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Abstract: This paper proposes a theoretical study that investigates quantum effects on the gravity of
black holes. This study utilizes a gravitational model that incorporates quantum mechanics derived
from the classical-like quantum hydrodynamic representation. This research calculates the mass
density distribution of quantum black holes, specifically in the case of central symmetry. The gravity
of a quantum black hole shows contributions coming from quantum potential energy, which is also
sensitive to the presence of a background of gravitational noise. The additional energy, stored in
quantum potential fluctuations and constituting a form of dark energy, leads to a repulsive gravity in
the weak gravity limit. This repulsive gravity overcomes the attractive classical Newtonian force at
large distances of order of the intergalactic length.
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1. Introduction

One of the biggest challenges in physics today is the unification of general relativity
and quantum theory. General relativity provides a description of gravity as the curvature
of spacetime caused by the presence of matter and energy, while quantum theory describes
the behavior of matter and energy at the smallest scales.

The problem is that these two theories are fundamentally different in their approaches,
and attempts to merge them have been unsuccessful so far. One of the key challenges
is the existence of singularities, such as those found in black holes, which arise from the
application of general relativity at very small scales.

Another issue is the conflict between the principles of quantum mechanics and those
of general relativity, such as the principle of locality, which states that information cannot
travel faster than the speed of light, and the principle of unitarity, which requires that the
total probability of all possible outcomes of an experiment add up to one.

There have been various proposals for reconciling general relativity and quantum
theory, such as string theory [1–3], loop quantum gravity [4–6], and causal dynamical
triangulation [7–9], but none have yet been confirmed by experimental evidence, and the
search for a unified theory remains an active area of research in theoretical physics.

Since the discovery of the universe’s accelerated expansion, scientists have been trying
to determine what is driving this acceleration. However, despite many attempts to explain
it, the current observational data cannot conclusively identify a source.

In 1926, Schrödinger presented his findings on wave mechanics [1,2] by formulating
a linear differential equation for a complex wave function ψ(r, t) =

√
n(r, t)exp iS(r, t)

} .
However, in the same year, Madelung [3] discovered an alternative formulation that
consisted of two real equations, which exhibited striking similarities to equations commonly
used in hydrodynamics. The first equation was a continuity equation for the squared
amplitude, representing the probability density n(r, t) = ψ ∗ (r, t)ψ(r, t), where the phase
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is contributed through a velocity field in a convection current. The second equation was
a modified version of the Hamilton–Jacobi equation, describing the phase S(

→
r , t) and

including a contribution from the amplitude through a “quantum potential” denoted as
Vqu. This quantum potential was seen as a characteristic quantum mechanical contribution,
serving as a coupling between the two equations for amplitude and phase. Madelung
regarded Vqu as the source of “internal forces” within the continuum.

Recently, the author demonstrated [10,11] that, by assuming the covariance of quantum
field equations and utilizing their classical-like Madelung quantum hydrodynamic repre-
sentation, it is possible to define the geometry of space–time through a gravity equation that
incorporates quantum mechanics. This is achieved through the use of the generalized least
action principle, resulting in a system of equations that describes the quantum gravitational
evolution. This system couples the gravity equation with the field of quantum equation for
boson or fermion fields [10,11].

The theoretical study proposed in this paper is centered on the quantum mechan-
ical state of black holes and the resulting gravity in spacetime, where a background of
gravitational noise is present. The findings of this study have the potential to confirm
observational evidence, such as the existence of dark energy and the repulsive nature of
gravity at large distances.

The organization of this work is as follows: Section 2.1 presents the generalized
Madelung quantum hydrodynamic approach in curved spacetime, specifically addressing
the relativistic case of the Klein–Gordon equation. This approach is coupled with the gravity
equation derived from the covariance condition and the least action principle, which has
been previously reformulated for quantum hydrodynamic formalism. In Section 2.2, the
stationary mass density configuration is derived for a central-symmetric black hole mass
distribution at large distances. Section 3 provides further analysis. Firstly, the gravitational
field is derived for the non-punctual mass distribution of a quantum Schwarzschild black
hole at large distances. Subsequently, Sections 3.1 and 3.2 calculate the characteristics of the
quantum potential fluctuations of the black hole originating from the noise of a gravitational
background. In Sections 3.3 and 3.4, respectively, the mean (dark) energy density of the
quantum potential fluctuations of the black hole is derived, and the distance at which the
repulsive gravitational force surpasses the attractive Newtonian force is determined.

2. Cosmological Scalar Boson Mass under Self-Gravity

During the collapse of a black hole, its mass distribution becomes highly concentrated,
but the repulsive force of its quantum potential may become strong enough to counteract
the gravitational force and prevent its collapse. This can result in the formation of stationary
mass distributions. The uncertainty principle ensures that the repulsive quantum non-
local potential grows sufficiently to overcome the gravitational force, thereby preventing a
point-like collapse.

When the mass distribution of a scalar uncharged boson becomes extremely concen-
trated in space, its gravitational force can generate stable self-bonded states. These states
are the quantum mechanical analogue of a black hole predicted by general relativity.

In this section, the author investigates whether quantum potential force can stop
gravitational collapse when the mass distribution approaches the classical point singularity.

In order to obtain quantum mechanical stationary black hole configurations on a
cosmological scale with large mass distributions, we make the assumption that the mass
field can be represented as a scalar variable. This simplified model of a scalar black hole
mass serves as a “macroscopic” viewpoint that is acceptable for studying the gravitational
behavior of black holes on a cosmological scale.

The distribution of mass in space–time (ST) is attributed to the formation of vacuum
states resulting from the quantization of spinor and massive boson fields. This mass
distribution in ST is not only non-continuous, but also exhibits physical phenomena arising
from the other three fundamental interactions that remain out of the description.
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2.1. Stationary Scalar Mass Distribution

In the case of a scalar mass field obeying the Klein–Gordon equation, the gravitation-
ally coupled system of motion equation reads [11]

Rνµ −
1
2

gνµRα
α =

8πG
c4 Tνµ (1)

∂µψ;µ =
1√−g

∂µ
√
−g(gµν∂νψ) = −m2c2

}2 ψ (2)

The quantum contribution in (1) is contained in the energy impulse tensor that
reads [11]

Tµν =
(

T(k)µνclass

(
1− a(Vqu(k))

)
−Λ

Q(k)

)
(3)

where [11]

T(k)µνclass = −
}2

mγ

(
1−

Vqu

mc2

)−1(
∂µln

ψ

ψ∗

)(
∂νln

ψ

ψ∗

)
(4)

a(Vqu(k))
=

1−

√
1−

Vqu(k)

mc2

 (5)

Λ
Q(k) = −a(Vqu(k))

|ψk|2
mc2

γ(k)

∆λλ

4
(6)

where ∆λλ is given in [11],

γ =
1√

gµν
.
qν .

qµ

c2

=
1

c
√

∂0S gµν∂νS∂µS
=

2

}3/2c
√

i∂0ln[ ψ
ψ∗ ] gµν∂νln[ ψ

ψ∗ ]∂
µln[ ψ

ψ∗ ]
(7)

and where the quantum potential reads

Vqu = −}2

m
1

|ψ|√−g
∂µ

√
−g( gµν∂ν|ψ|) (8)

The KGE (2) in hydrodynamic notation, as a function of the real variables |ψ|2 and S,
with momentum ∂µS = −pµ, leads to a couple of real variable equations,

1
m gµν∂νS ∂µS = }2

m
1

|ψ|√−g ∂µ
√−g( gµν∂ν|ψ|) + mc2

= mc2 −Vqu
(9)

1√−g
∂µ

√
−g(gµν|ψ|2∂νS) = 0 (10)

Following the same method used by Landau e Lifšits in general relativity [12] from
the generalized Hamilton–Jacobi Equation (9), it is possible to derive (see Appendix A) the
motion equation in curved spacetime [11] that reads (see Equation (A6) in Appendix A)

Dq0

(
u(k)µ

√
1− Vqu(k)

mc2

)
=
√

1− Vqu(k)
mc2 Dq0 u(k)µ

+ u(k)µ
Dq0

√
1− Vqu(k)

mc2 = 1
γ(k)

∂
∂qµ

√
1− Vqu(k)

mc2

(11)

where u(k)µ
=

γ(k)
.
q(k)µ
c =

p(k)µ

mc

√
1−

Vqu(k)
mc2

= − ∂µS(k)

mc

√
1−

Vqu(k)
mc2

(see Appendix A) and cDq0 is
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the curvilinear covariant total time derivative. Moreover, by utilizing the relation
Dq0 uµ =

duµ

dq0
− 1

γ Γα
µν

uαuν, it follows that

duµ

dt −
c
γ Γα

µν
uαuν = −uµ

d
dt

(
ln
√

1− Vqu
mc2

)
+ 1

γ(k)

∂
∂qµ

(
ln
√

1− Vqu
mc2

)
= −uµ

d
dt

(
ln

√
1 +

(
}

mc

)2 1
|ψ|√−g ∂µ

√−g( gµν∂ν|ψ|)
)

+ c
γ(k)

∂
∂qµ

(
ln

√
1 +

(
}

mc

)2 1
|ψ|√−g ∂µ

√−g( gµν∂ν|ψ|)
) (12)

Since we are interested in the stationary mass density distribution of a black hole, we
have to impose the stationary condition duµ

dt = 0, which results in

c
γ

Γα
µν

uαuν = uµ
d
dt

(
ln

√
1−

Vqu

mc2

)
+

1
γ(k)

∂

∂qµ

(
ln

√
1−

Vqu

mc2

)
(13)

where the force generated by the gravitational force c
γ Γα

µν
uαuν is balanced by the quantum

potential force

uµ
d
dt

(
ln

√
1−

Vqu

mc2

)
+

1
γ(k)

∂

∂qµ

(
ln

√
1−

Vqu

mc2

)
(14)

In the classical case where } = 0, and thence Vqu = 0, the counterbalancing expansive
quantum force is null, and thus, the collapse proceeds with the generation of point singularity.

2.2. The Mass Distribution in a Central Symmetric Scalar Uncharged Black Hole

In classical general relativity, the collapse of a central gravitational field results in a
final point-like mass density being approached with increasing velocity. However, in the
quantum case, the quantum potential generates an expansive force

∂

∂qµ ln

√
1−

Vqu

mc2 , (15)

that counteracts gravity, leading to deceleration and potentially halting the collapse. As a
result, stable stationary configurations may exist at an equilibrium point, eliminating the
classical point singularity. This suggests that the interplay between quantum effects and
gravity can lead to different outcomes than those predicted by classical general relativity.

From a general standpoint, the stationary mass distribution, as described by Equation (12),
depends on the metric tensor defined by the quantum Einstein gravity (QGE) Equation (1)
and vice versa. Although the general solution of these coupled equations is quite complex, the
simplifying assumption of central symmetry can be introduced to extract useful information.
This assumption leads to the quantum analogue of the Schwarzschild black hole, where the
metric tensor satisfies a particular condition [12].

ds2 = eνc2dt2 − r2
(

dθ2 + sin2 θdφ2
)
− eλdr2 (16)

where qµ = (ct, r, θ, φ) and

g00 = eν; g11 = −eλ; g22 = −r2; g33 = −r2 sin2 θ;
√
−g = |e

λ+ν
2 r2 sin2 θ|−1; (17)

which, inserted into the gravity equation, leads to the relations [12]

8πG
c4 T1

1 = −e−λ

(
ν′
r
+

1
r2

)
+

1
r2 (18)
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8πG
c4 T0

0 = −e−λ

(
1
r2 −

λ′
r

)
+

1
r2 (19)

8πG
c4 T0

1 = −e−λ

.
λ

r
(20)

with
γ =

1√
gµν

.
qν .

qµ

c2

(21)

and

Vqu = −}2

m
1

|ψ|√−g
∂1√−g

(
e−λ∂1|ψ|

)
(22)

where the apex and the dot over the letters indicate derivation with respect to r and ct,
respectively.

Assuming that, in stationary distributions, the mass is enclosed in a sphere of the
radius R0, for r > R0, we can use the approximated gravitational relations [12]

−e−λ

(
ν′

r
+

1
r2

)
+

1
r2
∼= 0 (23)

−e−λ

(
1
r2 −

λ′

r

)
+

1
r2
∼= 0 (24)

−e−λ

.
λ

r
∼= 0 (25)

whose solutions read
λ + ν = 0 (26)

lim r
Rg→∞g11 = im r

Rg→∞ − eλ = im r
Rg→∞ − e−ν ∼= −

(
1−

Rg

r

)−1
(27)

g = − 1
r4 sin4 θ

(28)

eλ =
r

r− Rg
=

1
g00

(29)

from which the quantum potential reads [13]

Vqu = −}2

m
1

|ψ|√−g
∂1√−g

(
e−λ∂1|ψ|

)
(30)

By introducing the relations (26)–(30) into the motion equation, it follows that

duµ

cdt −
1
γ Γα

µν
uαuν = −uµ

1
c

d
dt

(
ln

√
1 +

(
}

mc

)2 1
|ψ|√−g ∂1√−g

(
e−λ∂1

∣∣ψ∣∣))

+ 1
γ

∂
∂qµ

(
ln

√
1 +

(
}

mc

)2 1
|ψ|√−g ∂1√−g

(
e−λ∂1

∣∣ψ∣∣))

= −uµ
1
c

∂
∂qν

(
ln

√
1 +

(
}

mc

)2 1
|ψ|√−g ∂1√−g

(
e−λ∂1

∣∣ψ∣∣)) .
qν

+ 1
γ

∂
∂qµ

(
ln

√
1 +

(
}

mc

)2 1
|ψ|√−g ∂1√−g

(
e−λ∂1

∣∣ψ∣∣))

= 0 + 1
γ

∂
∂qµ

(
ln

√
1 +

(
}

mc

)2 1
|ψ|√−g ∂1√−g

(
e−λ∂1

∣∣ψ∣∣))
(31)
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and, by the stationary condition in the BH system of reference at a large distance,

uµ = lim r
Rg→∞(γ, 0, 0, 0) = lim r

Rg→∞

(
1√
g00

, 0, 0, 0

)
= (1, 0, 0, 0) (32)

and

uµ = lim r
Rg→∞

(
g00γ, 0, 0, 0

)
= lim r

Rg→∞

(√
g00, 0, 0, 0

)
∼= (1, 0, 0, 0) (33)

We obtain

Γα
µν

uαuν = Γ0
10

u0u0 = 1
2 u0u0g00∂1g00 = u0u0∂1g00 ∼= ∂1g00

= −∂1

(
ln
(

1 +
(

}
mc

)2 1
|ψ|√−g ∂1√−g

(
e−λ∂1|ψ|

))) (34)

−∂1
r−Rg

r = −∂1

(
ln
(

1−
(

}
mc

)2 1
|ψ|√−g ∂1√−g

(
r−Rg

r ∂1|ψ|
)))

∂1
r−Rg

r = ∂1

(
ln
(

1−
(

}
mc

)2 1
|ψ|r−2 ∂1r−2

(
r−Rg

r ∂1|ψ|
))) (35)

where Rg is the gravitational radius of BH and Rc is the Compton’s length, leading to the
BH mass density at large distances (see Appendix B), which follows the law

limr→∞|ψ| = G0e−ς r
Rc (36)

The constant, G0, is defined by the normalization condition.

2.3. The Mass Distribution near the Center of a Schwarzschild Black Hole

In the classical case, a BH mass collapses into a point, whereas in the quantum case,
for the uncertainty principle (see (46)), the maximum concentration is inside a sphere
whose radius is in the order of magnitude of the Compton’s length Rc. Thence, for a
macroscopically massive BH with the condition Rg � Rc (for a BH with a mass m ∼ 1035 kg
Rg
Rc
∼ 1085), we can assume with good approximation that, in the limit r

Rg
→ 0 (at least

r
Rg
� 10−85), there is no mass for Rc � r < Rg. Thus, by observing that

lim r
Rg→0λ = lim r

Rg→0 ln
r

r− Rg
∼= −

r
Rg

= 0 (37)

and that
8πG

c4 T1
1 = −e−λ

(
ν′

r
+

1
r2

)
+

1
r2
∼= −

(
ν′

r
+

1
r2

)
+

1
r2
∼= 0 (38)

8πG
c4 T0

0 = −e−λ

(
1
r2 −

λ′

r

)
+

1
r2
∼= −

(
1
r2 −

λ′

r

)
+

1
r2
∼= 0 (39)

eλ 8πG
c4 T0

1 = −
.

λ

r
= 0 (40)

Equation (A14), in Appendix B, can be also retained for x = r
Rg
→ 0 .

Thus, providing that at small distance from the BH center, it holds

limx→0

∣∣∣ỹ2
(x)

∣∣∣<<
∣∣∣ỹ(x)

∣∣∣ (41)

we obtain the differential equation

limx→0ỹ′(x) = Rgy′(r) = ỹ(x)

(
3
x
− 1

x− 1

)
+

Rg
2

Rc2
x

x− 1

(
1− C0eln ( x−1

x )
)

(42)
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whose solution, given in Appendix B, reads

lim r
Rg→0|ψ| ∼= G0e−

1−ς2
e

Rg
Rc z. r � Rc, Rg � Rc (43)

The output (43) shows that, for large mass BHs (e.g., m ∼ 1035 kg) the mass density
is practically null outside the sphere of the Compton’s radius at the center of the BH (for

instance, at a distance r = 10Rc, the mass density |ψ|2 ∼ G0e− 2 1−ς2
e 1086 ∼ G0e− 1086

(see
Appendix B).

This output, in agreement with the uncertainty principle, leads to a piece of infor-
mation about the minimum mass for the formation of BHs. In fact, in cases where the
BH energy does not exceed the value mc2 due to its localization (otherwise a new BH is
formed), by the uncertainty principle, it follows that

∆E =
}

2∆t
=

v}
2∆x

≤ mc2 (44)

where
v ≥ ∆v =

∆p
m

=
}

2m∆x
, (45)

which leads to mc2 > }2

4m∆x2 and, finally, to

∆x >
}

2mc
=

Rc

2
(46)

Additionally, since in order to form a BH, all the mass must be inside the gravitational
radius, we must have that

Rg =
2Gm

c2 >
∆x
2

= rmin =
Rc

4
(47)

and, thence, that
Rc

4Rg
=

}
8mcRg

=
}c

8m2G
= π

mp
2

m2 < 1 (48)

leading to the following condition for the black hole mass m:

m > π1/2mp (49)

where mp =
√

}c
8πG is the reduced Planck mass.

For small masses when m→ 0 (quantum case), the gravitational radius Rg tends to
be zero while the Compton’s radius Rc goes to infinity so that, in order to have all the black
hole mass inside its gravitational radius, for Rc = Rg, we have the minimum mass (49) for
the formation of a black hole (Rg = Rc

4 ). This condition is safe for our universe since low
energy elementary particles cannot form BHs.

On the other hand, it is noteworthy to observe that, for a very large mass m→ ∞ ,
Vqu ∝ 1

m → 0 (classical limit), the BH Compton’s radius Rc goes to zero and the point
singularity of the classical general relativity is asymptotically approached.

Additionally, as black holes with a Planck mass cannot be divided into two smaller
black holes, they represent the lightest possible configuration of scalar uncharged mass
density that can be achieved solely through gravitational interaction. Moreover, since the
condition expressed in Equation (49) also applies to quantized fields, the fundamental
lowest state of a quantum black hole is heavier than π1/2mp.
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3. Gravitational Field of Black Holes at Large Distance in Spacetime with
Background Fluctuations

In this section, we derive the weak gravitational force of black holes over long distances.
The large distance approximation is used because the gravitational radius of a black hole is
much smaller than the cosmological physical scale, allowing us to treat the mass distribution
of the black hole as point-like.

In fact, the mass distribution of a BH (36) arranged in the form

|ψ|2 = |ψ0|2
(

ς

2
√

πRc

)2
B(r)

ς

2Rc
e−ς r

Rc (50)

at a large distance reads

lim r
Rc→∞|ψ0|2

(
ς

2
√

πRc

)2
B(r)

ς
2Rc

e−ς r
Rc

= lim r
Rc→∞ =

B(r)´
B(r)

(
ς

2
√

πRc

)2 ς
2Rc e

−ς r
Rc d3Ω

(
ς

2
√

πRc

)2 ς
2Rc

e−ς r
Rc

= limRc→0
B(r)

´
B(r)

(
ς

2
√

πRc

)3
e
−ς r2

4Rc2 d3Ω

(
ς

2
√

πRc

)3
e
−ς r2

4Rc2

=
B(r)´

B(r)δ
3
(r)d3Ω δ3

(r) =
B(r=0)
B(r=0)

δ3
(r) = δ3

(r)

(51)

where the normalization condition
´
|ψ|2d3Ω = 1 has been used.

Since the BH quantum potential in space–time undergoes fluctuation δEqu with an

additional mass density |δψ0|2 ∝ δEqu
c2 in the presence of background fluctuations [14–17],

for the cosmological length scale (i.e., Rc → 0), we assume that the total mass density of a
BH field in a fluctuating space–time background reads

limr→∞|ψ|2 ' δ3
(r) + |δψ0|2 (52)

Furthermore, as black holes are quantum objects with significant quantum potential
energy (as described in Appendix B), we anticipate that their gravity over long distances
may result in quantum effects contributing to Newtonian law.

The contribution coming from the quantum potential, contained in the energy density
tensor of the QGE, reads

Rνµ − 1
2 gνµRα

α = 8πG
c4

mc2|ψ±|2
γ

((√
1− Vqu

mc2 − 1
)

gµν +
√

1− Vqu
mc2

−1(
}

2mc

)2 ∂ ln[ ψ
ψ∗ ]

∂qµ

∂ ln[ ψ
ψ∗ ]

∂qν

)
= 8πG

c4
mc2|ψ±|2

γ

((√
1− Vqu

mc2 − 1
)

gµν +
√

1− Vqu
mc2 uµuν

) (53)

where it has used the identity
(

1
mc

)2
pµ pλ = uµuν

(
1− Vqu

mc2

)
. Moreover, given that

Vqu = −}2

m
1

|ψ|√−g
∂1√−g

(
e−λ∂1|ψ|

)
(54)

g = − 1
r4 sin4 θ

(55)

eλ =
r

r− Rg
=

1
g00

= −g11 (56)

γ = 1√
1−

.
q2

c2

= 1√
gµν .

qν
.
qµ

c2

= 1√
g00

limr→∞|ψ| = G0e−ς r
Rc

(57)



Technologies 2023, 11, 98 9 of 20

it follows that

limr�Rg Vqu = limr�Rg − }2

m
1

e−ςx r2∂rr−2(e−λ∂re−ςz)
= limr�Rg

}2

m

(
ς

Rc

)
1

e−ςx r2∂rr−2
((

1− Rg
r

)
e−ςx

)
= limr�Rg

}2

m
ς

Rc

(
−2r−1

(
1− Rg

r

)
+
(

ς
Rc

(
1− Rg

r

)
+

Rg
r2

))
= limr�Rg − }2

m
ς

Rc

(
2r−1 − ς

Rc

)
= }2

m
ς2

Rc
2 = mc2ς2

(58)

Thence, the gravitational Equation (53) in a mixed form reads

Rµ
ν − 1

2
δµ

νRα
α =

8πG
c4

mc2
∣∣ψ±∣∣2
γ

( (√
1 + ς2 − 1

)
δµ

ν

+
√

1 + ς2uµuν

)
(59)

leading to the equation for the trace of the Ricci tensor

Rα
α = −8πG

c4
mc2

∣∣ψ±∣∣2
γ

(
4
(√

1 + ς2 − 1
)

+
√

1 + ς2uαuα

)
(60)

and to

R0
0 =

8πG
c4

mc2
(

δ(r−rBH)+
∣∣∣δψ0

∣∣∣2)
γ

 (√
1 + ς2 − 1

)(
δ0

0 − 2
)

+

√
1+ς2

2 u0u0

 (61)

Given that, at a large distance, we can use the approximations

limr→∞u0 = 1 (62)

g00 =
r− Rg

r
=

(
1−

Rg

r

)
, (63)

(61) reads

R0
0 = 8πG

c2

m
(

δ(r−rBH )+
∣∣∣δψ0

∣∣∣2)
γ limr→∞


(√

1 + ς2 − 1
)(

δ0
0 − 2

)
+

√
1+ς2

2g00


= 8πG

c2

m
(

δ(r−rBH )+
∣∣∣δψ0

∣∣∣2)
γ limr→∞

(
1 +

(
1

g00
− 2
)√

1+ς2

2

)
= 8πG

c2

m
(

δ(r−rBH )+
∣∣∣δψ0

∣∣∣2)
γ limr→∞

(
1 +

( r
Rg +2

1− r
Rg

)√
1+ς2

2

)
∼= 8πG

c2

m
(

δ(r−rBH )+
∣∣∣δψ0

∣∣∣2)
γ

(
1−
√

1+ς2

2

)
(64)

leading to the identity

R0
0 = R00 =

1
c2

∂

∂qα

∂φ

∂qα
∼=

4πG
c2 m

(
δ(r−rBH)+

∣∣∣ψ0

∣∣∣2)(1−
√

1 + ς2

2

)
. (65)

By integrating the flux of the gravitational force ∂φ
∂qα with a sphere with the radius

r− rBH , it follows that
˚

∂

∂qα

∂φ

∂qα
dV =

‹
∂φ

∂qα
· dSα =

∂φ

∂r
4π(r− rBH)

2 = 4πGm
˚ (

δ(r−rBH)+
∣∣∣δψ0

∣∣∣2)(1−
√

1 + ς2

2

)
dV. (66)
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By the Dirac δ-shape approximation of the BH mass distribution, it can be posed that
Vqu(r−rBH=0) = 0, so that the BH gravitational field at a large distance reads

∂φ
∂r = Gm

(
1−π
√

1+ς2
∣∣∣δψ0

∣∣∣2˝ (r−rBH)2 dr
Rc

(r−rBH)2

)

= Gm

(
1

(r−rBH)2 − 1
3

π
√

1+ς2
∣∣∣δψ0

∣∣∣2
Rc

(r− rBH)

) (67)

where the repulsive force

−Gm
1
3

π
√

1 + ς2
∣∣∣δψ0

∣∣∣2
Rc

(r− rBH) (68)

overcomes the attractive one when

(r− rBH)
3 ≥ 3Rc

π
√

1 + ς2
∣∣∣δψ0

∣∣∣2 (69)

From (59) we can observe that the cosmological pressure density originating from a
BH at a large distance is constant and reads

limr→∞Λ
Q
=

(√
1 + ς2 − 1

)
∼=

ς2

2
, (70)

and that the repulsive gravity is generated by the presence of the dark energy/mass density
|δψ0| of the background fluctuations.

From (70) it is also interesting to note that the large distance mass density of a BH (36)
acquires the form

limr→∞|ψ|2 = G0e−
√

8ΛQ(r/Rc). (71)

Generally speaking, beyond the centrally symmetric case, the pressure density tensor,
denoted as Λ

Q
, is a function of mass fields and exhibits point dependence similar to the

quintessence model. The key distinction lies in its dependence on the quantum properties of
spacetime rather than an obscure physical field. Additionally, Λ

Q
can yield a cosmological

constant, representing the mean value in the universe, with magnitudes consistent with
observed values (see reference [18]). Furthermore, the definition of the minimum radius
of a black hole mass distribution, which solves the case of the classical general relativity
point singularity and, consequently, the determination of a minimum mass for black hole
formation, represents the primary large-scale manifestation of quantum effects on the
space–time curvature within the theory. The establishment of a minimum mass for black
hole formation holds significant importance, ensuring a secure condition for our universe,
as elementary particles cannot generate black holes, and the quantum instability of vacuum
does not lead to the massive production of micro black holes.

3.1. Quantum Potential Fluctuations Generated by Background Fluctuations

To determine the parameter |δψ0|2, we must move beyond the static vacuum solution
and consider that the vacuum is filled with stochastic gravitational waves. These waves
originate from various sources, including relic gravitational waves from the Big Bang and
other sources [19].
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Considering the vacuum fluctuations in the background, it becomes possible to define
the stochastic generalization of the quantum hydrodynamic equations [20] so that the wave
function ψ = |ψ|e− iS

} , in the low velocity limit, is given by the equations

∂

∂t
|ψ|2 + ∂

∂qi
(|ψ|2 .

qi) = 0. (72)

.
qi =

pi
m

=
1
m

∂S(q,t)

∂qi
, (73)

.
pi = −

∂(H + Vqu)

∂qi
, (74)

where S(q,t) = − }
2 ln ψ

ψ∗ , H is the Hamiltonian of the system, and Vqu is given by the low
velocity limit of (8).

The ripples of the vacuum curvature are assumed to manifest themselves through an
additional fluctuating mass density δnvac into the vacuum so that

ntot ≡ n + δnvac (75)

where n is linked to n by the relation limδnvac→0n = n, that, introduced into the quan-
tum potential

Vqu(ntot )
= − }2

2m
ntot
−1/2 ∂2ntot

1/2

∂qi∂qi
, (76)

leads to the quantum fluctuating force [20] −
∂Vqu(n)

∂qi
that we are going to determine.

Given that the energy/mass density δnvac is defined as positive, the mean vacuum
fluctuations give rise to an additional non-zero (dark) energy density in the vacuum.

Given that the energy/mass density δnvac is defined as positive, this paragraph de-
scribes the assumption that the mean vacuum fluctuations < δnvac > give rise to an
additional dark energy density in the vacuum. The assumption is made that this vacuum
of dark energy/matter does not interact with the physical system under consideration,
and therefore, the gravity interaction is disregarded in the Hamiltonian H in (74). The
evolution of the total dark energy is assumed to depend on cosmological dynamics and to
have reached an equilibrium configuration.

Thence, we assume < δnvac > is locally, uniformly distributed with zero mean fluctua-
tions δn(q,t), such as

δnvac
∼=< δnvac > +δn(q,t) (77)

3.2. Spectrum and Correlation Function of Mass Density Noise in Quantum Spacetime with
Curvature Fluctuations

When determining the features of the fluctuations of quantum potential, which conse-
quently produce force noise, we employ the postulate that the fluctuations of the vacuum
curvature are described by the wave function ψvac with the density δnvac = |ψvac|2 and
that they do not have a Hamiltonian interaction with the physical system (gravitational
interaction is disregarded).

In this case, the wave function of the overall system ψtot reads

ψtot ∼= ψψvac (78)

Moreover, by assuming that the equivalent mass of dark energy is much smaller than
the mass of the system (i.e., mtot = mdark + m ∼= m), the overall quantum potential (8) reads

Vqu(ntot)
= − }2

2mtot
|ψ|−1|ψvac|−1 ∂2|ψ||ψvac|

∂qi∂qi
=

= − }2

2m

(
|ψ|−1 ∂2|ψ|

∂qi∂qi
+ |ψvac|−1 ∂2|ψvac |

∂qi∂qi
+ |ψ|−1|ψvac|−1 ∂|ψvac |

∂qi

∂|ψ|
∂qi

)
.

(79)
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Moreover, given the vacuum mass density noise of wave-length λ,

δnvac(λ) = |ψvac(λ)|2 ∝ cos2 2π

λ
q (80)

associated with the fluctuation wave function

ψvac ∝ ±cos
2π

λ
q (81)

it follows that the quantum potential energy fluctuations read

δEqu =

ˆ

V

ntot(q,t)δVqu(q,t)dV, (82)

where
δVqu(q,t) = − }2

2m

(
|ψvac|−1 ∂2|ψvac |

∂qi∂qi
+ |ψ|−1|ψvac|−1 ∂|ψvac |

∂qi

∂|ψ|
∂qi

)
= }2

2m

(( 2π
λ

)2
+ |ψ|−1 ∂|ψ|

∂qi

(
±cos 2π

λ q
)−1(±sin 2π

λ q
))

= }2

2m

(( 2π
λ

)2
+ |ψ|−1 ∂|ψ|

∂qi
tan 2π

λ q
) (83)

For V → ∞ , the unidimensional case leads to

δEqu(λ) =
1

ntotV
}2

2m
´
V

ntot(q,t)

(( 2π
λ

)2
+ |ψ|−1 ∂|ψ|

∂qi
tan 2π

λ q
)

dq

= 1
ntotV

}2

2m

(( 2π
λ

)2´
V

ntot(q,t)dq +
´
V

ntot(q,t)

(
|ψ|−1 ∂|ψ|

∂qi
tan 2π

λ q
)

dq

)
∼= }2

2m
( 2π

λ

)2
.

(84)

In (84), the normalization condition
´
V

ntot(q,t)dq = ntotV has been used, and for a

large volume (V � λc
3 see (87)), the following approximation has been used:

limλ→0

∞̂

−∞

ntot(q,t)

(
|ψ|−1 ∂|ψ|

∂qi
tan

2π

λ
q
)

dq� ntotV
(

2π

λ

)2
.

For the three-dimensional case, (84) leads to

δEqu(λ)
∼=

}2

2m∑
i
(ki)

2 =
}2

2m
|k|2 (85)

Equation (85) reveals that the energy arising from the mass density fluctuations of the
vacuum becomes greater as the square of the inverse of λ. Thus, the corresponding fluctua-
tions in quantum potential produce extremely large energy fluctuations δEqu, even for very
small noise amplitudes (i.e., T → 0 when λ approaches zero) at very short distances.

A convergence to the deterministic limit of quantum mechanics (72–74) (for T → 0)

is warranted by the fact that the higher the energy-to-noise amplitude ratio δEqu
kT is, the

smaller the probability is of a convergence happening. This brings a condition on the spatial
correlation function of the quantum potential noise as λ→ 0 or for T → 0 .

One way to obtain the shape of the spatial correlation function G(λ) is through a
stochastic calculation, which can be quite complex [20]. However, a simpler approach
for obtaining G(λ) can be achieved by considering the spectrum of the fluctuations, as
described in [16].
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Since each component of spatial frequency, k = 2π
λ , brings the quantum potential

energy contribution (84), its probability of happening reads

p(λ) ∝ exp
[
− δEqu

kT

]
= exp

[
−

}2
2m (

2π
λ )

2

kT

]
= exp

[
−
(

πλc
λ

)2
] (86)

where
λc = 2

}
(2mkT)1/2 (87)

is the De Broglie length.
From (86), it comes out that the spectrum S(k) of the spatial frequency

S(k) ∝ p(
2π

λ
) = exp

[
−
(

πλc

λ

)2
]
= exp

[
−
(

kλc

2

)2
]

(88)

is not white, and the components with a wave-length, λ, smaller than λc go quickly to zero.
Additionally, from (88), the spatial shape G(λ) reads

G(λ) ∝
+∞´
−∞

exp[ikλ]S(k)dk ∝
+∞´
−∞

exp[ikλ]exp
[
−
(

k λc
2

)2
]

dk

∝ π1/2

λc
exp
[
−
(

λ
λc

)2
] (89)

One can see from Equation (89) that the quantum potential progressively suppresses
uncorrelated mass density fluctuations at shorter and shorter distances, which in turn
allows for the realization of deterministic quantum mechanics in systems whose physical
length is much smaller than the De Broglie length.

The assumption for a sufficiently general case is that the mass density noise correlation
function is Gaussian with zero correlation time, isotropic in space, and independent among
different coordinates. Under these assumptions, it can be expressed as

< δn(qα ,t), δn(qβ+λ,t+τ) >=< δn(qα), δn(qβ)
>(T) G(λ)δ(τ)δαβ (90)

3.3. The (Dark) Energy Density of Quantum Potential Fluctuations

The energy associated with the quantum potential noise of a body with a mass m can
be evaluated using the probability energy fluctuation function

p(E(λ))
= Aexp

[
−

}2

2m
( 2π

λ

)2

kT

]
(91)

where

A = 1
λmax´

0
exp

− }2
2m (

2π
λ )

2

kT

dλ

= 1
Nλc´
0

exp

− }2
2m (

2π
λ )

2

kT

dλ+
λmax´
Nλc

exp

− }2
2m (

2π
λ )

2

kT

dλ

= 1
Nλc´
0

exp

− }2
2m (

2π
λ )

2

kT

dλ+
λmax´
Nλc

dλ

= 1
Nλc´
0

exp
[
−( πλc

λ )
2]

dλ+(λmax−Nλc)

(92)

where λc =
√

2 }√
mkT

and N � 1.
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In this case, the energy density of the quantum potential fluctuation reads

mc2
∣∣δψ0

∣∣2
(r) =

´
δEqu(λ)p(λ)dλ´

p(λ)dλ
=

λmax´
0

}2
2m (

2π
λ )

2
p(λ)dλ

λmax´
0

p(λ)dλ

∼=
λmax´

0

}2

2m
( 2π

λ

)2 p(λ)dλ

= 1
λmax

λmax´
0

}2

2m
( 2π

λ

)2exp
[
−

}2
2m (

2π
λ )

2

kT

]
dλ

(93)

where, for (85) in the three-dimensional case λ =|k|, m|δψ0|2 is the additional mass density
in the vacuum that the black hole mass m acquires due to the background fluctuations,
and where

λmax = lu ≈ 1027 m. (94)

where lu is the diameter of the universe.
Moreover, for SMBHs (in the order of Sagittarius A* with a mass of about of 1038 kg) at

1◦Kλc = 2
}

(2mkT)1/2 ≈
1.41× 10−34

(3× 103810−23)1/2 ≈ 3× 10−41 m ≈ 0, (95)

it follows that
A =

1
lu

(96)

and that

mc2|δψ0|2 = 1
lu

}2

2m

lú

0

( 2π
λ

)2exp
[
−

}2
2m (

2π
λ )

2

kT

]
dλ

= 1
lu

}2

2m

2πlu−1´
∞

exp
[
−

}2
2m
kT |k|

2
]

d|k| = }
2lu

√
πkT
2m

(97)

leading to

|δψ0|2(r) ≈
1
lu

}
2mc

√
πkT
2mc2 (98)

3.4. Repulsive Gravity at Large Distance

By introducing (98) into (69), the repulsive Newtonian gravity overcomes the attractive
one at the distance

(r− rBH)rep ≈
(

3Rc

π
√

1+ς2
∣∣∣δψ0

∣∣∣2
)1/3

=

(
3Rc

π
(

1+ΛQ

)∣∣∣δψ0

∣∣∣2
)1/3

∼
(

lu
√

2mc2

πkT

)1/3
(99)

so that for SMBHs with a mass in the order of 1038÷41 kg, ς� 1, the equation reads

(r− rBH)rep >≈ 1021 m. (100)

The gravitational force between galaxies becomes repulsive at intergalactic distances,
which is on the same order of magnitude as the typical radius of galaxies (∼ 1020m). This
may affect the external part of the galactic disc. However, since the energy density of BH
quantum potential fluctuations decreases with the expansion of the radius lu of the universe

according to limt→∞|δψ0|2(r) ∼ 1
lu

}
2mc

√
πkT
2mc2 → 0), the BH repulsive force asymptotically

approaches zero, leading to a final static universe. This effect can furnish the empirical
confirmation of the theory.

Since, as shown in [21], the quantum potential of macroscopic low-density mass
bodies is practically null and does not contribute to the expansive gravity of the universe,
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the repulsive gravitational force in (100), causing the repulsion of the galaxies, is mainly
attributed to black holes and supermassive black holes due to the quantum nature of
space–time with fluctuating background metrics.

The correction to Newtonian gravity that arises from the fluctuations of quantum
potential in massive bodies such as BHs and SMBHs complies with the concept of modified
Newtonian dynamics (MOND) [22], which suggests a modification in Newtonian gravity
for very low accelerations in order to account for the observed motion of the galaxies.

4. Conclusions

This work shows that quantum black holes with a central symmetry have a mass
density distribution that is not point-like but is concentrated in a sphere with a radius in
the order of its Compton wavelength.

Due to significant quantum potential energy, there exists a supplemental term
in the gravity equation, resulting in an additional contribution to the gravity force at
large distances.

The pressure density tensor is a function of mass fields and demonstrates a point-
specific behavior akin to the quintessence model. However, what sets it apart is its reliance
on the quantum properties of space–time instead of an elusive physical field.

The present model shows that the alteration of Newtonian gravity over long distances
is explained by the gravitational effect of the quantum potential of enormously massive
entities, such as black holes and supermassive black holes, subject to background dark
energy fluctuations. In the presence of fluctuations in the space–time background metric,
the dark energy arising from fluctuations in the quantum potential energy of black holes
results in a repulsive contribution to gravitational force. This repulsive force of SMBH
dominates over the Newtonian force at distances characteristic of intergalactic space. On
this basis, it has the capacity to generate a cosmological constant producing the acceleration
of the universe, aligning reasonably well with the observed low value.

Furthermore, the establishment of a minimum radius for the mass distribution of
black holes, which solves the issue of classical general relativity’s point singularity, and
subsequently, the determination of a minimum mass required for black hole formation,
represents the foremost large-scale manifestation of quantum effects on the curvature
of spacetime as posited by the theory. This concept holds important significance as it
ensures the stability of our universe, preventing elementary particles from spontaneously
generating black holes and averting the excessive production of microscopic black holes
due to quantum vacuum instability.
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Appendix A

Since the theory proposed in this work is based on the covariance of the motion
equation in curved space–time, we derive the motion equation in the Minkowskian case.
By utilizing the following identities for stationary states [11] (i.e., eigenstates),

pµ = −∂µS (A1)

dS(k)

dt
=

dS
dt

=
∂S
∂t

+
∂S
∂qi

.
qi = L(k) = −p(k)µ

.
qµ

(k) = −
mc2

γ(k)

√
1−

Vqu(k)

mc2 , (A2)
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where for eigenstates γ(k) = const,

p(k)µ = − ∂

∂
.
qµ

dS(k)

dt
= mγ(k)

.
q(k)µ

√
1−

Vqu(k)

mc2 = mcu(k)µ

√
1−

Vqu(k)

mc2 (A3)

Therefore, since for systems that do not explicitly depend on time, it holds

− ∂

∂qµ

dS(k)

dt
= −

(
0,− ∂

∂qi

dS(k)

dt

)
= −

(
0,− d

dt
∂S(k)

∂qi

)
=

d
dt

(
−

∂S(k)

∂qµ

)
=

.
p(k)µ

(A4)

the motion equation reads

.
p(k)µ

= − d
dt

∂

∂
.
qµ

dS(k)

dt
= − ∂

∂qµ

dS(k)

dt
(A5)

which, in curved space–time, reads

.
p(k)µ

= Dq0 p(k)µ = −1
c

∂L(k)

∂qµ =
mc
γ(k)

∂

∂qµ

√
1−

Vqu(k)

mc2 . (A6)

Appendix B

Schwarzschild black hole mass distribution:
The differential Equation (35) can be solved by posing

(
}

mc

)2 r2

|ψ|∂
1r−2

(
r−Rg

r ∂1|ψ|
)
=

1− A0e f(r) from which it follows that(
∂1

r− Rg

r

)
A0e f(r) =

(
∂1 f(r)

)
A0e f(r) (A7)

leading to the solution

f(r) =
(

r− Rg

r
+ C

)
(A8)

Furthermore, by posing ∣∣ψ∣∣= G0eg(r) (A9)

it follows that (
}

mc

)2
r2G0

−1e−g(r)∂1r−2
(

r−Rg
r g′(r)G0eg(r)

)
= 1− A0e f(r)

(A10)

and thence,(
}

mc

)2
r2G0

−1e−g(r)
(

g′(r)G0eg(r)∂1
(

r−2 r−Rg
r

)
+ r−2 r−Rg

r ∂1
(

g′(r)G0eg(r)
))

=(
}

mc

)2(
r2g′(r)∂

1r−3(r− Rg
)
+

r−Rg
r

(
g′

2
(r) + g′′(r)

))
=(

}
mc

)2
(

g′(r)

(
1
r −

3(r−Rg)
r2

)
+

r−Rg
r

(
g′

2
(r) + g′′(r)

))
= 1− A0e f(r)

(A11)

which, by posing
g′(r) = y(r) (A12)

leads to the Riccati’s differential equation

y′(r) = y(r)

(
3
r
− 1

r− Rg

)
− y2

(r) +
(mc

}

)2 r
r− Rg

(
1− C0e

r−Rg
r

)
(A13)



Technologies 2023, 11, 98 17 of 20

where C0 = A0e−C.
Moreover, by using the adimensional variable x = r

Rg
, it follows that

ỹ|(x) = Rgy′(r) = ỹ(x)

(
3
x
− 1

x− 1

)
− Rgỹ2

(x) +
Rg

Rc2
x

x− 1

(
1− C0e

x−1
x

)
(A14)

where Rc =
}

mc .
The condition of mass density at infinity

limr→∞
∣∣ψ∣∣= limr→∞G0eg(r) = 0 (A15)

limr→∞

∣∣∣ψ∣∣∣′ = limr→∞G0g′(r)e
g(r) = 0 (A16)

leads to a condition on g(r) that

limr→∞ g(r) = −∞. (A17)

Large distance BH mass density distribution:

On the condition that limx→∞|ỹ2
(x)| �

|ỹ(x)|
x (to be checked at the end), and by

choosing c = 1 so that C0 = A0
e , Equation (A14) simplifies to

limx→∞ỹ|(x)
∼= −Rgỹ2

(x) +
Rg

Rc2 (1− A0) (A18)

which, by posing

ỹ(x) =
u′

Rgu
(A19)

leads to

limx→∞

(
u′

Rgu

)′
= limx→∞

(
u′′

Rgu
− u′

2

Rgu2

)
∼= −

u′
2

Rgu2 +
Rg

Rc2 (1− A0) (A20)

limx→∞u′′ ∼= u
Rg

2

Rc2 (1− A0) (A21)

providing the solution

u = u0e±
Rg
Rc (1−A0)

1/2x (A22)

leading to

ỹ(x) = ±
Rg

Rc
(1− A0)

1/2. (A23)

and to

limx→∞|ψ| = limx→∞G0e
´

g′
(r)dr

= G0e
´

Rg ỹ(x)dx

= G0e−
Rg
Rc (1−A0)

1/2x = G0e−ς r
Rc

(A24)

where ς = (1− A0)
1/2 and where the condition limr→∞g(r) = −∞ requires considering

the negative solution of ỹ(x).
In order to evaluate the numerical constant ζ, we observe that the ratio between the

total mass of the BH and the part outside its gravitational radius due to its quantum mass

distribution (with the unitary normalization
∞́

0
|ψ|2 = 1) reads

∆mout

m
=

∞́

r=Rg

|ψ|2

∞́

0
|ψ|2

=

∞̂

r=Rg

|ψ|2, (A25)
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and it is vanishingly small for cosmological BHs (e.g., for BHs with a mass in the order of

1038kg, assuming a unitary outside mass (1 kg), it results in
∞́

r=Rg

|ψ|2 ≈ 10−38). Moreover,

by utilizing expression (2),

lim r
Rc→∞|ψ|2 = δ3

(r)
∼= limRc→0

(
ς

2
√

πRc

)3
e
−ς r2

4Rc2 (A26)

It follows that

∞́

r=Rg

|ψ|2dV = 1
π3/2

( ς
2
)3 ∞́

r=Rg

(
r

Rc

)2
e
−ς r2

4Rc2 d r
Rc

= 1
π3/2

( ς
2
)3 ∞́

t=
Rg
Rc

t2e−ς t2
4 dt = 1

π3/2

( ς
2
)3

lu
Rc´

t=
Rg
Rc

t2e−ς t2
4 dt = ∆mout

m .
(A27)

By utilizing the relation (A27), for a BH of 1038kg, a kg of ∆mout gives the contribution

1
π3/2

( ς

2

)3
∞̂

t=
Rg
Rc

t2e−ς t2
4 dt =

1
π3/2

( ς

2

)3
∞̂

1085

t2e−ς t2
4 dt = 10−38 <

1
π3/2

( ς

2

)3
10170e−ς 10170

4 10102 (A28)

and that
1

π3/2

( ς

2

)3
10170e−ς 10170

4 10102 > 10−38 (A29)

( ς

2

)3
e−ς 10170

4 =
( ς

2

)3
10
−ς 10170

4 lg10e
>∼ 10−310 (A30)

which, by posing ς = 10−n, leads to

10
− 10170−3n

4 lg10e
>∼ 10−309+3n, (A31)

to
10170−3n > 4

309− 3n
lg10e

∼ 102 (A32)

and to
0 < ζ <∼ 10−56. (A33)

Even for larger values of ∆mout
m ∼ 10−9, the order of magnitude (A33) remains practi-

cally the same. This is because the ratio Rc
Rg

determines ζ.
Thus, BHs with a small mass, close to the Planck one with Rc ∼ Rg, can lead to higher

values of ζ.
Mass distribution at short distance (r � Rg):
Near the center for x � 1, we must use the relation for the matter

Γα
µν

uαuν = u0u0∂1g00 = g00∂1g00 =
1

g00
∂1g00 ∼= ∂1 ln g00 (A34)

which leads to the equation (
∂1 ln

(
r− Rg

r

))
=
(

∂1 f(r)
)

, (A35)

with the solution

f(r) =
(

ln
(

r− Rg

r

)
+ C

)
. (A36)
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and the equation

ỹ|(x) = Rgy′(r) = ỹ(x)

(
3
x
− 1

x− 1

)
− Rgỹ2

(x) +
Rg

Rc2
x

x− 1

(
1− C0eln ( x−1

x )
)

(A37)

Furthermore, on the condition that limx→0|ỹ2
(x)| <<

|ỹ(x)|
x (to be checked at the end),

Equation (A14) simplifies to

ỹ|(x) = ỹ(x)

(
3
x
− 1

x− 1

)
+

Rg

Rc2
x

x− 1

(
1− C0

x− 1
x

)
= ỹ(x)

(
3
x
− 1

x− 1

)
− C0

Rg

Rc2 (A38)

where x � 1 and ỹ(x) =
u′

Rgu , leading to the solution

y(x) =

e
´ Rg

Rc2 C0e
−
´
( 3

x−
1

x−1 )dx
dr
e
´
( 3

x−
1

x−1 )dx

=

e
´ Rgc2

Rc2 C0e
−
´ 2

x dx
dx

+ C

e
´ 2

x dx

∼=
(

e
−C0

Rg2

Rc2
1

x2 + C

)
x2 = g′(r) =

1
Rg

g′(x)

(A39)

and, thence, for Rc � r � Rg,

limx→0|ψ| = limx→0G0e
´
(e
−C0

Rg2

Rc2
1

x2 +C)x2dx
= limx→0G0e

´
(1−C0

Rg2

Rc2
1

x2 +C)x2dx

= limx→0G0e
(1+C)

3 x3−C0
Rg2

Rc2 x ∼= G0e
−C0

Rg2

Rc2 x ∼= G0e−
1−ς2

e
Rg
Rc z

(A40)

where the identity C0 = 1−ς2

e
∼= e−1 has been used.
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