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Abstract: Rwandan coffee holds significant importance and immense value within the realm of
agriculture, serving as a vital and valuable commodity. Additionally, coffee plays a pivotal role
in generating foreign exchange for numerous developing nations. However, the coffee plant is
vulnerable to pests and diseases weakening production. Farmers in cooperation with experts use
manual methods to detect diseases resulting in human errors. With the rapid improvements in
deep learning methods, it is possible to detect and recognize plan diseases to support crop yield
improvement. Therefore, it is an essential task to develop an efficient method for intelligently
detecting, identifying, and predicting coffee leaf diseases. This study aims to build the Rwandan
coffee plant dataset, with the occurrence of coffee rust, miner, and red spider mites identified to
be the most popular due to their geographical situations. From the collected coffee leaves dataset
of 37,939 images, the preprocessing, along with modeling used five deep learning models such as
InceptionV3, ResNet50, Xception, VGG16, and DenseNet. The training, validation, and testing ratio
is 80%, 10%, and 10%, respectively, with a maximum of 10 epochs. The comparative analysis of the
models’ performances was investigated to select the best for future portable use. The experiment
proved the DenseNet model to be the best with an accuracy of 99.57%. The efficiency of the suggested
method is validated through an unbiased evaluation when compared to existing approaches with
different metrics.

Keywords: coffee leaf diseases; arabica coffee; deep learning; VGG16; DenseNet

1. Introduction

In Rwanda, agriculture accounts for a third of the GDP (gross domestic product) and
makes up most jobs (approximately 80%) [1]. Additionally, a significant source of export
value, particularly from the production of tea and coffee, accounts for more than 20% of
Rwanda’s overall exports by value across all sectors: more than $100 million/year [2].
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Coffee is a $60 million industry in Rwanda that is primarily supplied by small-holder
growers in the country’s several agroecological zones. Along with the supply chain, the
estimated 350,000 farmers whose livelihoods depend on growing coffee face jeopardy [3].
Therefore, the government has a top priority for the future development of this cash crop
for export. Among the varieties of coffee plants in Rwanda, coffee arabica is the one shown
promising resistance to climate change.

Small-scale farmers are primarily responsible for cultivating coffee, utilizing farming
methods that involve fragmented land and numerous small plots spread across hilly areas.
Typically, farmers own around two to six plots, depending on the number of coffee trees in
each plot. Due to the scattered nature of these plots and the distance between them and
the farmers’ homes, the frequency of plant and land management activities is reduced.
In addition, the mix-up of different crops with coffee along with separate small farms
contributes to the spread of coffee leaf diseases. To rearrange land usage patterns, the
Ministry of Agriculture and Animal Resources is executing a policy for land consolidation.
Apart from the land management policies, the local farmers working unprofessionally
are recommended to work cooperatively. This exercise helps them to get support from
government agencies, such as training, and other inputs impacting the high quality of
coffee production [3].

It has been reported that one of the crops at risk from climate change and the spread of
disease/pest infections is coffee [4]. Furthermore, these circumstances arise from a variety of
fungal species and other causes. The disease-causing agents, present on the leaves or other
parts of the tree, are highly transmissible and can rapidly spread if not promptly addressed.
According to the study, approximately 10% of the global plant economy is currently being
impacted by the destructive consequences of plant infections and infestations [5].

Coffee farmers in Rwanda, like those in other regions, face continuous threats from
various pests and diseases [6]. While some of these problems are minor and have a limited
impact on crop yield and quality, others, such as coffee berry disease, coffee leaf rust, and
coffee wilt disease (tracheomycosis), pose significant dangers. These serious diseases can
not only affect individual farmers, but also have a major economic impact on countries
or regions heavily reliant on coffee for foreign exchange earnings [7]. For instance, coffee
wilt disease has been present in Africa since the 1920s, but since the 1990s, there have
been widespread and recurring outbreaks. This results in substantial losses in countries
such as Uganda, where over 14 million coffee trees have been destroyed, as well as in the
Democratic Republic of Congo [8,9]. Once this disease takes hold on a farm, it becomes
extremely challenging to control. Since coffee is a perennial crop, certain pests and diseases
can survive and multiply throughout the growing season, continuously affecting the coffee
plants, although their populations and impact may vary over time [10]. Other pests and
diseases may only attack coffee during periods when conditions are favorable. Regardless,
the damage caused by these pests and diseases can be significant, affecting both crop yield
and quality [11].

Some pests and diseases, such as the white coffee stem borer, coffee wilt disease,
parasitic nematodes, and root mealy bugs, could kill coffee plants outright. On the other
hand, pests, such as the coffee berry borer, green scales, leaf rust, and brown eye spot, may
not directly kill the plants but can severely hinder their growth by causing defoliation,
ultimately impacting the quality of the coffee berries [12].

The process of diagnosing plant diseases is complex and entails tasks such as analyzing
symptoms, recognizing patterns, and conducting various tests on leaves. These procedures
require significant time, resources, and skills to complete [13]. In many instances, an
incorrect diagnosis can result in plants developing immunity or reduced susceptibility to
treatment. The intricacy of plant disease diagnosis has led to a decrease in both the quantity
and quality of crop yields among farmers [14].

The drawn-out process frequently results in a widespread infection with significant
losses [15]. Coffee is one of the most well-known drinks in the world and might go
extinct without conservation, monitoring, and seed preservation measures, according
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to scientists. Global warming, deforestation, illness, and pests are all factors in the
decline [16]. By implementing effective crop protection systems, early monitoring and
accurate diagnosis of crop diseases can be achieved, which, in turn, can help prevent
losses in production quality.

Recognizing various types of coffee plant diseases is of utmost significance and is
deemed a critical concern. Timely detection of coffee plant diseases can lead to improved
decision-making in agricultural production management. Infected coffee plants typically
exhibit noticeable marks or spots on their stems, fruits, leaves, or flowers. Importantly,
each infection and pest infestation leaf have distinct patterns that can be utilized for
diagnosing abnormalities. The identification of plant diseases necessitates expertise and
human resources. Moreover, the process of manually examining and identifying the type
of plant infection is subjective and time-consuming. Additionally, there is a possibility
that the disease identified by farmers or experts could be misleading at times [17]. As a
result, the use of an inappropriate pesticide or treatment might occur during the evaluation
of plant diseases, ultimately leading to a decline in crop quality and potentially causing
environmental pollution.

The application of computer vision and artificial intelligence (AI) technologies has been
expressed as instrumental tools in combating plant diseases [18–20]. There are multiple
methods available to address the problem of detecting plant infections with the help of
technologies, as the initial signs of infection manifest as various spots and patterns on
leaves [21]. The introduction of machine learning and deep learning techniques has led to
significant advancements in plant disease recognition, revolutionizing research in this field.
These techniques have facilitated automatic classification and feature extraction, enabling
the representation of original image characteristics. Moreover, the availability of datasets,
GPU machines, and software supporting complex deep learning architectures with reduced
complexity has made the transition from traditional methods to deep learning platforms
feasible. CNNs have particularly gained widespread attention due to their remarkable
capabilities in recognition and classification. CNNs excel in extracting intricate low-level
features from images, making them a preferred choice for replacing traditional methods in
automated plant disease recognition and yielding improved outcomes [22].

The research problem is based on the numerous efforts of government agencies and
farmers in the use of manual methods to detect coffee diseases. In addition, a huge monetary
effort is used to train farmers in coffee disease identification. However, the trained methods
result in wrong findings [23]. To remedy the detected diseases, they may use the wrong
pesticides, which do not treat the matter but affect environmental degradation.

This study aimed to develop and train five deep learning models on the collected
dataset of coffee arabica leaves and determine the best model yielding the best results by
leveraging pre-trained models and transferring knowledge approaches. The objective was
to identify the most effective transfer learning technique for achieving accurate classification
and optimal recognition accuracy in a multi-class coffee leaf disease context. The main
contributions of this study are (1) to assess, collect, and classify the coffee leaves dataset in
the Rwandan context; (2) to apply different data preprocessing techniques on the labeled
data set; and (3) to determine the best transfer learning technique for achieving the most
accurate classification and optimal recognition on multi-class plant diseases.

The remaining sections of the paper are structured as follows. Section 2 details the related
works of this research. Section 3 outlines the materials and methods employed in this study.
The findings and results are presented in Section 4. Section 5 delves into the discussion of the
various experiments conducted. Finally, in Section 6, the research concludes by summarizing
the key points and outlining potential future directions for research.

2. Related Works

Several methods have been suggested by researchers to achieve the precise detection
and classification of plant infections. Some of these methods employ conventional im-
age processing techniques that involve manual feature extraction and segmentation [24].
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Among many methods, the use of K-means clustering for image leaf segmentation by
extracting infected regions and later performing classification using a multi-class support
vector machine is investigated [25]. The probabilistic neural network method was used
to extract methodologies with statistical features on cucumber plant infection [26]. The
preprocessing of images, from red, green, and blue (RGB) conversion to gray; HE; K-means
clustering; and contour tracing is computed, and the results are used for classifications
using support vector machine (SVM), K-NN, and convolutional neural networks (CNN).
The experiment was carried out on tomato leaf infection detection [27] and grapes [28].
The automatic detection of leaf damage on coffee leaves has been conducted using image
segmentation with Fuzzy C-means clustering applied to the V channel of the YUV color
space image [29]. The automatic identification and classification of plant diseases and
pests as well as the severity assessment, specifically focusing on coffee leaves in Brazil,
is investigated. They targeted two specific issues: leaf rust caused by Hemileia vastatrix
and leaf miner caused by Leucoptera coffee. Various image processing techniques were
employed, including image segmentation using the K-means algorithm, the Otsu method,
and the iterative threshold method, performed in the YCgCr color space. Texture and color
attributes were calculated for feature extraction. For classification purposes, an artificial
neural network trained with backpropagation and an extreme learning machine was uti-
lized. The images utilized were captured using an ASUS Zenfone 2 smartphone (ZE551ML)
with a resolution of 10 Megapixels (4096 × 2304 pixels). The database used in the study
consisted of 690 images [30].

Moreover, the existing models heavily depend on manual feature engineering
techniques, classification methods, and spot segmentation. However, with the advent
of artificial intelligence in the field of computer vision, researchers have increasingly
utilized machine learning [31] and deep learning [32] models to improve recognition
accuracy significantly.

A CNN-based predictive model for classification and image processing in paddy
plants is proposed [33]. Similarly, the utilization of a CNN for disease detection in paddy
fields using convolutional neural networks with four to six layers to classify various plant
species is elaborated on [34]. The application of CNN with a transfer learning approach to
classify, recognize, and segment different plant diseases is tested [35]. Although CNNs have
been extensively used with promising results, there is a lack of diversity in the datasets
employed [36]. To achieve the best outcomes, training deep learning models with larger
and more diverse datasets is crucial. While previous studies have demonstrated significant
achievements, there is still room for improvement in terms of dataset diversity, particularly
in capturing realistic images from actual agricultural fields with diverse backgrounds.

Deep-learning models based on CNNs have gained popularity in image-based research
due to their effectiveness in learning intricate low-level features from images. However,
training deep CNN layers can be computationally intensive and challenging. To address
these issues, researchers have proposed transfer learning-based models [37–39]. These
models leverage pre-trained networks, such as VGG-16, ResNet, DenseNet, and Incep-
tion [40], which have been well-established and widely used in the field. Transfer learning
allows for the models to leverage the knowledge gained from pre-training on large datasets,
enabling faster and more efficient training on specific image classification tasks.

The focus of the automatic and accurate estimation of disease severity to address
concerns related to food security, disease management, and yield loss prediction was
investigated on beans [41]. They applied deep learning techniques to analyze images of
Apple black rot from the Plant Village dataset, which is caused by the fungus Botryosphaeria
obtusa. The study compared the performance of different deep learning models, including
VGG16, VGG19, Inception-v3, and ResNet50. The results demonstrated that the deep
VGG16 model, trained with transfer learning, achieved the highest accuracy of 90.5% on
the hold-out test set.

The classification of cotton leaves based on leaf hairiness (pubescence) used a four-part
deep learning model named HairNet. HairNet demonstrated impressive performance,
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achieving 89% accuracy per image and 95% accuracy per leaf. Furthermore, the model
successfully classified the cotton based on leaf hairiness, achieving an accuracy range of
86–99% [42]. A deep learning approach was developed to automate the classification of
diseases in banana leaves. The researchers utilized the LeNet architecture, a CNN through
a 3700 image dataset. The implementation of the approach utilized deeplearning4j, an
open-source deep-learning library that supports GPUs. The experiment was applied to
detect two well-known banana diseases, namely Sigatoka and Speckle [35].

The application of emerging technologies, such as image processing, machine learning,
and deep learning in the agriculture sector, is transforming the industry, leading to increased
productivity, sustainability, and profitability while reducing environmental impact. A lot
of authors have investigated different algorithms for different or specific plant types to
ensure common solutions; however, the solution is problem-specific. It has been observed
that most of the modeling has been attempted on the Plant Village dataset [43] to check the
performance of the models selected.

Table 1 showcases different methods used for plant leaf classification, along with
the corresponding accuracy percentages achieved on different types of leaves. The
“Proposed model” refers to DenseNet, which obtained an accuracy of 99.57% on coffee
leaf classification.

Table 1. Comparison of our resulting model with existing deep learning models.

Ref. No and Year Method Accuracy (%) Plant Name

[44]—2021 Proposed FCNN & SCNN Hybrid Principal 92.01 Crop Leaf
[45]—2021 Component Analysis 95.10 Plant Leaf
[46]—2020 Hybris PCA & Optimization Algorithm 90.20 Olive Leaf
[47]—2020 ResNet50 99.00 Okra Leaf
[48]—2020 Deep CNN 98.00 Coffee Leaf
[49]—2022 Deep Transfer EffientNet 98.70 Grape Leaf

Proposed model DenseNet 99.57 Coffee Leaf

3. Materials and Methods

For proper plant disease management, early detection of diseases in coffee leaves is
required to facilitate farmers. This section provides a complete description of the methodol-
ogy used to collect coffee leaves and the methods used to experiment with the modeling
techniques. Discussion of the process to collect leaves and several transfer-learning algo-
rithms have been elaborated on to investigate the best model responding to the research
scope. The architecture and training process of each model with the experimental setup on
the used dataset is also discussed.

Rwanda has many high mountains and steep-sloped hills, with much of the farmland
suffering from moderate to severe soil erosion, and the appearance of coffee diseases and
pest are based on climate variability [50]. Among different types of coffee plants, such
as arabica and robusta [51], this study focuses on the most popular variety known as
arabica [52] that exists in Rwanda. We surveyed and visited 10 coffee washing stations
located in different 5 districts, such as Ngoma, Rulindo, Gicumbi, Rutsiro, and Huye. The
districts selected represent all 27 districts of Rwanda caring about climate variations [50].
In each district, we sampled 30 farmers giving 150 sample sizes. The visit was done to
cooperate with agronomists who know the coffee pests and diseases to support coffee leaf
labeling activities and to engage farmers to assess if they have the capacity to identify
different coffee leaf diseases. The visit was attempted in the harvesting session, which is in
March 2021, and in the summer session, which is in June and July 2021. The dataset images
were collected from four distinct provinces located in the Eastern (sunny region with high
low altitude with no hills), Northern (the cold region with high altitude), Southern (the
cold region with modulated altitude), and Western (cold, highlands with high altitude).
The quantitative and qualitative methodology was adopted to investigate the disease
occurrence distribution in Rwanda as shown in Figure 1.
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Figure 1. Knowledge of coffee diseases alongside disease occurrence in months.

According to our respondents, coffee leaf rust, known as “coffee leaf rust”, is the most
dangerous disease ravaging coffee in Rwanda. As shown in Figure 1, the disease occurs
mostly in June, July, and August.

The process of data collection was followed by the experiment of coffee disease
detection using deep learning techniques. Figure 2 details the architectural flow of
the implementation.
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Figure 2. Proposed architectural implementation flow.

The suggested pipeline for detecting coffee leaf diseases begins with preparing the
dataset and concludes with making predictions using different models and comparison
analysis. To accomplish this, the Python 3.10 programming language, TensorFlow 2.9.1,
numpy version 1.19.2, and matplotlib version 3.5.2 libraries were employed for dataset
preparation and development environment setup. Those tools have proven to be useful
for data preprocessing and modeling purposes [53,54]. The experiment used CNN deep
learning models, such as InceptionV3, Resnet50, VGG16, Xception, and DenseNet models.
The experiment used infrastructure with an HP Z240 workstation equipped with two
Intel(R) Xeon(R) Gold 6226R and Tesla V100s 32GB memory NVIDIA GPU of 64 cores in
total, which significantly accelerated the training process of deep neural networks. In the
subsequent sections, each stage of the proposed coffee plant leaf disease detection pipeline
will be thoroughly discussed.
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3.1. Dataset

The researchers collected 37,939 images dataset in RGB format. The coffee images had
at least four classes in the dataset, namely the class rust, red spider mite, miner, and healthy.
The dataset’s classes were made up of these directories, each of which corresponded to a
certain disease.

Figure 3 shows the details of the sample dataset classes used in the experiment. Due
to the severity of the matter, in a specific class, you may find different images with similar
infections at different stages. This is because, at a certain stage, the model can be able to
track and classify the real name or approximate name of the diseases.
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Before supplying the images from the dataset to the CNN architectures, we prepro-
cessed them to make sure the input parameters matched the requirements of the CNN
model. Each input image was downsized to 224 × 224 dimensions after preprocessing. To
guarantee that all the data were described under the same distribution, normalization (i.e.,
image/255.0) was then applied, which improved training convergence and stability [55].

3.2. Used Deep Learning Models

In the following section, this study details all the different models and tools used. The
modeling of the coffee leaf images was conducted using different deep-learning techniques,
such as InceptionV3, Resnet50, VGG16, Xception, and DenseNet as shown in Figure 2.

3.2.1. InceptionV3

InceptionV3, developed by Google Research, belongs to the Inception model series,
and serves as a deep convolutional neural network structure. Its primary purpose is to
facilitate image recognition and classification assignments [56–58].

Its architecture is known for its deep structure and the use of Inception modules. These
modules consist of parallel convolutional layers with different filter sizes, allowing the
network to capture features at multiple scales. By incorporating these parallel branches,
the model can effectively handle both local and global features in an image [59]. One
of the key innovations in InceptionV3 is the use of 1 × 1 convolutions, which serve as
bottleneck layers. These 1 × 1 convolutions help reduce the number of input channels and
computational complexity, making the network more efficient.

The Inception V3 model consists of a total of 42 layers, surpassing the layer count
of its predecessors, Inception V1 and V2. Nonetheless, the efficiency of this model is
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remarkable [60]. It can be fine-tuned on specific datasets or used as a feature extractor in
transfer learning scenarios, where the pre-trained weights are utilized to extract meaningful
features from images and train a smaller classifier on top of them. With its powerful deep
learning architecture that excels in image recognition and classification tasks, this model
was selected in this study to investigate its performance.

3.2.2. ResNet50

This research experiment suggested the use of ResNet-50 as Residual Network-50
introduced by Microsoft Research [61]. It is a variant of the ResNet family of models,
which are renowned for their ability to train very deep neural networks by mitigating the
vanishing gradient problem. It is known for its residual connection enabling the network
to learn residual mappings instead of directly learning the desired underlying mapping.
The residual connections facilitate passing information from earlier layers directly to later
layers, helping to alleviate the degradation problem caused by increasing network depth.

The ResNet-50 architecture consists of 50 layers, including convolutional layers, pool-
ing layers, fully connected layers, and shortcut connections. It follows a modular struc-
ture, where residual blocks with varying numbers of convolutional layers are stacked
together [62]. Each residual block includes a set of convolutional layers, followed by
batch normalization and activation functions, with the addition of the original input to the
block. This ensures that the gradient flows through the skip connections and facilitates the
learning of residual mappings.

The model was applied to plant disease detection [63,64] by extracting contextual
dependencies within images, focusing on essential features of disease identification. The
method was chosen to take advantage of its learning of residual mappings and feed the
model with the coffee image classes and their features. The pre-training enables the model
to learn generic visual features that can be transferred to different image-related tasks.

3.2.3. VGG16

The Visual Geometry Group 16 (VGG16) is a convolutional neural network architecture
developed by the Visual Geometry Group at the University of Oxford. It is known for its
simplicity and effectiveness in the image classification tasks model [65].

The VGG16 architecture consists of 16 layers, including 13 convolutional layers and
3 fully connected layers. It follows a sequential structure, where convolutional layers
are stacked together with max pooling layers to progressively extract features from input
images. The convolutional layers use small 3 × 3 filters, which help capture local patterns
and details in the images [66]. The architecture maintains a consistent configuration
throughout the network, with the number of filters increasing as the spatial dimensions
decrease. This uniformity simplifies the implementation and enables the straightforward
transfer of learned weights to different tasks [67].

The pre-training model of VGG16 enables the model to learn general visual represen-
tations, fine-tuned or used as feature extractors for specific tasks. Its deep structure and
small receptive field have been considered in this research context to capture hierarchical
features in coffee leaf images and avail all possible found classes.

3.2.4. Xception

Detailed as Extreme Inception, a deep convolutional neural network architecture
introduced by François Chollet, the creator of Keras [68]. The model is based on the In-
ception architecture but incorporates key modifications to improve its performance and
efficiency. Its architecture aims to enhance the depth-wise separable convolutions intro-
duced in Inception modules. In depth-wise separable convolutions, the spatial convolution
and channel-wise convolution are decoupled, reducing the number of parameters and
computational complexity.

The architecture of Xception introduces the notation of an extreme version of Inception,
where the traditional convolutional layer is replaced by a depth-wise separable convolution.
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The extreme version of the Inception module enables it to capture spatial and channel-
wise information more effectively. Xception has been pre-trained on large-scale image
classification datasets, such as ImageNet, and has demonstrated impressive performance
in various computer vision tasks [69].

It is used as a feature extractor or fine-tuned on specific datasets, enabling it to
generalize well to various image-related tasks.

3.2.5. DenseNet

Dense Convolutional Network is a deep convolutional neural network architecture
known for its dense connectivity pattern and efficient parameter sharing [70]. This sharing
facilitates feature reuse and gradient flow throughout the network. It uses the concept of
dense blocks, where each layer is connected to every other layer in a feed-forward manner.
DenseNet takes this concept further by concatenating feature maps from all previous layers.
This dense connectivity pattern enables direct connections between layers at different
depths, facilitating the flow of information and gradients through the network [71].

The DenseNet architecture consists of dense blocks followed by transition layers. A
dense block is a series of convolutional layers, where each layer’s input is concatenated
with the feature maps of all preceding layers. Transition layers are used to down-sample
feature maps and reduce spatial dimensions. This architecture enables the model to capture
both local and global features effectively.

The operational mechanism of a dense block as shown in Figure 4, supports the
subsequent layers by applying batch normalization (BN), ReLu activation, convolution,
and pooling to modify the outcome. It has achieved state-of-the-art results on various
image classification benchmarks. In the coffee leaves context, the DenseNet model has been
used to classify the leaf based on the list of trained dataset classes.
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3.3. Performance Measurement

The experimental setup has been conducted using the methodology, methods, and
infrastructures discussed in the above sections. To measure the performance of the transfer
learning techniques, different metrics were considered. The performance accuracy matrix,
precision-recall metric, and receiver operating characteristic (ROC), with the area under the
curve (AUC), are being used to evaluate segmentation performance. The performance of
the classifier is measured using evaluation metrics to select the best-performing ones for
further use.

3.3.1. Precision-Recall Curve

The confusion matrix is a useful tool for assessing performance by comparing
actual and predicted values. It provides insights into sensitivity, which represents the
true positive rate and indicates the ability to correctly identify healthy and diseased
leaves. Precision–recall curves are used in binary classification to study the output of
a classifier.
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To extend the precision–recall curve and average precision to multi-class or multi-label
classification, it was necessary to binarize the output. One curve could be drawn per label,
but one could also draw a precision–recall curve by considering each element of the label
indicator matrix as a binary prediction (micro-averaging).

Precision =
True positives

True Positives + False Positives
(1)

Recall =
True positives

True Positives + False Negatives
(2)

The performance evaluation of plant disease classification involved analyzing the
output, which could be binary or multiclass. Specificity, accuracy was referred to as the
positive predicted value and defined in Equation (1). Recall, also known as the probability
of detection, was calculated by dividing the number of correctly classified positive outcomes
by the total number of positive outcomes (Equation (2)).

3.3.2. Receiver Operating Characteristic (ROC) Curve

The curve is mainly used to understand deterministic indicators of categorization
sorting and computational modeling issues. ROC curves feature true positive rate (TPR) on
the Y axis and false positive rate (FPR) on the X axis. The meaning is that the top left corner
of the plot is the “ideal” point—a FPR of zero and a TPR of one. This is not very realistic,
but it does mean that a larger area under the curve (AUC) is usually better. The “steepness”
of ROC curves is important since it is ideal to maximize the TPR while minimizing the
FPR. ROC curves are typically used in binary classification, where the TPR and FPR can be
defined unambiguously.

Average precision (AP) summarizes such a plot as the weighted mean of precisions
achieved at each threshold, with the increase in recall from the previous threshold used as
the weight:

AP =
n

∑
n=0

(Rn − Rn−1)Pn (3)

where Pn and Rn are the precision and recall at the nth threshold. A pair (R k, Pk) is
referred to as an operating point. AP and the trapezoidal area under the operating points
are calculated using the function sklearn.metrics.auc of Python package to summarize a
precision–recall curve that led to different results.

3.3.3. Matthews Correlation Coefficient (MCC)

As an alternate approach that is not influenced by the problem of imbalanced datasets,
the Matthews correlation coefficient is a technique involving a contingency matrix. This
method calculates the Pearson product-moment correlation coefficient [72] between pre-
dicted and actual values. It is expressed in Equation (4) where TP is true positive.

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(4)

(Worst value: −1; best value: +1)
MCC stands out as the sole binary classification measure that yields a substantial score

solely when the binary predictor effectively predicts most of the positive and negative data
instances accurately [73]. It assumes values within the range of −1 to +1. The extreme
values of −1 and +1 signify completely incorrect classification and flawless classification,
respectively. Meanwhile, MCC = 0 is the anticipated outcome for a classifier akin to tossing
a coin.
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3.3.4. F1 Scores

Among the parametric group of F-measures, which is named after the parameter
value β = 1, the F1 score holds the distinction of being the most frequently employed
metric. It is determined as the harmonic average of precision and recall (refer to the
formulas (1) and (2)), and its shape is expressed in the Equation (5):

F1 score =
2 × TP

2 × TP + FP + FN
(5)

(Worst value: −1; best value: +1)
The F1 score spans the interval [0, 1], with the lowest value achieved when TP (true

positives) equals 0, signifying the misclassification of all positive samples. Conversely,
the highest value emerges when FN (false negatives) and FP (false positives) both equal
0, indicating flawless classification. There are two key distinctions that set apart the F1
score from MCC and accuracy: firstly, F1 remains unaffected by TN (true negatives), and
secondly, it does not exhibit symmetry when classes are swapped.

4. Results

In this study, each experiment involved evaluating the training accuracy and testing
accuracy. The losses incurred during the testing and training phases were computed for
every model. The collected coffee leaves dataset was utilized to train the DCNN with
transfer learning models. The selected pre-trained models are ResNet-50, Inception V3,
VGG-16, Xception, and DenseNet.

4.1. Description of Dataset

To conduct our experimental analysis, the dataset was partitioned into three sub-
sets: training samples, testing samples, and validation samples. Among the coffee plant
leaf disease classes, a total of 37,939 images were available and trained with a ratio of
80:10:10. Out of these, 30,053 samples were used for training, 3793 for validation, and
4093 for testing. It is important to note that all these sets, including the training, testing,
and validation sets, encompassed all four classes representing coffee plant leaf diseases
used in this research context.

4.2. Preprocessing and Data Augmentation

The dataset consisted of four diseases of one type of crop species (coffee arabica). For
our experimental purposes, we utilized color images from the collected dataset, as it was
shown that they aligned well with the transfer learning models. To ensure compatibility
with different pre-trained network models that require varying input sizes, the images
were downscaled to a standardized format of 256 × 256 pixels. For VGG-16, DenseNet-121,
Xception, and ResNet-50, the input size was set to 224 × 224 × 3 (height, width, and
channel depth) while for Inception V3, the input shape was 299 × 299 × 3.

Although the dataset contained many images, approximately 37,939, depicting various
coffee leaf diseases, these images accurately represented real-life images captured by
farmers using different image acquisition techniques, such as high-definition cameras and
smartphones, and downloaded from the internet. Due to the substantial size of the dataset,
there was a risk of overfitting. To overcome the overfitting, regularization techniques were
employed, including data augmentation after preprocessing.

In order to maintain the data augmentation capabilities, this study applied several
transformations to the preprocessed images. Those transformations include clockwise and
anticlockwise rotation, horizontal and vertical flipping, zoom intensity, and rescaling of the
original images. This technique not only prevented overfitting and reduced model loss, but
also enhanced the model’s robustness, resulting in improved accuracy when tested with
the real-life coffee plant images.
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4.3. Network Architecture Model

The selection of pre-trained network models was based on their suitability for the
task of plant disease classification. Detailed information about the architecture of each
model can be found in Table 2. These models employ different filter sizes to extract specific
features from the feature maps. The filters play a crucial role in the process of feature
extraction. Each filter, when convolved with the input, extracts distinct features, and
the specific features extracted from the feature maps depend on the values assigned to
the filters. This research experiment utilized the original pre-trained network models,
incorporating the specific combinations of convolution layers and filter sizes employed in
each model.

Table 2. Pre-trained network architecture models’ parameters.

Parameters InceptionV3 Xception ResNet50 DenseNet VGG16

Total layers 314 135 178 430 22
Max pool layers 4 4 1 1 5

Dense layers 2 2 2 2 2
Drop-out layers - - 2 - 2

Flatten layers - - 1 - 1
Filter size 1 × 1, 3 × 3, 5 × 5 3 × 3 3 × 3 3 × 3, 1 × 1 3 × 3

Stride 2 × 2 2 × 2 2 × 2 2 × 2 1
Trainable parameters 23,905,060 22,963,756 25,689,988 8,091,204 15,244,100

Table 2 provides various parameters for different network models, including Incep-
tionV3, Xception, ResNet50, VGG16, and DenseNet. The parameters include the total
number of layers, max pool layers, dense layers, dropout layers, flatten layers, filter size,
stride, and trainable parameters. These parameters are essential in understanding the
architecture and complexity of each model.

In our experiment, each model was standardized with a learning rate of 0.01, a dropout
rate of 2, and had four output classes for classification.

The coffee leaves dataset was divided into training, testing, and validation samples.
For training the Inception V3, VGG16, ResNet50, Xception, and DenseNet models, 80%
of the coffee leaf samples were utilized. Each model underwent ten epochs, and it was
observed that all models started to converge with high accuracy after four epochs. The
recognition accuracy of the InceptionV3 model is illustrated in Figure 5a, reaching a training
accuracy of 99.34%. Figure 5b depicts the log loss of the InceptionV3 model.
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During this research experiment, the second model considered is the ResNet50 model
from the same dataset. Following the standardization of hyperparameters, the model
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underwent training using 80% of the dataset. Subsequently, 10% of the samples were
allocated for testing while the remaining 10% were utilized for validation and testing
purposes. From Figure 6a, it can be observed that the model recognition accuracy is around
96% in the first three epochs, and therefore, its stability increased to get an accuracy of
98.70%. This performance is lower than the one represented by InceptionV3 shown in
Figure 5. On the other hand, the training and validation losses of the ResNet50 model were
around 0.056% and 0.057%, respectively.
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validation accuracy; (b) Model training and validation loss.

Figure 7 demonstrates the behavior of the Xception model on the used datasets after
adjusting the hyperparameters. The training and validation accuracy reached 99.40% and
98.84%, respectively, with around four epochs showing less steadiness. Its training and
validation losses are shown to be 0.014% and 0.033%, respectively. This execution surpasses
that of what the ResNet50 demonstrated, as delineated in Figure 6.
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Figure 7. Xception model performance analysis using the collected dataset. (a) Model training and
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The VGG16 model was used as the fourth model using the same dataset. After
standardizing the hyperparameters, the model was trained with 80% of the dataset. Subse-
quently, 10% of the samples were allocated for testing while the remaining 10% were used
for validation and testing purposes. By considering Figure 8a, it can be observed that the
model achieved a recognition accuracy of approximately 98% in the initial four epochs, and
it gradually increased to reach an accuracy of 98.81%. This performance is less than that
of the Xception model, as depicted in Figure 6. Furthermore, the training and validation
losses of the VGG16 model were approximately 0.0291% and 0.066%, respectively.
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Figure 8. VGG16 model performance analysis using the collected dataset. (a) Model training and
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Figure 9 demonstrates the behavior of the DenseNet model on the used datasets
after adjusting the hyperparameters. The training and validation accuracy reached 99.57%
and 99.09%, respectively, with around four epochs showing less steadiness. Its training
and validation losses are shown to be 0.0135% and 0.0225%, respectively. This execution
surpasses that of all other demonstrated models.
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Figure 9. DenseNet model performance analysis using the collected dataset. (a) Model training and
validation accuracy; (b) Model training and validation loss.

Figure 10 depicts the behaviors of all five used models on the collected dataset of
coffee leaf diseases using Receiver Operating Characteristic (ROC) Curves. It is used to
understand indicators of categorization sorting and computational modeling challenges.
The curves feature true positive rate (TPR) on the Y axis and false positive rate (FPR) on
the X-axis.

It illustrates how the true positive rate (the percentage of correctly classified lesion
images) and false positive rate (the percentage of incorrectly classified non-lesion images)
change as the classifier’s threshold for distinguishing between lesions and non-lesions is
adjusted while evaluating test set images.

Figure 11 illustrates the performance of the five employed models on the gathered
coffee leaf diseases dataset using precision–recall curves. These curves help serve as a
measure to assess the effectiveness of a classifier, especially in situations where there is
a significant class imbalance. These curves depict the balance between precision, which
gauges the relevance of results, and recall, which measures the comprehensiveness of the
classifier’s performance.
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Figure 10. Receiver Operating Characteristic (ROC) Curves. (a) Details the behaviors of the
InceptionV3 model; (b) Details the behaviors of the ResNet model; (c) Details the behaviors of the
Xception model; (d) Details the behaviors of the VGG16 model; (e) Demonstrates the behaviors of
the DenseNet model.

Figure 12 depicts the performance comparison of the five employed models on the
gathered coffee leaf diseases dataset using F1 score and MCC metrics. The graph shows the
efficiency of the DenseNet Model with an F1 score and MCC of 0.98 and 0.94, respectively.
The second proven model is to be VGG16 with an F1 score and MCC of 0.9 and 0.89,
respectively. The worst model on the used dataset is shown to be Xception with the F1
score and MCC of 0.48 and 0.4, respectively.

Table 3 provides a comparison of different network models based on their training
and validation performance.
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Table 3. Summary of network models comparison of performance analysis from the coffee leaf dataset.

Network Models Training Accuracy (%) Training Loss (%) Validation Accuracy (%) Validation Loss (%)

InceptionV3 99.34 0.0167 99.01 0.0306
ResNet50 98.70 0.0565 97.80 0.0577
Xception 99.40 0.0140 98.84 0.0337
VGG16 98.81 0.0291 97.53 0.0668

DenseNet 99.57 0.0135 99.09 0.0225

Regarding statistical examination, the ANOVA (Analysis of Variance) test has been
executed, and the outcomes are exhibited in Table 4.
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Table 4. The results of the analysis of variance test.

ANOVA Table SS DF MS F-Value p-Value

Treatment (between columns) 0.029 4 0.007 233.3333 p < 0.0001
Residual (within columns) 0.002 75 0.0003

Total 0.031 79

The outcomes shown in Table 4 reveal a noteworthy distinction in the selected deep
learning algorithm compared to the other methods. This is evident from the ANOVA results
provided. The “Treatment” row (which corresponds to the differences between columns)
exemplifies this with a substantial F-value of 233.333 and an extremely low p-value, less
than 0.0001. It is noteworthy that the residual variance is merely 0.002, indicating limited
variability among the diverse methods. This suggests that the variation observed in the
outcome measure is primarily attributed to the effect of the chosen technique. The variance
in the outcome measure was computed across all groups and amounted to 0.031 in the sum
of squares. While the ANOVA outcomes point to the superior performance of the selection
algorithm concerning the outcome measure compared to other methods, it is important to
acknowledge that this is a preliminary observation.

The findings do not provide insights into the magnitude or direction of the effect,
nor do they elucidate the specific differences between DenseNet and alternative methods.
To ascertain if two samples are extracted from a common population, one can employ a
non-parametric method known as the Wilcoxon signed-rank test.

The outcomes of this examination are exhibited in Table 5. Within this table, the
assessment aimed to compare the efficacy of the presented models on the dataset.

Table 5. The results of the Wilcoxon signed-rank test.

DTO + DT PSO + DT GWO + DT GA + DT

Theoretical median 5.75 × 10−8 5.75 × 10−8 5.75 × 10−8 5.75 × 10−8

Actual median 3.57 × 10−5 3.57 × 10−5 3.57 × 10−5 3.57 × 10−5

Number of values 37,964 37,964 37,964 37,964
Wilcoxon Signed-Rank Test 0 0 0 0

Sum of signed ranks (W) 37,891 37,891 37,891 37,891
Sum of positive ranks 1,682,355 1,682,355 1,682,355 1,682,355
Sum of negative ranks −1,644,464 −1,644,464 −1,644,464 −1,644,464

p-value (two-tailed) 0 0 0 0
Exact or estimate? Exact Exact Exact Exact

Significant (alpha = 0.05)? Yes Yes Yes Yes
How big is the discrepancy? 3.56 × 10−5 5.06 × 10−8 9.14 × 10−8 4.83 × 10−8
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In our comprehensive assessment of the five deep learning models for image classi-
fication, we conducted an in-depth analysis to discern their unique capabilities on top of
different optimization methods. The results, presented in Table 5, reveal subtle distinc-
tions among these models. Notably, statistical tests, including the Wilcoxon Signed-Rank
Test, indicate statistically significant differences in their median performance scores.
However, it is crucial to emphasize that these differences, while statistically signifi-
cant, are practically negligible. Each of the five models, namely InceptionV3, ResNet,
DenseNet, VGG16, and Xception, consistently delivered competitive results, reflecting
the maturity and robustness of contemporary deep learning architectures. Our study
highlights nuanced performance differences while emphasizing the pivotal balance
between statistical significance and practical utility, ultimately leading us to select
DenseNet as the optimal choice for our image classification task. Nevertheless, it is es-
sential to acknowledge the overall excellence demonstrated by each model, showcasing
the prowess of contemporary deep-learning techniques.

5. Discussion

In the farming industry, especially for coffee plantations, caring about the importance
of coffee consumption worldwide and the drawbacks of coffee diseases and pests affecting
production, timely detection of diseases is crucial for achieving high yields. To support
improving productivity, the incorporation of the latest technologies is needed for the early
diagnosis of coffee diseases from leaves. The literature survey suggested that using deep
learning models contributed efficiently to image classification while transfer learning-based
models are effective in reducing training computation complexity by addressing the need
for extensive datasets. Therefore, this study reveals the application of five pre-trained
models in the Rwandan coffee leaf disease dataset to measure performances and provide
advice for portable hand-held devices to facilitate farmers.

The performances of models, such as Inception V3, Xception, VGG-16, ResNet-50, and
DenseNet, are evaluated with different metrics to identify the most suitable model for the
accurate classification of coffee plant leaf diseases. The evaluation metrics, such as ROC,
and precision–recall values, were measured.

Figure 9 illustrates a graphical representation of the pre-trained network models
based on the evaluation metric, such as ROC. The VGG16 and DenseNet present good
performance compared to other used models on all disease classes. The AUC for all
discussed diseases in this context appeals to be in the range of 0.5 to 1. This indication
means that the model can correctly classify coffee rust, minor, health, and red spider mites
surveyed to be abundant in Rwanda. To tackle the problem of vanishing gradients induced
by skip connections, we utilized regularization methods, such as batch normalization. The
use of deeper models presented several difficulties, such as overfitting, covariant shifts, and
longer training times. To surmount these obstacles, we conducted experiments to finely
adjust the hyperparameters.

The assessment of model performance was measured using the AP metric as shown in
Equation (3). In the performed experiment of the dataset used on the selected pre-trained
models, Figure 10 shows the results of different models. The illustration demonstrated that
DenseNet and VGG16 have better AP for the used classes than InceptionV3, Xception, and
ResNet50. DenseNet demonstrates AP values of 51%, 40%, 0%, and 3% for health, miner,
and red spider mite class, respectively. VGG16 demonstrates AP values of 52%, 45%, 1%,
and 2% for health, miner, and red spider mite class, respectively. The VGG16 expressed
to grab some detections on red spider mites compared to others. The observation is that
lack of enough images in this class. The evaluation outcomes revealed that DenseNet and
VGG16 performed better than InceptionV3, Xception, and ResNet50 models.

Table 1 presents different research references, the year of publication, the methods
used, accuracy percentages, and the corresponding plant names for leaf classification.
The “proposed model” labeled as DenseNet achieved the highest accuracy of 99.57% in
classifying coffee leaves. Table 3 shows the comparison of different models and their score
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accuracies. The training accuracy and loss represent how well the models performed on the
training data while the validation accuracy and loss show their performance on previously
unseen validation data. Among the models, DenseNet achieved the highest training
accuracy (99.57%) and validation accuracy (99.09%), indicating its excellent ability to learn
and generalize from the data. On the other hand, ResNet50 had the lowest validation
accuracy (97.80%) and the highest validation loss (0.0577), suggesting it might slightly
struggle to generalize to new data compared to the other models. To emphasize the model
evaluation criteria, we performed statistical tests with ANOVA and Wilcoxon, as shown in
Tables 4 and 5, to check the variability of models on our dataset. It reaffirms our decision
to choose the ‘DenseNet’ model based on a comprehensive evaluation of various factors,
including not only ANOVA or Wilcoxon tests, but also median discrepancies and other
metrics discussed.

6. Conclusions and Future Directions

In this study, we investigated the coffee farming industry in Rwanda, focusing on
various identified coffee leaf diseases. Our research involved a successful analysis of
different transfer learning models, specifically chosen to accurately classify five distinct
classes of coffee plant leaf diseases. We standardized and evaluated cutting-edge deep
learning models using transfer learning techniques, considering the classification accuracy,
precision, recall, and AP score as the evaluation metrics. After analyzing several pre-trained
architectures, including InceptionV3, Xception, and ResNet50, we found that DenseNet
and VGG16 performed exceptionally well. Based on our findings, we proposed a model
training pipeline that was followed throughout the experiment.

DenseNet model training was found to be more straightforward, primarily attributed
to its smaller number of trainable parameters and lower computational complexity. This
quality makes DenseNet particularly well-suited for coffee plant leaf disease identification,
especially when incorporating new coffee leaf diseases that were not part of the initial train-
ing data, as it reduces the overall training complexity. The experimented model’s quality
has been tested using statistical tests, such as Wilcoxon and ANOVA. The proposed model
demonstrated exceptional performance, achieving an impressive classification accuracy of
99.57%, along with high values for AUC and AP metrics.

In our future endeavors, we aim to tackle challenges associated with real-time data
collection. We plan to develop a multi-object deep learning model capable of detecting
coffee plant leaf diseases not just from individual leaves, but also from a bunch of leaves as
well. Moreover, we are currently working on the implementation of a mobile application
that will leverage the trained model obtained from this study. This application will pro-
vide valuable assistance to farmers and the agricultural sector by enabling the real-time
identification of leaf diseases in Rwanda based on the samples taken.
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