
Citation: Bibi, A.; Sampedro, G.A.;

Almadhor, A.; Javed, A.R.; Kim, T.-h.

A Hypertuned Lightweight and

Scalable LSTM Model for Hybrid

Network Intrusion Detection.

Technologies 2023, 11, 121. https://

doi.org/10.3390/technologies11050121

Academic Editors: Mohammed

Mahmoud and Lipo Wang

Received: 4 June 2023

Revised: 26 August 2023

Accepted: 5 September 2023

Published: 7 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

A Hypertuned Lightweight and Scalable LSTM Model for
Hybrid Network Intrusion Detection
Aysha Bibi 1, Gabriel Avelino Sampedro 2,3, Ahmad Almadhor 4 , Abdul Rehman Javed 5 and Tai-hoon Kim 6,*

1 Department of Cyber Security, Air University, Islamabad 44000, Pakistan
2 Faculty of Information and Communication Studies, University of the Philippines Open University,

Los Baños 4031, Philippines
3 College of Computer Studies, De La Salle University, 2401 Taft Ave., Malate,

Manila 1004, Philippines
4 Department of Computer Engineering and Networks, College of Computer and Information Sciences,

Jouf University, Sakaka 72388, Saudi Arabia
5 Department of Electrical and Computer Engineering, Lebanese American University,

Byblos P.O. Box 36/S-12, Lebanon
6 School of Electrical and Computer Engineering, Yeosu Campus, Chonnam National University,

50, Daehak-ro, Yeosu-si 59626, Jeollanam-do, Republic of Korea
* Correspondence: taihoonn@chonnam.ac.kr

Abstract: Given the increasing frequency of network attacks, there is an urgent need for more effective
network security measures. While traditional approaches such as firewalls and data encryption have
been implemented, there is still room for improvement in their effectiveness. To effectively address
this concern, it is essential to integrate Artificial Intelligence (AI)-based solutions into historical
methods. However, AI-driven approaches often encounter challenges, including lower detection
rates and the complexity of feature engineering requirements. Finding solutions to overcome these
hurdles is critical for enhancing the effectiveness of intrusion detection systems. This research
paper introduces a deep learning-based approach for network intrusion detection to overcome
these challenges. The proposed approach utilizes various classification algorithms, including the
AutoEncoder (AE), Long-short-term-memory (LSTM), Multi-Layer Perceptron (MLP), Linear Support
Vector Machine (L-SVM), Quantum Support Vector Machine (Q-SVM), Linear Discriminant Analysis
(LDA), and Quadratic Discriminant Analysis (QDA). To validate the effectiveness of the proposed
approach, three datasets, namely IOT23, CICIDS2017, and NSL KDD, are used for experimentation.
The results demonstrate impressive accuracy, particularly with the LSTM algorithm, achieving a
97.7% accuracy rate on the NSL KDD dataset, 99% accuracy rate on the CICIDS2017 dataset, and 98.7%
accuracy on the IOT23 dataset. These findings highlight the potential of deep learning algorithms in
enhancing network intrusion detection. By providing network administrators with robust security
measures for accurate and timely intrusion detection, the proposed approach contributes to network
safety and helps mitigate the impact of network attacks.

Keywords: deep learning; machine learning; Long-short-term-memory (LSTM); cyberattacks;
network intrusion detection; cyber security

1. Introduction

Due to expeditious growth in computer technology, individuals all over the globe
are adopting more internet services than ever [1–3]. Furthermore, the diversity of
cyberattacks has increased due to increased internet services [4–7]. For example, network
worms, malevolent spying, and aggressive assaults seriously threaten people’s data
security and physical safety [8]. As a result, data security and security protocols have
become critical for both people and society [9–12]. Firewalls are extensively used and
frequently installed as a fundamental security measure. However, it no longer remains
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appropriate and requires strong security (e.g., governmental entities, military assets,
etc.) [13–15] owing to the difficulties of human setup and the latency for new forms of
assaults. Network security researchers have proposed a new approach for identifying
and addressing anomalous behavior through intrusion detection systems (IDSs) to
combat these threats [1].

Annually, breaches in IT networks cost trillions of dollars, which is predicted to climb
in the future [16]. As a response, cybersecurity has been a primary focus in recent years.
Monitoring and analyzing network traffic data is crucial for recognizing potential attack
patterns [17–19]. Therefore, in this scenario, firms and IT organizations worldwide have
been spending on data science to build increasingly sophisticated Intrusion Detection
Systems (IDS) to stop hostile attacks and ensure greater cybersecurity [20,21]. A collection
of approaches from computers, statistics, and information and technology, such as Machine
Learning, are included in this research. Due to the massive heterogeneous data generated
by numerous sources, traditional data analytics and machine learning approaches could
be more valuable and efficient in dealing with such security and privacy concerns [22–25].
Furthermore, novel technologies such as federated learning are helping to preserve the
privacy of users in various environmental setting settings [26–29]. Federated learning has
been used for network data security [4,30], healthcare data security [31], game theory [32],
vehicular data [33,34], and smart city applications [35]. Studies have found that data
poisoning attacks and other cyberattacks can also compromise this technique [36–39].
Furthermore, traditional machine learning approaches have a limited processing complexity
and need help discovering complicated non-linear relationships in large datasets.

As a result, to overcome the above-mentioned restrictions and improve intrusion
detection performance, we integrate the classic data analysis and statistical approaches
with current breakthroughs in Machine learning. Deep Learning technologies are mainly
used to create more advanced security Intrusion Detection Systems (IDS) [40]. A deep
learning system is suggested in this paper to distinguish between regular and abnormal
network actions. Data processing, feature extraction, and classification were the primary
components presented in the suggested framework.

Conversely, an auto-encoder deep classifier is presented in the classification algorithm
to distinguish distinct dataset groups. Binary and multi-classification are the two types of
classification employed. The binary class has two labels: normal and abnormal, whereas the
multi-classification includes five labels: Denial of Service (DoS), Normal, Probing (Probe),
Root to Local (R2L), and User to Root(U2R). DoS attacks have included those that force a
computer to slow down or close down by delivering more data to the server than the host
can manage. DoS attacks disrupt lawful network traffic or the accessibility of services. R2L
attacks have included those that allow unauthorized local access to a device by delivering
misleading information to the host. U2R attacks include those that grant root privileges. In
this example, the attacker discovers internal weaknesses and regularly utilizes the device.
AE, LSTM, and other machine learning classifiers such as MLP, L-SVM, Q-SVM, LDA, and
QDA are employed.

Contribution: This research has made several significant contributions, including:

• Development of a novel intrusion detection system (IDS) that leverages data analytics
and deep learning technologies. The proposed model represents a significant intru-
sion detection advancement and contributes to network security in commercial and
industrial settings.

• The developed system can accurately distinguish a wide range of cyberattacks. This
achievement is particularly noteworthy as accurately identifying and categorizing
cyber threats is critical for effective network security.

• The proposed approach utilizes various classification algorithms, including the Au-
toEncoder (AE), Long-short-term-memory (LSTM), Multi-Layer Perceptron (MLP),
Linear Support Vector Machine (L-SVM), Quantum Support Vector Machine (Q-SVM),
Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA).
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• To validate the effectiveness of the proposed approach, three datasets, namely the
NSL KDD, CICIDS2017, and IOT23 datasets, are used for experimentation. The results
demonstrate impressive accuracy, particularly with the LSTM algorithm, achieving a
97.7% accuracy rate on the NSL KDD dataset, 99% accuracy rate on the CICIDS2017
dataset, and 98.7% accuracy on the latest IOT23 dataset.

• The research provides a comparative analysis demonstrating the superiority of the
proposed model in terms of accuracy and overall performance compared to various
existing models. This contribution helps advance intrusion detection by offering more
accurate and efficient solutions to a specific problem.

The paper comprises several sections, each focusing on a distinct aspect of the study.
Section 2 presents the relevant work to intrusion detection, while Section 3 demonstrates
the Proposed Approach. Section 4 covers the Experimental Settings, and Section 5 reports
the Results and Discussion. The paper is concluded in Section 6, which offers a summary
and recommendations for further research.

2. Literature Review

The authors in [41] used a support vector machine (SVM) and a genetic algorithm to
adjust the correctness of the Model by tweaking the SVM attributes’ selection, variables,
and weights. Tang et al. [42] introduced a deep neural network to detect intrusion and
software to define the network context. The NSL KDD dataset was used to train a tri-layer
neural network. Only six characteristics were employed, and only two-way differentiation
was used. The test findings showed a 75% accuracy rate.

Ahmin et al. [43] introduced a two-phase NIDS framework that detects network
assaults using numerous categorization approaches, including the REP Tree, JRip procedure,
and Forest PA strategy. The algorithm they used achieved an accuracy of 96.66% on the
CICIDS 2017 dataset. Faker et al. also created a geographically dispersed NIDS model
with a DNN and two ensemble approaches [44]. The framework was tested on the UNSW
NB15 and CICIDS2017 datasets. The authors of [45] proposed an NIDS architecture that
combines CNN and LSTM. They also used category weights to optimize the model training
phase, lowering the number of imbalanced instances in the data set used for training.
The suggested NIDS was tested on the CICIDS2017 data set comprising seven different
forms of network traffic and obtained an accuracy of 98.67% with a rate of false alarms
of roughly 0.47%. This NIDS, however, proved useless in detecting Heartbleed and SSH-
Patator attacks. Jiang et al. devised a NIDS approach that uses hybrid testing and a deep
hierarchical network [46] to overcome this issue. They also used one-side filtering to deal
with distortion on minority tags and fake minority oversampling to boost minority tag
sample sizes. This method can increase detection effectiveness on skewed datasets while
reducing training time. After refining the network properties, the authors retrieved spatial
features using CNN and temporal data using bilateral long short-term memory. The results
show that their suggested strategy surpasses previous studies.

The possibility of employing NIDS on IoT edge networks was proved in [47,48] by
implementing machine learning designs, Isolation Forest (iForest), and the Local Outlier
behavior Factor (LOF) on resource-constrained devices to detect network threats. Midi et al.
created Kalis, a network surveillance and management tool that detects fraudulent traffic
using signature-based and anomaly-based algorithms. However, Kalis has limitations,
such as routing assaults and the need for specialized detection modules, which can lead
to suboptimal detection performance. Similarly, in [49], a deep hierarchical model based
on CNN and Gated Recurrent Units (GRU) was developed to detect abnormal network
traffic at the packet level, achieving 99% accuracy with a processing rate of approximately
20,000 packets per second on three datasets. Additionally, other research has explored sub-
domains of cybersecurity, such as the work in [50] that investigated time-series anomaly
detection features and [51] that proposed a mutual authentication scheme with minimal
complexity and easy installation for resource-constrained devices.
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Xu et al. [52] created an IDS based on deep neural networks that successfully classified
data from the NSL-KDD sample. They did, though, use the Tenfold cross-validation
approach on the actual data to assess the implementation of the suggested approach. To
identify the classes in the NSL-KDD sample, Han et al. [53] suggested a small auto-encoder.
The researchers stated a 98% accuracy rate, although they sped up the experiment by
scrambling and reconstructing the essential information into numerous separate datasets.
Yin et al. [54] created an IDS based on a Recurrent Neural Network (RNN). The researchers
utilized the NSL KDD dataset as a reference and conducted binary and multi-classification,
with 83% and 81% accuracy percentages, respectively. The authors employed the NSL-KDD
dataset in their investigation and reported a multi-classification accuracy of 85%. Table 1
presents the previous relevant research summary.

Table 1. A C omprehensive Overview of Existing Research in the Field.

Author Year Algorithm Contribution Limitations

Shamsinejad et al. [55] 2017 k-Means
A K-MEANS clustering classifier
was proposed to enhance
detection accuracy

It only considers a single
feature for intrusion
detection, which may not
capture all relevant
information.

Sun et al. [41] 2018
SVM, and
Genetic
Algorithm

SVM features are optimized using a
genetic algorithm. It enables
selection parameters and weights to
be optimized

Lacks diversity, potentially
affecting the
generalizability of findings.

Xinqian et al. [56] 2019 Random Forest
Detected abnormal network
behavior using a multilevel random
forest model

Only perform experiment
on conventional machine
learning algorithms

Wang et al. [57] 2020 CNN and LSTM
To detect each attack type, a model
based on CNN and LSTM
is proposed

a small sample size and
limited generalizability of
the findings.

Cao et al. [58] 2022 CNN and GRU

Proposed a NIDS model using
CNN and GRU, with contributions
including feature selection, hybrid
sampling, and the introduction of
CNN, GRU, and attention
mechanisms to improve model
performance

Limited effectiveness in
detecting unknown attacks
and limited generalizability

Qazi et al. [59] 2023 CNN and RNN
To detect and classify malicious
traffic, analyzes existing
ML/DL techniques

Accessibility is limited by
the high-end hardware
used in the experiments

Mhawi et al. [60] 2022 Ensemble of ML
Classifiers

Provided improved NIDS with a
comparative analysis of different
techniques and classifiers.

Absence of control group,
self-reported data, and
limited generalizability.

3. Proposed Approach

Figure 1 shows the proposed architectural design of the system. Firstly, we pre-process
the data by data normalization using the standard scalar within the range of 0 and 1. Then,
we use one-hot encoding to transform category characteristics into numerical features.
Finally, the detection operation is evaluated using the classifiers mentioned above.
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Figure 1. Illustration of the proposed Model: framework diagram with key modules.

3.1. Dataset

Three datasets, NSL KDD [61], CICIDS2017, and IOT23, are utilized in this research.
The NSL KDD dataset is one of the common datasets used to assess the functioning of
intrusion detection systems (IDS), and it is utilized in this paper’s experimental data. It
comprises 125,973 traffic examples in the training set (KDD-Train) and 22,544 traffic data
in the test set (KDD-Test). There were seventeen more assault types in the test dataset
that were not included in the training dataset for classification. The NSL-KDD dataset has
forty-two-dimensional characteristics, one being a classification tag and the other being
feature identifiers. There are two types of classification labeling for binary classification:
normal and abnormal. The classification categories for multiclassification are Normal,
Denial of Service (DOS), Root to Local (R2L), User to Root (U2R), and Probing (probe). The
CICIDS2017 dataset is a collection of network traffic data used for detecting intrusions
and analyzing network behavior. It contains information about network connections, such
as the source and destination IP addresses, port numbers, protocols, packet sizes, and
communication durations. The dataset includes 79 features that help researchers and
analysts study network traffic patterns and identify potential security threats.

The IoT-23 [62] dataset, established in January 2020, offers real network traffic data
from IoT devices. It includes 20 malware instances and three benign IoT captures. The
dataset, funded by Avast Software, aids in developing IoT malware detection algorithms.
It encompasses 23 scenarios, 20 with malware-infected traffic executed on Raspberry Pi
devices and three with benign IoT traffic. This dataset provides valuable insights for IoT
research. It contains information about malicious and benign captured packets. The IoT-23
dataset employs specific labels to categorize network traffic. These include “Attack” for
exploiting vulnerabilities, “Benign” for harmless connections, “C&C” for Command and
Control server links, “DDoS” for Distributed Denial of Service flows, “FileDownload” for
downloading files, “HeartBeat” for C&C tracking, “Mirai” for Mirai botnet-like patterns,
“Okiru” for Okiru botnet-like behaviors, “PartOfAHorizontalPortScan” for horizontal port
scanning, and “Torii” for connections resembling the Torii botnet.

3.2. Pre-Processing

The datasets contain outliers or inconsistent values, and data pre-processing is nec-
essary for building a model. Our work comprises two components: the normalization of
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the data and one-hot encoding. Using the conventional scalar normalizing approach, the
numeric feature values were mapped into the numeric range 0 and 1. A sample’s standard
score is computed as it arises in Equation (1) [63]:

Z =
si − min(s)

max(s)− min(s)
(1)

where s = (s1, . . . , sn) and Z is the ith normalized data point. Three categorical elements
are present in the dataset (service, flag, and protocol type). We converted these category
data into numerical features using the one-hot-encoding approach. The z2 feature has three
properties. One hot encoding approach was used to convert them into binary data: [1,0,0],
[0,1,0], [0,0,1], respectively. Also transformed into one-hot-encoding matrices were the z3
and z4 attributes (service and flag).

3.3. Extraction of Features

In feature extraction, the goal is to reduce the dimensionality of the dataset while
retaining the most relevant information. The Pearson correlation matrix [64] is used for this
purpose as it helps identify the most correlated elements in the dataset. The coefficient of
correlation, which ranges from −1 to 1, quantifies the degree and trajectory of the linear
link between the two factors. Using the Pearson correlation matrix in our feature extraction
process, we identified the most correlated variables and reduced the dimensionality of
our dataset while retaining the most important information. This ultimately resulted in a
more efficient and effective analysis of our data. Its ability to identify the most correlated
variables, the Pearson correlation matrix, can also be used to identify potential outliers
or anomalies in the dataset. Outliers are data points that lie far away from the rest of the
data points and can significantly impact the analysis results. By identifying these outliers,
the Pearson correlation matrix can improve the accuracy and reliability of the analysis.
It is worth noting that using the Pearson correlation matrix assumes that the variables
in the dataset have a linear relationship. In cases where the variables have a nonlinear
relationship, other feature extraction methods, such as the principal component analysis
(PCA) or independent component analysis (ICA), may be more appropriate. Furthermore,
while feature extraction can be a powerful tool for reducing the dimensionality of the
dataset, it can also result in the loss of important information. Therefore, it is important to
carefully select the extracted features and ensure they are relevant to the analysis.

3.4. Classification

In our research, we leveraged three datasets, namely NSL KDD, CICIDS2017, and
IOT23, to evaluate the effectiveness of our proposed approach. The NSL KDD dataset
comprises two class categories: regular class labels and abnormal classes. For the five
class labels, including Denial of Service (DOS), Normal, Root to Local (R2L), and User to
Root (U2R), we employed two deep learning classifiers, namely LSTM and AE, along with
three other conventional KNN, L-SVM, LDA classifiers. Similarly, the CICIDS2017 dataset
consists of two class labels: Benign and Intrusion. We also applied the same approach to
this dataset, utilizing deep learning and conventional classifiers. The IOT23 dataset also
consists of two classes labels: Benign and Malicious.

Binary Classification: In binary classification, we change the attack labels into ‘NOR-
MAL’ and ‘ABNORMAL.’ First, we create the data frame with binary labels ‘NORMAL’
and ‘ABNORMAL’ and then encode the labels into 0 and 1. We have 53% of standard data
and 47% of abnormal labels in the NSL KDD dataset for binary classification. In abnormal
labels, we have four types of attacks. In CICIDS2017, we have 56% Intrusion and 43%
Benign labels for binary classification.

Multi Classification: In multi-classification, we use NSL KDD, where we have five class
tags: Normal, Denial of service (DoS), Probe, Root to Local (R2L), and User to Root (U2R).
First, we created a data frame for multi-class labels and then performed label encoding
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for multi-class such as 0, 1, 2, 3, 4. We have 53.46% normal, 36.46% DoS, 9.26% R2L, 0.79%
Probe, and 0.04% U2R labels in the dataset in the case of multi-classification.

3.4.1. Auto-Encoder (AE)

In an auto-encoder, the input and output dimensions are identical. It is an unsuper-
vised learning network [65]. It contains two modules: the first one is the encoder, and the
other is the decoder module. AE uses deep learning techniques to identify the maximum
accurate features from the input information while conserving as much information as
feasible. The encoder reduces the data size, which the decoder reconstructs into the source
data. We wanted to develop an auto-encoder that can reduce the dimensionality and boost
data resilience to familiarize with complicated network situations, which can accomplish
better data dimensionality reduction than previous dimensionality reduction approaches.
Auto-encoder architecture is given in Figure 2.

Figure 2. The architecture of Autoencoder [66].

3.4.2. Long Short-Term Memory Networks (LSTM)

LSTM [67,68] provides storage cells and cell states to solve the recurrent neural net-
work’s (RNNs) long-term reliance problem. LSTM systems are recurrent neural networks
that deal with instances where RNNs fail. A recurrent Neural Network (RNN) is a network
that operates on the current input while considering the previous output (feedback) and
keeping it for a short moment in its memory (short-term memory). The most common ap-
plications are speech processing, non-Markovian management, and music composition, to
name a few. However, RNNs have several drawbacks. Long short-term memories (LSTMs)
are used to overcome lengthy time gaps in some issues, and they can also handle noise,
dispersed representations, and continuous values. There is no requirement to preserve a
finite number of states from the beginning with LSTMs, as in the hidden Markov model.
The method teaches that input and output are biased, and other parameters are avail-
able with LSTMs. As a result, no precise modifications are required. The LSTM classifier
contains 50 neurons, a batch size of 5000, 100 epochs, and a sigmoid activation layer fpr
classification data.

3.4.3. Discriminant Analysis (DA)

The objective of the DA classifier is to keep dimensionality to a minimum while
ensuring sufficient class distinction. It accomplishes this by translating the dataset onto
a smaller space with maximal class separation and minimal diffusion of samples from a
similar class. It is a numerical approach used in machine learning.

3.4.4. Support Vector Machine (SVM)

SVM is a probabilistic learning theory-based approach. The optimum hyperplane
that gives the most separation across classes is found via SVM. A Support Vector Machine
classifier with L-SVM and Q-SVM is developed in this work.
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3.4.5. Multi-Layer Perceptron (MLP)

It is a feed-forward artificial neural network simulation that converts raw data sets
into a collection of relevant results. MLP and AE designs have the same architecture. The
MLP classifier contains one hidden layer, 50 neurons, and a sigmoid activation layer for
classification tasks.

4. Experimental Analysis and Result

All tests were performed on Google Colab using the Python language and the SK-learn
library for creating and modeling in this research. Different systems of measurement are
used to measure the implementation of the proposed work, such as precision in Equation (2),
recall in Equation (3), accuracy in Equation (4), and F-measure in Equation (5).

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

F-measure = 2 × Precision × Recall
Precision + Recall

(5)

where the True Positive (TP) is the number of abnormal instances accurately identified;
the number of instances accurately identified as normal is denoted by the True Negative
(TN). The amount of normal traffic patterns misclassified as abnormal is called the False
Positive (FP); the amount of anomalous traffic patterns misclassified as normal is called the
False Negative (FN). Precision is a measure of the accuracy of positive predictions, while
recall is a measure of the completeness of positive predictions. The F1 score combines both
precision and recall into a single metric.

4.1. Evaluation and Results with NSL KDD

Two types of classification are used in this case, such as binary classification and mul-
ticlassification, to check the performance of the proposed system. In binary classification,
two classes are there, such as normal and abnormal, and in the case of multi-class, five
classes are present in the dataset.

Table 2 shows the accuracy of binary and multi-classification. For binary classification,
Long Short-term Memory (LSTM) and MLP beat all other classifiers with an accuracy of
97.7%. In the case of Multi-classification, MLP and AE outperform with an accuracy of
97%.This could be attributed to the ability of LSTM to capture long-term dependencies and
patterns in sequential data, a characteristic of network intrusion detection data. Addition-
ally, MLP is a versatile and powerful feed-forward neural network that can learn complex
non-linear relationships between input and output data.

The results of binary classification with NSL KDD dataset studies are shown in Table 3.
The LSTM and MLP classifiers detected the normal category with great precision, whereas
the Q-SVM and QDA classifiers detected the abnormal category with a precision of 0.99. In
contrast to other classifiers, the precision of the QDA classifier is as low as 0.63.This could
be due to the assumption of QDA that each class follows a Gaussian distribution with a
different covariance matrix. However, this assumption might not hold in practice for all
classes, leading to a lower precision in some cases. In contrast, other classifiers like L-SVM
and Q-SVM have a more flexible decision boundary, which can adapt better to the complex
distribution of data points, leading to higher precision. The Confusion matrix of the LSTM
classifier for binary classification is shown in Figure 3a. The Accuracy vs. Epoch and the
Loss vs. Epoch of the LSTM classifier are shown in Figure 3b,c.
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Table 2. Accuracy Comparison of Proposed Models for Binary and Multi-Classification.

Models Binary Classification Multi Classification

LSTM 97.7% 95%

MLP 97.7% 97%

L-SVM 96.6% 95%

Q-SVM 95.7% 92%

AE 91% 97%

LDA 96.7% 93%

QDA 68% 44%

Table 3. Evaluation of Proposed Model’s Precision in Binary Classification.

Label LSTM AE MLP L-SVM Q-SVM LDA QDA

Normal 0.97 0.80 0.97 0.96 0.93 0.96 0.63

Abnormal 0.96 0.88 0.98 0.97 0.99 0.97 0.99

(a) (b)

(c)

Figure 3. Illustration of the outcomes achieved by LSTM Classifier. (a) Confusion Matrix of LSTM for
Binary Classification; (b) LSTM Classifier Accuracy vs. Epochs for Binary Classification; (c) LSTM
Classifier Loss vs. Epochs for Binary Classification.

With a recall of 0.99, L-SVM and QDA exceed all other classifiers regarding the Recall
because these classifiers are based on the principles of the maximum margin and quadratic
discriminant analysis, respectively. These techniques have been shown to work well with
imbalanced datasets, such as the NSL-KDD dataset used in this study, which contains a
small number of positive instances relative to negative instances. In the case of L-SVM, it
is a powerful binary classifier that tries to maximize the margin between the positive and



Technologies 2023, 11, 121 10 of 19

negative instances. This makes it less susceptible to overfitting and can help it perform well
on imbalanced datasets. On the other hand, QDA is a probabilistic classifier that estimates
the probability density function of each class. By modeling the distribution of each class
separately, QDA can capture the differences between the two classes more accurately and
provide better performance on imbalanced datasets. Q-SVM beat L-SVM in detecting
the normal class using SVM classifiers. Regarding discriminant analysis, QDA surpassed
LDA regarding the normal sample Recall (0.99). The LSTM classifier better recognized
anomalous classes (Recall of 97%) as shown in Table 4.

Table 4. Evaluation of Proposed Model’s Recall in Binary Classification.

Label LSTM AE MLP L-SVM Q-SVM LDA QDA

Normal 0.98 0.97 0.98 0.97 0.99 0.98 0.99

Abnormal 0.97 0.96 0.96 0.96 0.92 0.96 0.33

The F1 score of the LSTM, MLP, and LDA classifiers in classifying the normal category
was 97%. Compared to Q-SVM, the L-SVM f1-score is higher (97%). Regarding detecting
standard samples, the LDA classifier outperformed the QDA. With a score of 99%, LSTM
surpassed all other classifiers in recognizing abnormal samples because it is a type of RNN
well-suited for sequence data processing. In the NSL-KDD dataset, abnormal samples
can be viewed as network traffic sequences. LSTM models are designed to remember
past events and process input sequences time-dependent, making them ideal for detecting
patterns in sequence data. The LSTM model can learn complex patterns in the sequence of
network traffic and accurately identify abnormal samples with a recall of 97%. The LSTM
model can also detect the normal category with high precision, making it an effective binary
classifier for the NSL-KDD dataset. LSTM surpassed all other classifiers in recognizing
abnormal samples shown in Table 5.

Table 5. F1-Score Analysis of the Proposed Model for Binary Classification.

Label LSTM AE MLP L-SVM Q-SVM LDA QDA

Normal 0.97 0.88 0.97 0.97 0.96 0.97 0.77

Abnormal 0.99 0.92 0.98 0.96 0.95 0.96 0.50

The deep L-SVM, Q-SVM, LDA, QDA, and MLP classifiers were compared similarly
to the binary classification study. Table 6 shows that AE and MLP classifiers outperformed
in the case of precision in all other classifiers. The confusion matrix, Accuracy vs. Epoch,
and Loss vs. Epoch of the MLP classifier are given in Figure 4a–c. Recall, and f1-Score AE
outperformed all other classifiers as shown in Tables 7 and 8.

Table 6. Precision of Proposed Model for Multi-Class Classification.

Label AE MLP LSTM L-SVM Q-SVM LDA QDA

Normal 0.98 0.98 0.97 0.97 0.91 0.97 0.49

DoS 0.97 0.96 0.96 0.95 0.96 0.94 0.99

Probe 0.88 0.92 0.88 0.86 0.96 0.88 0.97

R2L 0.78 0.83 0.69 0.61 0.00 0.31 0.03

U2R 0.01 0.00 0.03 0.00 0.00 0.03 0.00
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The standard system was used to assess the proposed IDS features and efficacy. The
statistical analysis was used to extract the most correlated features and was fed into deep
(AE, LSTM) and ML techniques and MLP, L-SVM, Q-SVM, LDA, and QDA. Moreover, the
experimental results demonstrated that the MLP classifier attained the most acceptable
performance for binary classification (97.7%) and multi-classification (97%) compared with
L-SVM, Q-SVM, LDA, and QDA classifiers. The AE classifier also accomplished a high
accuracy of 98% compared to the LSTM classifier.

Table 9 compares the proposed Model’s metrics to those of various reference models.
The suggested approach outperforms other models in terms of overall performance. The
suggested Model exceeds its comparable counterparts by 97.7%. The percentages are 97%,
98%, and 97%, respectively.

(a) (b)

(c)

Figure 4. Illustration of the outcomes achieved by the MLP Classifier. (a) Confusion Matrix of MLP
for Multi classification; (b) Accuracy vs. Epochs of MLP Classifier; (c) Loss vs. Epochs of MLP
Classifier.

Table 7. Proposed Model’s Recall for Multi Classification.

Label AE MLP LSTM L-SVM Q-SVM LDA QDA

Normal 0.98 0.97 0.97 0.98 1.00 0.95 0.53

DoS 0.97 0.96 0.93 0.96 0.94 0.96 0.41

Probe 0.87 0.93 0.81 0.79 0.61 0.73 0.06

R2L 0.81 0.88 0.74 0.60 0.00 0.89 1.00

U2R 0.02 0.00 0.04 0.00 0.00 0.47 0.00
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Table 8. Proposed Model’s F1-Score for Multi Classification.

Label AE MLP LSTM L-SVM Q-SVM LDA QDA

Normal 0.98 0.95 0.96 0.98 0.95 0.96 0.51

DoS 0.92 0.93 0.90 0.96 0.95 0.95 0.58

Probe 0.91 0.88 0.83 0.82 0.74 0.80 0.11

R2L 0.79 0.81 0.81 0.61 0.00 0.52 0.06

U2R 0.04 0.00 0.05 0.00 0.00 0.06 0.00

Table 9. Performance Comparison of the Proposed Model against Existing Models.

Models Accuracy Precision Recall F1-Score

SVM-IDS [69] 82% - - -

CNN [70] 80% - - -

TES-IDS [71] 85% 88% 86% 85%

Autoencoder [72] 84% 87% 80% 81%

CNN & BiLSTM [46] 83% 85% 84% 85%

DLNID [73] 90% 86% 93% 89%

Proposed Model 97.7% 97% 98% 97%

4.2. Evaluation and Results with CICIDS2017

Table 10 shows the accuracy of the binary classification. LSTM beat all other classifiers
with an accuracy of 99.2%. Due to several factors, LSVM, KNN, and QDA also perform
better on the CICIDS2017 dataset for classification. The dataset’s characteristics, such as
the linear separability and class distribution, may align well with the decision boundaries
formed by LSVM and QDA. KNN’s ability to capture local characteristics in the data
could contribute to its effectiveness. Moreover, the suitability of these algorithms for
high-dimensional datasets and non-linear decision boundaries and their ability to leverage
informative features may also contribute to their superior performance.

Table 10. Accuracy Comparison of Proposed Models for Binary Classification.

Models Accuracy Precision Recall F1-Score

LSTM 99.2% 99% 99% 99%

AE 98.5% 98% 98% 98%

MLP 94.6% 94% 94% 96%

L-SVM 99% 98% 98% 98%

Q-SVM 64% 64% 64% 63%

KNN 99% 98% 99% 98%

LDA 96% 96% 96% 96%

QDA 99% 99% 98% 98%

The LSTM classifier detected the benign category with great accuracy, whereas the
KNN and QDA classifiers detected the Intrusion category with an accuracy of 99%. In
contrast to other classifiers, the accuracy of the Q-SVM classifier is as low as 0.64. This
could be due to the assumption of Q-SVM that it relies on quantum algorithms and
quantum computing resources. The Confusion matrix of the LSTM, KNN, QDA, and
L-SVM classifiers for binary classification is shown in Figure 5a,d,e,f.
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(a) Confusion Matrix of LSTM Classifier (b) Accuracy vs. Epoch of LSTM Classifier

(c) Loss vs. Epoch of LSTM Classifier (d) Confusion Matrix of KNN Classifier

(e) Confusion Matrix of L-SVM Classifier (f) Confusion Matrix of QDA Classifier

Figure 5. Illustration of the outcomes achieved by Machine and Deep learning Classifiers.

4.3. Evaluation and Results with IOT23 Dataset

Table 11 presents the binary classification accuracy outcomes. Notably, LSTM excels
over alternative classifiers, boasting an impressive 98.7% accuracy. Further, LSVM, AE,
and QDA also showcase improved performances on the IOT23 dataset for classification,
attributed to various contributing factors. The superior performance of LSTM on the IOT23
dataset is attributed to its ability to capture intricate temporal dependencies and patterns
within the IoT network traffic data, thus enabling more accurate predictions in this context.

In Table 11, the results for the binary classification accuracy are highlighted. Remark-
ably, LSTM stands out among the alternate classifiers, achieving a remarkable accuracy
of 98.7%. Moreover, LSVM, AE, and QDA also exhibit enhanced performances when
classifying the IOT23 dataset, which can be attributed to multiple underlying factors. The
exceptional performance of LSTM on the IOT23 dataset can be attributed to its adeptness
in capturing complex temporal relationships and patterns within the network traffic data
of IoT devices, leading to more precise predictions in this specific context. The Confusion
matrix, Accuracy, and Loss diagram with the LSTM classifier for binary classification are
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shown in Figure 6a–c. Experimental results demonstrated that the LSTM classifier attained
the most acceptable performance for binary classification (99.2%).

Table 11. Accuracy Comparison of Proposed Models for Binary Classification.

MODELS Accuracy Precision Recall F1-Score

LSTM 98.7% 98% 98.2% 98%

AE 97.5% 97.5% 97% 98%

MLP 96% 96% 96% 96%

L-SVM 98% 98% 98% 98%

Q-SVM 78% 72% 72% 72%

LDA 96.5% 96.5% 96.5% 96.5%

QDA 97.5% 97% 97% 97%

(a) Confusion Matrix of LSTM Classifier (b) Accuracy vs. Epoch of LSTM Classifier

(c) Loss vs. Epoch of LSTM Classifier

Figure 6. Illustration of the outcomes achieved by LSTM Classifier on IOT23 dataset.

Table 12 compares the proposed Model’s metrics to those of various reference models.
The suggested approach outperforms other models in terms of overall performance. The
suggested Model exceeds its comparable counterparts by 99%. The percentages are 99%,
99.9%, and 99%, respectively.

Table 12. Performance Comparison of Proposed Model against Existing Models.

Models Accuracy Precision Recall F1-Score

Hierarchical-IDS [43] 96% - - -

CNN-LSTM [45] 98% - - -

Proposed Model 99.2% 99% 99% 99%
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5. Discussion

This study aimed to conduct a statistical investigation and develop a deep learning-
based Intrusion Detection System (IDS) technique for detecting network intrusions. To
achieve this, we utilized NSL KDD, CICIDS2017, and IOT23. The performances of various
machine learning and deep learning classifiers, including L-SVM, Q-SVM, LDA, QDA,
MLP, AE, and LSTM, were compared for binary and multi-classification tasks. Our analysis
revealed that the proposed approach outperformed the reference models regarding overall
performance on all datasets. Specifically, the LSTM classifier achieved the highest accuracy
of 99.2% for binary classification with the CICIDS2017 dataset, 98.7% accuracy with the
IOT23 dataset, and 97.7% for both binary classification and multi-classification tasks on
the NSL KDD dataset. Notably, the LSTM classifier demonstrated superior performance
in identifying abnormal samples from the NSL KDD dataset, with a recall of 97%. This
can be attributed to the LSTM’s ability to model non-linear associations between input
features and the target variable. With multiple layers of neurons, the LSTM classifier
effectively learns complex patterns in the data. On the other hand, the AE classifier, as
an unsupervised learning algorithm, performs dimensionality reduction by encoding
input data into a lower-dimensional space. The AE classifier can identify patterns and
anomalies by reconstructing the input data from the encoded representation. The excellent
performance of the LSTM classifier in recognizing abnormal samples can be attributed to its
ability to process input sequences in a time-dependent manner. Since the NSL KDD dataset
can be viewed as a sequence of network traffic, the LSTM classifier is designed to capture
temporal dependencies and effectively model complex patterns and correlations within the
sequence data. The L-SVM classifier also demonstrated a strong performance, achieving
an F1 score of 97% in classifying the normal category. Its strength lies in its capability to
maximize the margin between positive and negative instances, making it less susceptible
to overfitting and suitable for imbalanced datasets.

Conversely, the QDA classifier, which models the distribution of each class separately,
exhibited a superior performance in detecting the normal class, achieving a recall of 0.98.
QDA’s probabilistic nature allows it to estimate the probability density function of each
class, making it well-suited for imbalanced datasets where one class significantly outweighs
the other. The CIC-IDS2017 dataset, while potentially outdated in representing current
network traffic, remains a significant benchmark due to its widespread adoption and the
valuable insights it offers. Despite limitations, utilizing this dataset enables a comparison of
our proposed method against established approaches on a well-known platform, facilitating
meaningful performance evaluations. Acknowledging that network traffic evolves, this
dataset still serves as a foundational tool to assess the effectiveness of our approach.
Similarly, using the NSL-KDD dataset aims to demonstrate methodological evolution and
showcase our approach’s adaptability over time rather than implying incorrect assumptions.
Including results on the NSL-KDD dataset illustrates the performance progression in
varying network security contexts, offering insights into the field’s development and newer
techniques’ advantages on older datasets.

Moreover, our analysis extends to the latest network traffic dataset, IOT23, which
contains the most recent network attack captures. Our framework has been applied across
all three datasets, ranging from the older NSL-KDD dataset to the more contemporary
IOT23, ensuring a comprehensive assessment of its performance across diverse scenarios.
Performing experiments on both older and newer datasets serves a twofold purpose. Firstly,
it highlights the method’s robustness by demonstrating its adaptability to different eras
of network security challenges. Secondly, it provides insights into how the approach
performs on the latest network attack captures, thus showcasing its relevance and efficacy
in addressing the ever-evolving landscape of cybersecurity threats. In conclusion, the
findings of this study demonstrate the effectiveness of the proposed deep learning-based
IDS technique in detecting network intrusions. The LSTM classifier, in particular, showcases
remarkable performance in recognizing abnormal samples, while the L-SVM and QDA
classifiers also exhibit strong capabilities in classifying the normal category.
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6. Conclusions

This paper proposes a novel approach combining statistical analysis and deep learning
techniques for intrusion detection in network security. The model demonstrates significant
progress in detecting intrusions in commercial and industrial networks. The effectiveness
of the proposed IDS was evaluated using conventional measurement systems. A statistical
analysis was utilized to extract highly correlated features, which were fed into deep learning
models like AE, LSTM, and traditional machine learning techniques. The experiments
were conducted on two datasets: NSL KDD, CICIDS2017, and IOT23, considering binary
and multi-classification scenarios. The results showed exceptional accuracy, with a 99%
accuracy achieved on the CICIDS2017 dataset, 98.7% accuracy on the IOT23 dataset, and
98% accuracy achieved on the NSL KDD dataset with the LSTM classifier. In future work,
one can extend the research by applying deep learning classifiers to detect intrusions in
additional datasets available online and in real-time.
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