × DCE2 + DOR3) + {(N − 2) × (DCE2 + DOR3)} + (DCE2 + DOR4) (A3)

RZ4Forward_Latency = DRegister + (2 × DCE2 + 3 × DOR2) + {(N − 1) × (DCE2 + 2 × DOR2)} (A4)

RZ5Forward_Latency = DRegister + (2 × DCE2 + 2 × DOR2) + {(N − 1) × (DCE2 + DOR2)} (A5)

RZ6Forward_Latency = DRegister + (N − 1) × DAO222 + (DCE2 + DOR2) (A6)

RZ7Forward_Latency = DRegister + (DCE2 + DOR2 + DAO21) + (N − 2) × DAO21 + (DCE2 + DOR2) (A7)

RZ8Forward_Latency = DRegister + 2 × DAO22 + (N − 2) × DAO22 + (DCE2 + DOR2) (A8)

RZ9Forward_Latency = DRegister + 2 × DAO22 + (N − 2) × DAO22 + (DAO22 + DCE2) (A9)

RZ10Forward_Latency = DRegister + (DAO22 + DAO21) + (N − 2) × DAO21 + (DAO22 + DCE2) (A10)

RZ11Forward_Latency = DRegister + (2 × DAND2 + DOR2 + DCE2) + {(N − 2) × (DOR2 + DAND2 + DCE2)} + (3 × DOR2 + DCE2) (A11)

RZ12Forward_Latency = DRegister + (2 × DAND2 + DOR2 + DBuffer) + {(N − 2) × (DOR2 + DAND2 + DBuffer)} + (3 × DOR2 + DCE2)
+ (log2N + 1) × DCE2; N being power of 2

(A12)

RZ13Forward_Latency = DRegister + (2 × DAND2 + DOR2 + DBuffer) + {(N − 2) × (DOR2 + DAND2 + DBuffer)} + (3 × DOR2 + 2 × DCE2) (A13)

RZ14Forward_Latency = DRegister + (DAO22 + DAO21) + (N − 2) × DAO21 + DAO22 (A14)
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(b) Theoretical Expressions of Reverse Latency of various IOM N-bit Asynchronous RCAs
corresponding to RtZ Handshaking

RZ1Reverse_Latency = DRegister + (3 × DCE2 + DOR2 + 2 × DOR3) + {(N − 1) × (2 × DCE2 + 2 × DOR3)} (A15)

RZ2Reverse_Latency = DRegister + (2 × DCE2 + DOR4) + {(N − 1) × (DCE2 + DOR4)} (A16)

RZ3Reverse_Latency = DRegister + (2 × DCE2 + DOR3) + {(N − 2) × (DCE2 + DOR3)} + (DCE2 + DOR4) (A17)

RZ4Reverse_Latency = DRegister + (2 × DCE2 + 3 × DOR2) + {(N − 1) × (DCE2 + 2 × DOR2)} (A18)

RZ5Reverse_Latency = DRegister + (2 × DCE2 + 2 × DOR2) + {(N − 1) × (DCE2 + DOR2)} (A19)

RZ6Reverse_Latency = DRegister + 2 × (DCE2 + DOR2) (A20)

RZ7Reverse_Latency = DRegister + (DCE2 + DOR2 + DAO21) + (DCE2 + DOR2) (A21)

RZ8Reverse_Latency = DRegister + 2 × DAO22 + (DCE2 + DOR2) (A22)

RZ9Reverse_Latency = DRegister + 2 × DAO22 + DCE2 (A23)

RZ10Reverse_Latency = DRegister + (DAND2 + DOR2) + (DAO22 + DCE2) (A24)

RZ11Reverse_Latency = DRegister + (2 × DAND2 + DOR2 + DCE2) + {(N − 2) × (DOR2 + DAND2 + DCE2)} + (3 × DOR2 + DCE2) (A25)

RZ12Reverse_Latency = DRegister + (2 × DAND2 + DOR2) + (log2N + 2) × DCE2; N being power of 2 (A26)

RZ13Reverse_Latency = DRegister + (2 × DAND2 + DOR2 + DBuffer) + 3 × DCE2 + DOR2 (A27)

RZ14Reverse_Latency = DRegister + 2 × DAO22 (A28)

(c) Theoretical Expressions of Forward Latency of various IOM N-bit Asynchronous RCAs
corresponding to RtO Handshaking

RO1Forward_Latency = DRegister + (3 × DCE2 + DAND2 + 2 × DAND3) + {(N − 1) × (2 × DCE2 + 2 × DAND3)} (A29)

RO2Forward_Latency = DRegister + (2 × DCE2 + DAND4) + {(N − 1) × (DCE2 + DAND4)} (A30)

RO3Forward_Latency = DRegister + (2 × DCE2 + DAND3) + {(N − 2) × (DCE2 + DAND3)} + (DCE2 + DAND4) (A31)

RO4Forward_Latency = DRegister + (2 × DCE2 + 3 × DAND2) + {(N − 1) × (DCE2 + 2 × DAND2)} (A32)

RO5Forward_Latency = DRegister + (2 × DCE2 + 2 × DAND2) + {(N − 1) × (DCE2 + DAND2)} (A33)

RO6Forward_Latency = DRegister + (N − 1) × DOA222 + (DCE2 + DAND2) (A34)

RO7Forward_Latency = DRegister + (DCE2 + DAND2 + DOA21) + (N − 2) × DOA21 + (DCE2 + DAND2) (A35)

RO8Forward_Latency = DRegister + 2 × DOA22 + (N − 2) × DOA22 + (DCE2 + DAND2) (A36)

RO9Forward_Latency = DRegister + 2 × DOA22 + (N − 2) × DOA22 + (DOA22 + DCE2) (A37)

RO10Forward_Latency = DRegister + (DOA22 + DOA21) + (N − 2) × DOA21 + (DOA22 + DCE2) (A38)
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RO11Forward_Latency = DRegister + (2 × DOR2 + DAND2 + DCE2) + {(N − 2) × (DAND2 + DOR2 + DCE2)} + (3 × DAND2 + DCE2) (A39)

RO12Forward_Latency = DRegister + (2 × DOR2 + DAND2 + DBuffer) + {(N − 2) × (DAND2 + DOR2 + DBuffer)} + (3 × DAND2 + DCE2)
+ (log2N + 1) × DCE2; N being power of 2

(A40)

RO13Forward_Latency = DRegister + (2 × DOR2 + DAND2 + DBuffer) + {(N − 2) × (DAND2 + DOR2 + DBuffer)} + (3 × DAND2 + 2 × DCE2) (A41)

RO14Forward_Latency = DRegister + (DOA22 + DOA21) + (N − 2) × DOA21 + DOA22 (A42)

(d) Theoretical Expressions of Reverse Latency of various IOM N-bit Asynchronous RCAs
Corresponding to RtO Handshaking

RO1Reverse_Latency = DRegister + (3 × DCE2 + DAND2 + 2 × DAND3) + {(N − 1) × (2 × DCE2 + 2 × DAND3)} (A43)

RO2Reverse_Latency = DRegister + (2 × DCE2 + DAND4) + {(N − 1) × (DCE2 + DAND4)} (A44)

RO3Reverse_Latency = DRegister + (2 × DCE2 + DAND3) + {(N − 2) × (DCE2 + DAND3)} + (DCE2 + DAND4) (A45)

RO4Reverse_Latency = DRegister + (2 × DCE2 + 3 × DAND2) + {(N − 1) × (DCE2 + 2 × DAND2)} (A46)

RO5Reverse_Latency = DRegister + (2 × DCE2 + 2 × DAND2) + {(N − 1) × (DCE2 + DAND2)} (A47)

RO6Reverse_Latency = DRegister + 2 × (DCE2 + DAND2) (A48)

RO7Reverse_Latency = DRegister + (DCE2 + DAND2 + DOA21) + (DCE2 + DAND2) (A49)

RO8Reverse_Latency = DRegister + 2 × DOA22 + (DCE2 + DAND2) (A50)

RO9Reverse_Latency = DRegister + 2 × DOA22 + DCE2 (A51)

RO10Reverse_Latency = DRegister + (DOR2 + DOR2) + (DOA22 + DCE2) (A52)

RO11Reverse_Latency = DRegister + (2 × DOR2 + DAND2 + DCE2) + {(N − 2) × (DAND2 + DOR2 + DCE2)} + (3 × DAND2 + DCE2) (A53)

RO12Reverse_Latency = DRegister + (2 × DOR2 + DAND2) + (log2N + 2) × DCE2; N being power of 2 (A54)

RO13Reverse_Latency = DRegister + (2 × DOR2 + DAND2 + DBuffer) + 3 × DCE2 + DAND2 (A55)

RO14Reverse_Latency = DRegister + 2 × DOA22 (A56)
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