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Abstract: This work proposes a metaheuristic-based approach to hyperparameter selection in a multi-
layer perceptron to classify EMG signals. The main goal of the study is to improve the performance of
the model by optimizing four important hyperparameters: the number of neurons, the learning rate,
the epochs, and the training batches. The approach proposed in this work shows that hyperparameter
optimization using particle swarm optimization and the gray wolf optimizer significantly improves
the performance of a multilayer perceptron in classifying EMG motion signals. The final model
achieves an average classification rate of 93% for the validation phase. The results obtained are
promising and suggest that the proposed approach may be helpful for the optimization of deep
learning models in other signal processing applications.

Keywords: PSO; GWO; metaheuristic; multilayer perceptron; hyperparameters; EMG signals;
optimization; deep learning

1. Introduction

The classification of electromyographic (EMG) signals corresponding to movement is
a fundamental task in biomedical engineering and has been widely studied in recent years.
EMG signals are electrical records of muscle activity that contain valuable information
about muscle contraction and relaxation patterns. The accurate classification of these signals
is essential for various applications, such as EMG-controlled prosthetics, rehabilitation, and
the monitoring of muscle activity [1].

One recently used method to classify EMG signals is the multilayer perceptron (MLP).
This artificial neural network architecture has proven effective in signal processing and
pattern classification. An MLP consists of several layers of interconnected neurons, each
activated by a non-linear function. These layers include an input layer, one or more
hidden layers, and an output layer. Although MLPs are suitable for the classification of
EMG signals, their performance is strongly affected by the choice of hyperparameters.
Hyperparameters are configurable values that are not learned directly from the dataset but
do define the behavior and performance of the model. Some examples of hyperparameters
in the MLP context are as follows [2–4]:

• Number of neurons in hidden layers: This hyperparameter determines the generaliza-
tion power of the model. Too few neurons leads to underfitting, while too many leads
to overfitting.

• Learning rate: This factor determines how much the network weights are adjusted
during the learning process. A high learning rate prevents the model from converging,
while a low learning rate slows the training process.

• Training periods: This indicates the number of times that the network weights were
updated during training using the complete dataset. An insufficient number of epochs
leads to the undertraining of the model, while too many epochs leads to overtraining.
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• Training batch size: The number of training samples to use each time that the weights
are updated. The batch size affects the stability of the training process and the speed
of convergence of the model.

Traditionally, hyperparameter selection has involved a trial-and-error process of ex-
ploring different combinations of values to determine the best performance. However, this
approach is time-consuming and computationally intensive, especially with a large search
space. Automated hyperparameter search methods have been developed to address this
problem [5]. In this context, it is proposed to use the particle swarm optimization (PSO) and
gray wolf optimization (GWO) algorithms to select the hyperparameters of the MLP model
automatically. These metaheuristic optimization algorithms effectively find the optimal
solution in a given search space.

PSO and GWO work similarly, generating an initial set of possible solutions and
iteratively updating them based on their performance. Each solution is a combination of
MLP hyperparameters. The objective of these algorithms is to find the combination of
hyperparameters that maximizes the performance of the MLP model in the classification of
EMG signals [6].

The performed experiments show that hyperparameter optimization significantly
improves the performance of MLP models in classifying EMG signals. The optimized MLP
model achieved a classification accuracy of 93% in the validation phase, which is promising.
The main motivations of this work are the following.

• Comparison of algorithms: The main objective of this study is to compare and analyze
the selection of hyperparameters using metaheuristic algorithms. The PSO algorithm,
one of the most popular, was implemented and compared with the GWO algorithm,
which is relatively new. This comparison allows us to evaluate both algorithms’ perfor-
mance and efficiency in selecting hyperparameters in the context of the classification
of EMG signals.

• Exploration of new possibilities: Although the PSO and GWO optimization algorithms
have been widely used for feature selection in EMG signals, their application to
optimize classifiers has yet to be fully explored. This study seeks to address this gap
and examine the effectiveness of metaheuristic algorithms in improving rankings.

The current work is structured as follows. Section 2 provides a comprehensive lit-
erature review, offering insights into the proposed work. In Section 3, the methods and
definitions essential for the development of the project are outlined. Section 4 presents the
sequential steps to be followed in order to implement the proposed algorithm. The results
and discoveries obtained are presented in Section 5. Section 6 presents the interpretation of
the results from the perspective of previous studies and working hypotheses. Lastly, the
areas covered by the scope of this work are presented in Section 7.

2. Related Works

In signal processing, particularly electromyography, various approaches have been pro-
posed to enhance the accuracy of pattern recognition models. In 2018, Purushothaman et al. [7]
introduced an efficient pattern recognition scheme for the control of prosthetic hands using
EMG signals. The study utilized eight EMG channels from eight able-bodied subjects
to classify 15 finger movements, aiming for optimal performance with minimal features.
The EMG signals were preprocessed using a dual-tree complex wavelet transform. Subse-
quently, several time-domain features were extracted, including zero crossing, slope sign
change, mean absolute value, and waveform length. These features were chosen to capture
relevant information from the EMG signals.

The results demonstrated that the naive Bayes classifier and ant colony optimization
achieved average precision of 88.89% in recognizing the 15 different finger movements
using only 16 characteristics. This outcome highlights the effectiveness of the proposed
approach in accurately classifying and controlling prosthetic hands based on EMG signals.
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On the other hand, in 2019, Too et al. [8] proposed the use of Pbest-guide binary
particle swarm optimization to select relevant features from EMG signals decomposed by
a discrete wavelet transform, managing to reduce the features by more than 90% while
maintaining average classification accuracy of 88%. Moreover, Sui et al. [9] proposed
the use of the wavelet package to decompose the EMG signal and extract the energy and
variance of the coefficients as feature vectors. They combined PSO with an enhanced
support vector machine (SVM) to build a new model, achieving an average recognition
rate of 90.66% and reducing the training time by 0.042 s.

In 2020, Kan et al. [10] proposed an EMG pattern recognition method based on a
recurrent neural network optimized by the PSO algorithm, obtaining classification accuracy
of 95.7%.

One year later, in 2021, Bittibssi et al. [11] implemented a recurrent neural network
model based on long short-term memory, Convolution Peephole LSTM, and a gated
recurrent unit to predict movements from sEMG signals. Various techniques were evaluated
and applied to six reference datasets, obtaining prediction accuracy of almost 99.6%. In the
same year, Li et al. [12] developed a scheme to classify 11 movements using three feature
selection methods and four classification methods. They found that the TrAdaBoost-based
incremental SVM method achieved the highest classification accuracy. The PSO method
achieved classification accuracy of 93%.

Moreover, Cao et al. [13] proposed an sEMG gesture recognition model that combines
feature extraction, genetic algorithm, and a support vector machine model with a new
adaptive mutation particle swarm optimization algorithm to optimize the SVM parameters,
achieving a recognition rate of 97.5%.

In 2022, Aviles et al. [14] proposed a methodology to classify upper and lower extrem-
ity electromyography (EMG) signals using feature selection GA. Their approach yielded
average classification efficiency exceeding 91% using an SVM model. The study aimed
to identify the most informative features for accurate classification by employing GA in
feature selection.

Subsequently, Dhindsa et al. [15] utilized a feature selection technique based on binary
particle swarm optimization to predict knee angle classes from surface EMG signals. The
EMG signals were segmented, and twenty features were extracted from each muscle. These
features were input into a support vector machine classifier for the classification task.
The classification accuracy was evaluated using a reduced feature set comprising only
30% of the total features, to reduce the computational complexity and enhance efficiency.
Remarkably, this reduced feature set achieved accuracy of 90.92%, demonstrating the
effectiveness of the feature selection technique in optimizing the classification performance.

Finally, in 2022, Li et al. [16] proposed a lower extremity movement pattern recognition
algorithm based on the Improved Whale Algorithm Optimized SVM model. They used
surface EMG signals as input to the movement pattern recognition system, and movement
pattern recognition was performed by combining the IWOA-SVM model. The results
showed that the recognition accuracy was 94.12%.

3. Materials and Methods

This section shows the essential concepts applied in this work.

3.1. EMG Signals

An EMG signal is a bioelectric signal produced by muscle activity. When a muscle
contracts, the muscle fibers are activated, generating an electrical current measured with
surface electrodes. The recorded EMG signal contains information about muscle activity,
such as force, movement, and fatigue. The EMG signal has a low amplitude, typically
ranging from 0.1 mV to 10 mV. It is important to pre-process the signal to remove noise
and amplify it before performing any analysis. Furthermore, the location of the electrodes
on the muscle surface is crucial to obtain accurate and consistent EMG signals [17,18].
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In the context of movement classification using EMG signals, movements made by a
subject are recorded by surface electrodes placed on the skin over the muscles involved. The
resulting EMG signals are processed to extract relevant features and train a classification
model. Artifacts, such as unintentional electrode movements or electromagnetic interfer-
ence, affect the quality of the EMG signals and reduce the accuracy of the classification
model. Therefore, steps must be taken to ensure that the EMG signals are as clean and
accurate as possible [17,19].

3.2. Multilayer Perceptron

The MLP is an artificial neural network for supervised learning tasks such as clas-
sification and regression. It is a feedforward network composed of several layers of
interconnected neurons. Each neuron receives weighted inputs and applies a nonlinear
activation function to produce an output. The backpropagation algorithm is commonly
used to adjust the weights of the connections between neurons. This iterative process
minimizes the error between the output of the network and the expected output based on a
given training dataset [4,20].

The MLP consists of an input layer, a hidden layer, and an output layer. The input
layer receives input features and forwards them to the hidden layer, and the hidden layer
processes the features and passes them to the output layer. The output layer produces
the final output, a classification result. The specific architecture of the MLP, including the
number of neurons in each layer and the number of hidden layers, depends on the task
and the input data [4,20]. Below, in the pseudocode in Algorithm 1, the MLP algorithm
is presented.

Note that the following pseudocode assumes that the weight matrices and bias vectors
have already been initialized and altered by a suitable algorithm and that the activation
function σ has been chosen. The algorithm then takes an input vector x and passes it
through the MLP to produce an output vector y. The intermediate variables al and hl are
the input and output of each hidden layer, respectively. The activation function σ is usually
a non-linear function that allows the MLP to learn complex mappings between inputs
and outputs.

Algorithm 1 Multilayer Perceptron

1: Input: Input vector x, weight matrices Wi,j and bias vectors bi, number of hidden layers
L, activation function σ

2: Output: Output vector y
3: for l = 1 to L do
4: if l = 1 then
5: al = Wl−1,l x + bl
6: else
7: al = Wl−1,lσ(al−1) + bl

8: hl = σ(al)

9: y = hL

3.3. Particle Swarm Optimization and Gray Wolf Optimizer

The PSO algorithm is an optimization method inspired by observing the collective
behavior of a swarm of particles. Each particle represents a solution in the search space
and moves based on its own experience and the experience of the swarm in general. The
goal is to find the best possible solution to an optimization problem [21,22].

The PSO algorithm has proven effective in optimizing complex problems in various
areas, including machine learning. This work uses PSO to optimize the hyperparameters of
a multilayer perceptron in the classification of EMG signals. The pseudocode in Algorithm 2
shows the PSO algorithm [21].
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Algorithm 2 Particle Swarm Optimization

1: Input: Number of particles N, maximum number of iterations Tmax, parameters ω, φp,
φg, initial positions xi and velocities vi

2: Output: Global best position pbest and its corresponding fitness value fbest
3: Initialize positions and velocities of particles: xi ← random, vi ← 0
4: for t = 1 to Tmax do
5: for each particle i = 1, . . . , N do
6: Evaluate fitness of current position: fi ← fitness function(xi)
7: if fi < fpbesti

then
8: Update personal best position: pbesti

← xi, fpbesti
← fi

9: Find global best position: pbest ← argminpbestj
fpbestj

10: for each particle i = 1, . . . , N do
11: Update velocity: vi ← ωvi + φprp(pbesti

− xi) + φgrg(pbest − xi)
12: Update position: xi ← xi + vi

13: Return: pbest and fbest

In the algorithm, a set of parameters that regulate the speed and direction of movement
of each particle is used. These parameters are the inertial weight ω, the cognitive learning
coefficient φp, and the social learning coefficient φg. The current positions and velocities of
the particles are also used, as well as the personal and global best positions found by the
entire swarm [22].

On the other hand, the gray wolf optimizer is an algorithm inspired by the social be-
havior of gray wolves. This algorithm is based on the social hierarchy and the collaboration
between wolves in a pack to find optimal solutions to complex problems. The algorithm
starts with an initial population of wolves (candidate solutions) and uses an iterative pro-
cess to improve these solutions. The positions of wolves are updated during each iteration
based on their results, simulating a hunt and pack search. As the algorithm progresses, the
wolves adjust their positions based on the quality of their solutions and feedback from the
pack leaders. Lead wolves represent the best solutions found so far, and their influence
ripples through the pack, helping to converge toward more promising solutions. The
GWO has proven to be effective in optimizing complex problems in various areas, such as
mathematical function optimization, pattern classification, parameter optimization, and
engineering. The pseudocode in Algorithm 3 shows the GWO algorithm [6].

Algorithm 3 Gray Wolf Optimizer

1: Initialize the wolf population (initial solutions)
2: Initialize the position vector of the group leader (X∗)
3: Initialize the position vector of the previous group leader (X∗∗)
4: Initialize the iteration counter (t)
5: Define the maximum number of iterations (Tmax)
6: while t < Tmax do
7: for each wolf in the population do
8: Update the fitness value of the wolf
9: Sort the wolves based on their fitness values (from lowest to highest)

10: for each wolf in the population do
11: for each dimension of the position vector do
12: Generate random values (r1, r2)
13: Calculate the update coefficient (A)
14: Calculate the scale factor (C)
15: Update the position of the wolfs
16: Increment the iteration counter (t)
17: Obtain the wolf with the best fitness value (X∗)
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3.4. Hyperparameters

A hyperparameter is a parameter that is not learned from the data but is set before
training the model. Hyperparameters dictate how the neural network learns and how the
model is optimized. Ensuring the appropriate selection of hyperparameters is crucial in
achieving the optimal performance of the model (Nematzadeh, 2022) [23].

When working with MLPs, several critical hyperparameters significantly impact the
performance of the model. These include the number of hidden layers, the number of
neurons within each layer, the chosen activation function, the learning rate, and the number
of training epochs. The numbers of hidden layers and neurons per layer play a crucial
role in the capacity of the network to capture intricate functions. Increasing these aspects
enables the network to learn complex relationships within the data. However, it may also
result in overfitting issues [3,24].

The activation function determines the nonlinearity of the network and, therefore,
its ability to represent nonlinear functions. The most common activation function is the
sigmoid function, but others, such as the ReLU function and the hyperbolic tangent function,
are also frequently used [25].

The learning rate determines how much the network weights are adjusted in each
training iteration. If the learning rate is too high, the network starts to oscillate and not
converge, while a low learning rate causes the network to converge slowly and become
stuck in local minima. The number of training epochs determines how often the entire
dataset is processed during training. Too many epochs leads to overfitting, while too few
epochs leads to the suboptimality of the model. In this work, the PSO and GWO algorithms
are used to find the best values of the hyperparameters of the MLP network [3,25].

3.5. Sensitivity Analysis

In order to verify the impact that each of the characteristics selected by genetic algo-
rithm (GA) has on the classification of the EMG signal, a sensitivity analysis is performed.
This technique consists of removing one of the predictors during the classification process
and recording the accuracy percentage. This is to observe how the output of the model
is altered. If the classification percentage decreases, it indicates that the removed feature
significantly impacts the prediction [14]. This procedure is performed once the features
have been selected, to assess the importance of the chosen predictors through GA.

The procedure of calculating the sensitivity is as follows. Having a dataset X1, the
sensitivity of the predictor i is obtained from a new set X2, where the i th-predictor has
been eliminated. The characteristics that make up X1 are used as a second step, resulting in
the precision Y1. The third step is to use the new feature set X2 and obtain Y2. Finally, the
sensitivity for the i-th predictor is Y2 −Y1. A tool used to better visualize the sensitivity is
the percentage change, which is calculated as

Percentage change =
Y2 −Y1

Y1
× 100 (1)

4. Methodology

This section explains how the study was carried out, the procedures used, and how
the results were analyzed.

4.1. EMG Data

The dataset used in this study was obtained from [14] and comprised muscle signals
recorded from nine individuals aged between 23 and 27. The dataset included five men
and four women without musculoskeletal or nervous system disorders, obesity problems,
or amputations. The dataset captured muscle signals during five distinct arm and hand
movements: arm flexion at the elbow joint, arm extension at the elbow joint, finger flexion,
finger extension, and resting state. The acquisition utilized four bipolar channels and a
reference electrode positioned on the dorsal region of the wrist of each participant. During



Technologies 2023, 11, 87 7 of 22

the experimental procedure, the participants were instructed to perform each movement
for 6 s, preceded by an initial relaxation period of 2 s. Each action was repeated 20 times
to ensure adequate data for analysis. The data were sampled at a frequency of 1.5 kHz,
allowing for detailed recordings of the muscle signals during the movements.

The database was divided into two sets. The first one (90%) was used to select the
characteristics for the classification and hyperparameters. This first set was subdivided
into the training and validation sets, which were used to calculate the objective functions
of the metaheuristic algorithms. On the other hand, the second set (10%) was used for the
final validation of the classifier. This second set was not presented to the network until the
final validation stage, to check the level of generalization of the algorithm.

4.2. Signal Processing

This section explains the filtering process applied to the EMG signals before extracting
the features needed for classification. Digital filtering was done using a fourth-order
Butterworth filter with a passband ranging from 10 Hz to 500 Hz. This filtering aimed to
remove unwanted noise and highlight relevant signals.

It is important to note that the database was subjected to analog filtering from 10 Hz
to 500 Hz using a combination of a low-pass filter and a high-pass filter in series. These
controllers used the second-order Sallen–Key topology. In addition, a second-order Bainter–
Notch band-stop filter was produced to remove the 60 Hz interference generated by the
power supply.

4.3. Feature Extraction

The characterization of EMG signals is required for their classification since individual
signal values have no practical relevance for classification. Therefore, a feature extraction
step is needed to find useful information before extracting the features of the signal. The
features are based on the statistical method and are calculated in the time domain. Temporal
features are widely used to classify EMG signals due to their low complexity and high
computational speed. Moreover, they are calculated directly from the EMG time series.
Table 1 illustrates the characteristics used [14,26].

Table 1. Most common time-domain indicators in the classification of EMG signals.

N° Feature Extracted Abbr. N° Feature Extracted Abbr.

1 Average amplitude change AAC 14 Variance VAR
2 Average amplitude value AAV 15 Wavelength WL
3 Difference absolute standard deviation DASDV 16 Zero crossings ZC
4 Katz fractals FC 17 Log detector LOG
5 Entropy SE 18 Mean absolute value MAV
6 Kurtosis K 19 Mean absolute value slope MAVSLP
7 Skewness SK 20 Modified mean absolute value type 1 MMAV1
8 Mean absolute deviation MAD 21 Modified mean value type 2 MMAV2
9 Willson amplitude WAMP 22 RMS value RMS

10 Absolute value of the third moment Y3 23 Slope changes SSC
11 Absolute value of fourth moment Y4 24 Simple square integral SSI
12 Absolute value of the fifth moment Y5 25 Standard deviation STD
13 Myopulse percentage rate MYOP 26 Integrated EMG IEMG

Within the context of EMG signals, the features shown in Table 1 represent different
quantitative aspects generated by muscle activity. The definition or conceptualization of
each of these characteristics is presented below [17].
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1. Average amplitude change: The average amplitude change in the EMG signal over a
given time interval. It represents the average variation in the signal amplitude during
this period.

AAC =
1
N

N

∑
k=1
|xk+1 − xk| (2)

where xk is the k-th voltage value that makes up the signal and N is the number of
elements that constitute it.

2. Average amplitude value: This is the average of the amplitude values of the EMG sig-
nal. It indicates the average amplitude level of the signal during a specific time interval.

AAV =
1
N

N

∑
k=1

xk (3)

3. Difference absolute standard deviation: This is the absolute difference between the
standard deviations of two adjacent segments of the EMG signal. It measures extrac-
tion and abrupt changes in signal amplitude.

DASDV =

√√√√ 1
N − 1

N−1

∑
k=1

(xk+1 − xk)2 (4)

4. Katz fractals: This refers to the fractal dimension of the EMG signal. It represents the
self-similarity and structural complexity of the signal at different scales.

FD =
log10(N)

− log10(
m
L ) + log10(N)

(5)

where L is the total length of the curve or the sum of the Euclidean distances between
successive points, m is the diameter of the curve, and N is the number of steps in
the curve.

5. Entropy: This measures the randomness and complexity of the EMG signal. The
higher the entropy, the greater the harvest and unpredictability of the signal.

SE(X) = −
n

∑
k=1

P(xk) log2 P(xk) (6)

where SE(X) is the entropy of the random variable X, P(xi) is the probability that X
takes the value xi, and n is the total number of possible values that X can take.

6. Kurtosis: This measures the shape of the amplitude distribution of the EMG signal. It
indicates the number and concentration of extreme values relative to the mean.

K =
N

∑
k=1

(xk − x̄)4

Ns4 (7)

where N is the size of the dataset, xk is the k-th value of the signal, x̄ is the mean of
the data, and s is the standard deviation of the dataset.

7. Skewness: This is a measure of the asymmetry of the amplitude distribution of the
EMG signal. It describes whether the distribution is skewed to the left or the right
relative to the mean.

SK =
N

∑
k=1

(xk − x̄)3

Ns3 (8)
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8. Mean absolute deviation: This is the average of the absolute deviations of the ampli-
tude values of the EMG signal concerning its mean. It indicates the mean spread of
the data around the mean.

MAD =
1
N

N

∑
k=1
|xk − x̄| (9)

9. Wilson amplitude: This measures the amplitude of the EMG signal to a specific
threshold. It represents the muscle force or electrical activity generated by the muscle.

WAMP =
1
N

N−1

∑
k=1

f (|xk+1 − xk|) (10)

f (x) =


1 i f x > L,

0 otherwise
(11)

In this study, a threshold L of 0.05 V is considered.

10. The absolute value of the third moment: This is the absolute value of the third
statistical moment of the EMG signal. It is a proportion of information about the
symmetry and shape of the amplitude distribution.

Y3 =

∣∣∣∣∣ 1
N

N

∑
k=1

x3
k

∣∣∣∣∣ (12)

11. The absolute value of the fourth moment: This is the absolute value of the fourth
statistical moment of the EMG signal. It describes the concentration and shape of the
amplitude distribution.

Y4 =

∣∣∣∣∣ 1
N

N

∑
k=1

x4
k

∣∣∣∣∣ (13)

12. The absolute value of the fifth moment: This is the absolute value of the fifth statistical
moment of the EMG signal. It provides additional information about the shape and
amplitude distribution of the signal.

Y5 =

∣∣∣∣∣ 1
N

N

∑
k=1

x5
k

∣∣∣∣∣ (14)

13. Myopulse percentage rate: This is the average of a series of myopulse outputs, and the
myopulse output is 1 if the myoelectric signal is greater than a pre-defined threshold.

MYOP =
1
N

N

∑
k=1

φ(xk) (15)

where φ(xk) is defined as

φ(x) =


1 i f x > L,

0 otherwise
(16)

In this work, L is defined as 0.016.
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14. Variance: This measures the dispersion of the amplitude values of the EMG signal to
its mean. It indicates the lack of signal around its average value.

VAR =
1

N − 1

N

∑
k=1

xk
2 (17)

15. Wavelength: This is the average distance between two consecutive zero crossings in
the EMG signal. It is the information ratio regarding the frequency and period of
the signal.

WL =
n

∑
k=1
|xk − xk−1| (18)

16. Zero crossings: This refers to the number of times that the EMG signal crosses the
zero value in each time interval. It indicates polarity changes and signal transitions.

ZC =
n−1

∑
k=1

f (x) (19)

where

f (x) =


1 i f xkxk+1 < 0 and |xk − xk+1| ≥ L,

0 otherwise
(20)

17. Log detector: An envelope detector is used to measure the amplitude of the EMG
signal on a logarithmic scale. It helps to bring out the most subtle variations in
the signal.

LOG = exp

(
1
N

N

∑
k=1

log(|xk|)
)

(21)

18. Mean absolute value: This is the average of the absolute values of the EMG signal. It
represents the average amplitude level of the signal regardless of polarity.

MAV =
∑n

K=1 |xK|
N

(22)

19. Mean absolute value slope: The average slope of the EMG signal is calculated using
the absolute values of the amplitude changes in a specific time interval. It indicates
the average rate of change in the signal.

MAVSLPk = MAVk+1 −MAVk (23)

20. Modified mean absolute value type 1: This is a modified version of the average
of the absolute values of the EMG signal. It is used to reduce the effect of higher-
frequency components.

MMAV1 =
1
N

N

∑
k=1

wk|xk| (24)

where wk is defined as

wk =


1 0.25N ≤ k ≤ 0.75N,

0 otherwise
(25)
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21. Modified mean value type 2: This is a modified version of the average of the amplitude
values of the EMG signal. It is used to reduce the effect of higher-frequency components.

MMAV2 =
1
N

N

∑
k=1

wk|xk| (26)

where wk is defined as

wk =



1 0.25N ≤ k ≤ 0.75N,

4k
N k < 0.25N,

4(N−k)
N otherwise

(27)

22. Root mean square (RMS): This is the square root of the average of the squared values
of the EMG signal. It represents a measure of the effective amplitude of the signal.

RMS =

√√√√ 1
N

N

∑
k=1

xk
2 (28)

23. Slope changes: This refers to the number of slope changes in the EMG signal. It
indicates inflection points and changes in the direction of the signal.

SSC =
n

∑
k=1

f (x), (29)

where

f (x) =


1 i f xk < xi+1 and xk < xk−1,

1 i f xk > xi+1 and xk > xk−1,

0 otherwise

(30)

24. Simple square integral: This is the integral value of the squares of the EMG signal in a
specific time interval. It provides a measure of the energy contained in the signal.

SSI =
N

∑
k=1

x2
k (31)

25. Standard deviation: This measures the dispersion of the amplitude values of the EMG
signal for its average. It indicates the variability of the signal around its mean value.

STD =

√√√√ 1
N

N

∑
k=1

(xk − x̄)2 (32)

26. Integrated EMG: This is the integral value of the absolute amplitude of the EMG
signal in each time interval. It provides a measure of total muscle activity.

IEMG =
N

∑
k=1
|xk| (33)

After extracting the characteristics, a matrix of arrangements was created with the
features. This matrix comprised rows corresponding to the 20 tests carried out by eight
people and for the different movements (five movements of the right arm). In contrast, the
columns corresponded to the 26 predictors multiplied by the four channels.
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4.4. Feature Selection

Figure 1 shows the methodology for the selection of characteristics. GA was used to
select features to minimize the classification error of the validation data for a specific set
of features used as input to a multilayer perceptron. The model hyperparameters were
selected manually. The same input data from 9 of the 10 participants that comprised the
database were used for the feature and hyperparameter selection.
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Figure 1. Methodology based on the proposal given by [14] for the selection of features by GA.

Table 2 shows the initial parameters used in GA for feature selection. These parameters
include the initial population, the mutation rate, and the hyperparameters of the MLP,
among others.

Table 2. Configuration used by GA for the selection of classification features.

Name Configuration

Number of genes 104
Number of parents 100
Iteration number 25

Mutation percentage 2%
Selection operator Roulette wheel

Crossover operator Two-point
Mutation operator Uniform mutation

Hidden layers 4
Number of hidden neurons per layer 150

Activation function of the hidden layers Hyperbolic tangent
Activation function of the output layers Sigmoid

Learning rate 0.0001
Epochs 10

Mini-batch size 20
Training data 60% of the data
Testing data 20% of the data

Validation data 20% of the data

4.5. Design and Integration of the Metaheuristic Algorithms and MLP

For the selection of the hyperparameters of the neural network, the PSO and GWO
techniques were used. The cost criterion was the error of the validation stage. First, the
completed data were divided into training, testing, and validation sets. The training set
was used to train the neural network, the test set was used to fit the hyperparameters of the
network, and the validation set was used to evaluate the final performance of the model.

Table 3 shows the initial parameters used in the PSO algorithm for the selection of the
hyperparameters of the neural network. These parameters include the size of the particle
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population, the number of iterations, the range of values allowed for each hyperparameter
(hidden neurons, epochs, mini-batch size, and learning rate), and the initial values for the
coefficients of inertia, personal acceleration, and social acceleration. The Clerc and Kennedy
method was used to calculate the coefficients in the PSO algorithm [27].

Table 3. Configuration of initial parameters used for the PSO algorithm, calculated using the Clerc
and Kennedy method.

Name Configuration

Coefficients of inertia 0.729
Personal accelerations 1.49

Global acceleration 1.49
Number of particles 12

Max iterations 35
Hidden neurons [50 300]

Number of hidden layers 2
Epochs [5 40]

Mini-batch size [10 100]
Learning rate [0.0001 0.01]

Activation function of the hidden layers Hyperbolic tangent
Activation function of the output layers Sigmoid

Training data 60% of the data
Testing data 20% of the data

Validation data 20% of the data

On the other hand, Table 4 shows the initial values for the hyperparameter selection pro-
cess for GWO. Unlike PSO, only the initial number of individuals and the maximum number
of iterations must be selected, in addition to the intervals for the MLP hyperparameters.

Table 4. Configuration of initial parameters used for the GWO algorithm.

Name Configuration

Number of wolfs 25
Max iterations 35

Hidden neurons [50 300]
Number of hidden layers 2

Epochs [5 40]
Mini-batch size [10 100]
Learning rate [0.0001 0.01]

Activation function of the hidden layers Hyperbolic tangent
Activation function of the output layers Sigmoid

Training data 60% of the data
Testing data 20% of the data

Validation data 20% of the data

The different stages of the general methodology for the integration of the PSO and
GWO algorithms with an MLP neural network for hyperparameter selection are shown in
Figure 2.
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No

Figure 2. Proposed methodology for the selection of hyperparameters of MLP.

5. Results

This section presents and analyzes the results obtained from the multiple stages of the
methodology.

5.1. Feature Selection

Table 5 shows the characteristics that GA selected from 104 predictors. In total,
55 features were selected and used as inputs in an MLP to classify the data and select the
hyperparameters, representing a 47% reduction in features. A final classification percentage
of 93% was achieved.

Table 5. Features selected as the best subset of characteristics for classification of signals.

Acronym Channel

AAC 1 and 2
IEMG All
MAV 1, 2 and 4

MAVSLP 1 and 4
MMAV1 All

VAR 1, 2 and 4
FC 1, 2 and 4
K 1,2 and 4
Y3 1

MYOP 1, 3 and 4
AAV 2 and 4

DASDV 2 and 4
LOG 2 and 3

MMAV2 2 and 3
SSC 2
SSI 2, 3 and 4

STD 2, 3 and 4
WL 2, 4
ZC 2, 3 and 4

MAD 2, 3 and 4
WAMP 2, 3 and 4

SE 3
SK 3 and 4

RMS 4
Y4 4
Y5 4
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As shown in Figure 3, initially, the feature selection process had an error rate of 14%.
GA improved the performance during the first iterations and reduced the errors to 11%.
However, it stalled at a 10% error for eight iterations and an 8% error for 12 iterations. This
deadlock occurred when existing candidate solutions had already explored most of the
search space and new feature combinations that significantly improved the performance
were not found. At this point, GA became stuck in a local minimum. This deadlock was
overcome by implementing the mutate operation. In this case, it was possible that, during
the 10% error plateau period, some mutation introduced in a later iteration led to the
exploration of a new combination of features that improved the performance. This new
solution could have been selected and propagated in the following generations, finally
allowing it to reach a classification value of 93%.
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Figure 3. Reduction in the classification error due to the selection of features through GA.

In order to ensure that the feature selection process was carried out correctly and
that only predictors that allowed high classification were selected, a sensitivity analysis
was carried out. In Figure 4, the bar graph is shown, where the percentage decrease or
increase in precision can be observed concerning the classification obtained at the end of
the character selection stage, which was 93%.
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Figure 4. Sensitivity analysis of classification reduction percentages by predictor.
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It is observed that feature number 18, which corresponds to the mean absolute value
type 1 of channel 2, has the lowest percentage decrease in classification when eliminated.
On the other hand, the characteristics with the most significant contributions are the
absolute value of the fifth moment channel 4, integrated EMG channel 1, and modified
mean value type 1 channel 1. When comparing the characteristics that present a more
significant contribution against those of lesser contribution, it is seen that the type 1
modified mean value appears in both limits. The difference occurs in the channel from
which the characteristic is extracted. Therefore, the exact predictor can have more or less
importance in the classification depending on the muscle from which it is extracted.

5.2. Hyperparameter Selection

As shown in Figure 5, in the GWO implementation process, there is an error rate
of 14% with the initial values proposed for the hyperparameters. This indicates that the
initial solutions have yet to find the best set for the problem since, prior to the selection of
the hyperparameters, there is a classification percentage of 93%, and it is found that the
efficiency after the hyperparameter adjustment process is more significant than or equal to
that of the previous phase.
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Figure 5. Reduction in the error due to the selection of hyperparameters by GWO.

In iteration 4, a reduction in error to 7% is observed. The proposed solutions have
found a hyperparameter configuration that improves the model performance and reduces
the error. During subsequent iterations, they continue to adjust their positions and explore
the search space for better solutions. As observed during iterations 5 to 20, a deadlock is
generated. However, later, it is observed that the error drops to 3%, which indicates that
the GWO has managed to overcome this problem and find a solution that considerably
improves the classification.

A possible reason that the GWO was able to exit the deadlock and reduce the error
may be related to the intensification and diversification of the search. During the first few
iterations, the GWO may have been in an intensification phase, focusing on exploiting
promising regions of the search space based on the positions of the pack leaders. However,
after a while, the GWO may have moved into a diversification phase, where the gray
wolves explored new regions of the search space, allowing them to find a better solution
and reduce the error to 3%.

Table 6 shows the values obtained for the MLP hyperparameters using GWO, achiev-
ing classification in the validation stage of 97%. When comparing the values implemented
in the feature layer, it is noteworthy that the number of hidden layers was reduced from 4 to
2. On the other hand, the total number of neurons was reduced from 600 to 409. However,
the epochs increased from 10 to 33 after hyperparameter selection. This indicates that the
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model required more opportunities to adjust the weights and improve its performance on
the training dataset. Similarly, the mini-batch size is increased from 20 to 58, indicating that
it needs more information during each training stage to adjust the weights.

Table 6. Hyperparameters selected as the best subset for classification of signals given by GWO.

Name Value

Hidden neurons layer 1 204
Hidden neurons layer 2 205

Epochs 33
Mini-batch size 58
Learning rate 0.00223750

Finally, the learning rate increased from 0.0001 to 0.002237, which showed that the
neural network learned faster during training. The results indicate that the selection of the
hyperparameters improved the efficiency of the model by reducing its complexity, without
compromising its classification ability.

Figure 6 shows the error reduction in selecting hyperparameters by PSO. The best
initial proposal achieves a 13% error. After this, there is a stage where the error percentage
is kept constant until iteration 6. From there, the error is reduced to 8%. Once this error is
reached, it remains constant until iteration 27. Once iteration 28 begins, an error of 7% is
achieved, representing only a 1% improvement. This 1% improvement is not a significant
increase and could be attributed to slight variations in the MLP training weights.
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Figure 6. Reduction in the error due to the selection of hyperparameters by PSO.

On the other hand, Table 7 shows the calculated values of the MLP hyperparameters
through PSO; the precision achieved is less than that achieved by GWO, being 93%. Despite
this, a 50% reduction in hidden layers is also achieved, and it manages to maintain the
precision percentage obtained in the feature selection stage with fewer neurons than
achieved by GWO, being 359. However, similarly to the values obtained by GWO, the
epochs increase to 38. Moreover, the mini-batch size is increased from 50. Finally, the
learning rate increases from 0.0001 to 0.0010184. This smaller amount of information used
for training, and the smaller learning steps and smaller number of neurons, justify the 4%
decrease in classification.

When comparing Figures 5 and 6, it is observed that both start with error values close
to 15%, and, after the first few iterations, there is an improvement close to 50%, achieving
an error close to 8%. Hence, both algorithms have a period of stagnation, in which GWO is
superior as it obtains a second improvement of 50%, achieving errors of 3%. On the other
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hand, although, visually, PSO managed to overcome the stagnation, it only managed to
reduce the error to 1%, which does not represent a significant improvement and can be
attributed to variations within the MLP parameters, such as the weights, and not to the
selection of the hyperparameters.

Table 7. Hyperparameters selected as the best subset for classification of signals given by PSO.

Name Value

Hidden neurons layer 1 155
Hidden neurons layer 2 204

Epochs 38
Mini-batch size 46
Learning rate 0.0010184

5.3. Validation

After selecting the characteristics and hyperparameters, the rest of the signals that
comprised the database were used to validate the results obtained, since this information
had never been used before. Figure 7 shows the graphs of the error in the training stage
(60% of the data corresponding to 9 of 10 people, equivalent to 600 data to be classified),
the test stage (40% of the data corresponding to 9 out of 10 people, equivalent to 200 data
to classify), and the validation stage, which corresponded to data from the tenth person
(equivalent to 100 data). It is noted that the data to be classified are formed from the number
of people × the number of movements × the number of repetitions.
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Figure 7. The error in training, testing, and validating a model using (a) GWO hyperparameters and
(b) PSO hyperparameters.
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Additionally, these graphs allow us to verify the overfitting in the model. The training,
test, and validation errors were plotted in each epoch. If the training error decreases while
the test and validation errors increase, this suggests the presence of overfitting. However,
the results indicated that the errors decreased evenly across the three stages, suggesting
that the model can generalize and classify accurately without overfitting. In addition, the
percentage for the hyperparameter values given by GWO only decreased by approximately
4% for new input data, reaching 93% accuracy. Meanwhile, for PSO, 3% was lost in the
classification, achieving a final average close to 90%.

6. Discussion

The following comparative Table 8 presents the classification results obtained in pre-
views papers related to the subject of study, compared to the results obtained in this work.

Table 8. Comparative analysis of classification results.

Ref. Classification Model Accuracy

[14] SVM 91%
[15] SVM 90.92%
[13] SVM 97.5%
[10] Recurrent neuronal network 95.7%
[8] SVM 88%

[28] MLP 88.8%
[29] MLP 94.10%

This work MLP 93%

In this work, an approach based on hyperparameter optimization using PSO and GWO
was used to improve the performance of a multilayer perceptron in the classification of
EMG signals. This approach performed comparably to other previously studied methods.

However, during the experimentation, there were stages of stagnation. Several reasons
explain this lack of success. First, the intrinsic limitations of PSO and GWO, such as their
susceptibility to stagnation at local optima and their difficulty in exploring complex search
spaces, might have made it challenging to obtain the best combination of hyperparame-
ters [30]. Other factors that might have played a role include the size and quality of the
dataset used, since the multilayer perceptron requires a more considerable amount of data
to generalize [31].

Despite these limitations, the proposed approach has several advantages. On the one
hand, it allows us to improve the performance of the multilayer perceptron by optimizing
the key hyperparameters, which is crucial to obtain a more efficient model. Although the
performance is comparable with that of other methods, the metaheuristics-based approach
manages to reduce the complexity of the model, indicating its potential as an effective
strategy for the classification of EMG signals.

Furthermore, the use of PSO and GWO for hyperparameter optimization offers a
systematic and automated methodology, making it easy to apply to different datasets
and similar problems. It avoids manually tuning hyperparameters, which is messy and
error-prone.

It is important to note that each method has its advantages and limitations, and the
appropriate approach may depend on factors such as the size and quality of the dataset,
the complexity of the problem, and the available computational resources.

7. Conclusions

The proper selection of hyperparameters in MLPs is crucial to classify EMG signals
correctly. Optimizing these hyperparameters is challenging due to the many possible
combinations. This work uses the PSO and GWA algorithms to find the best combination
of hyperparameters for the neural network. Although 93% accuracy has been achieved in
classifying EMG signals, there is still room for improvement. Some possible factors that
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prevent higher accuracy may be the size of the EMG signal database. One way to overcome
these problems is to obtain more extensive and robust databases. It is also possible to use
data augmentation techniques to generate more variety in the signals. Another possible
solution could be to use more advanced EMG signal preprocessing techniques to reduce
noise and interference from unwanted signals. Different neural network architectures
and optimization techniques can also be considered to improve the classification accuracy
further. It is pointed out that the use of a reduced database in this work was part of an initial
and exploratory approach to assessing the feasibility of the methodology. This strategy
made it possible to obtain valuable information on the effectiveness of the approach before
applying it to more extensive databases.

In addition, it is essential to point out that, in this work, no normalization of the data
was performed, which might have further improved the performance of the MLP model.
Therefore, it is recommended to consider this step in future work to achieve better perfor-
mance in classifying EMG signals. It is essential to highlight that the cost function used in
metaheuristics algorithms is crucial for its success. In this work, the error in the validation
stage of the neural network was used as the cost function to be minimized. However,
alternatives include sensitivity, efficiency, specificity, ROC, and AUC. A cost function that
works well in one issue may not work well in another. Therefore, exploring different cost
functions and evaluating their performance is advisable before making a final decision.
Another factor that should be considered in this work is the initialization methodology
of the network weights. Such considerations and initialization alternatives are subjects
for future work that must be analyzed. In general, the selection of hyperparameters is a
fundamental step in the construction and training of neural networks for the classification
of EMG signals. With the proper optimization of these hyperparameters and the continuous
exploration of new techniques and methods, significant advances can be made in this area
of research.

Finally, although other algorithms are recognized for their robustness and ability to
handle complex data, the MLP proved a suitable option due to the nature of EMG signals.
The flexibility of the MLP to model nonlinear relationships was crucial since the interactions
between the components were highly nonlinear and time-varying. Furthermore, the MLP
has shown good performance even with small datasets, which was necessary considering
the limited data availability.

Author Contributions: Conceptualization, M.A.; methodology, M.A.; software, M.A.; validation,
M.A.; formal analysis, M.A. and D.I.; investigation, M.A.; resources, J.R.-R.; writing—original draft
preparation, M.A., J.R.-R. and D.I.; writing—review and editing, M.A., J.R.-R. and D.I.; visualization,
M.A.; supervision, J.R.-R. and D.I. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Access to the database used in this article can be obtained by emailing
any of the authors. Please note that the authors reserve the right to decide whether to share the
database and may have specific requirements or restrictions regarding its distribution.

Acknowledgments: We thank Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAH-
CYT) for the national scholarship for doctoral students, which allowed us to carry out this research.

Conflicts of Interest: The authors declare no conflict of interest.



Technologies 2023, 11, 87 21 of 22

References
1. Jia, G.; Lam, H.K.; Ma, S.; Yang, Z.; Xu, Y.; Xiao, B. Classification of electromyographic hand gesture signals using modified

fuzzy C-means clustering and two-step machine learning approach. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1428–1435.
[CrossRef]

2. Albahli, S.; Alhassan, F.; Albattah, W.; Khan, R.U. Handwritten digit recognition: Hyperparameters-based analysis. Appl. Sci.
2020, 10, 5988. [CrossRef]

3. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

4. Du, K.L.; Leung, C.S.; Mow, W.H.; Swamy, M.N.S. Perceptron: Learning, generalization, model selection, fault tolerance, and role
in the deep learning era. Mathematics 2022, 10, 4730. [CrossRef]

5. Vincent, A.M.; Jidesh, P. An improved hyperparameter optimization framework for AutoML systems using evolutionary
algorithms. Sci. Rep. 2023, 13, 4737. [CrossRef] [PubMed]

6. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
7. Purushothaman, G.; Vikas, R. Identification of a feature selection based pattern recognition scheme for finger movement

recognition from multichannel EMG signals. Australas. Phys. Eng. Sci. Med. 2018, 41, 549–559. [CrossRef]
8. Too, J.; Abdullah, A.; Mohd Saad, N.; Tee, W. EMG feature selection and classification using a pbest-guide binary particle swarm

optimization. Computation 2019, 7, 12. [CrossRef]
9. Sui, X.; Wan, K.; Zhang, Y. Pattern recognition of SEMG based on wavelet packet transform and improved SVM. Optik 2019,

176, 228–235. [CrossRef]
10. Xiu, K.; Xiafeng, Z.; Le, C.; Dan, Y.; Yixuan, F. EMG pattern recognition based on particle swarm optimization and recurrent

neural network. Int. J. Perform. Eng. 2020, 16, 1404. [CrossRef]
11. Bittibssi, T.M.; Zekry, A.H.; Genedy, M.A.; Maged, S.A. sEMG pattern recognition based on recurrent neural network. Biomed.

Signal Process. Control 2021, 70, 103048. [CrossRef]
12. Li, Q.; Zhang, A.; Li, Z.; Wu, Y. Improvement of EMG pattern recognition model performance in repeated uses by combining

feature selection and incremental transfer learning. Front. Neurorobot. 2021, 15, 699174. [CrossRef]
13. Cao, L.; Zhang, W.; Kan, X.; Yao, W. A novel adaptive mutation PSO optimized SVM algorithm for sEMG-based gesture

recognition. Sci. Program. 2021, 2021, 9988823. [CrossRef]
14. Aviles, M.; Sánchez-Reyes, L.M.; Fuentes-Aguilar, R.Q.; Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J. A novel methodology for

classifying EMG movements based on SVM and genetic algorithms. Micromachines 2022, 13, 2108. [CrossRef]
15. Dhindsa, I.S.; Gupta, R.; Agarwal, R. Binary particle swarm optimization-based feature selection for predicting the class of the

knee angle from EMG signals in lower limb movements. Neurophysiology 2022, 53, 109–119. [CrossRef]
16. Li, X.; Yang, Y.; Chen, H.; Yao, Y. Lower limb motion pattern recognition based on IWOA-SVM. In Proceedings of the Third

International Conference on Computer Science and Communication Technology (ICCSCT 2022), Beijing, China, 30–31 July 2022;
Lu, Y., Cheng, C., Eds.; SPIE: Bellingham, WA, USA, 2022.

17. Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J.; Gómez-Loenzo, R.A.; Jauregui-Correa, J.C. Support vector machine-based EMG
signal classification techniques: A review. Appl. Sci. 2019, 9, 4402. [CrossRef]

18. Raez, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and
applications. Biol. Proced. Online 2006, 8, 11–35. [CrossRef]

19. Bi, L.; Feleke, A.g.; Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for
human-robot collaboration. Biomed. Signal Process. Control 2019, 51, 113–127. [CrossRef]

20. Argatov, I. Artificial neural networks (ANNs) as a novel modeling technique in tribology. Front. Mech. Eng. 2019, 5, 30. [CrossRef]
21. Zemzami, M.; El Hami, N.; Itmi, M.; Hmina, N. A comparative study of three new parallel models based on the PSO algorithm.

Int. J. Simul. Multidiscip. Des. Optim. 2020, 11, 5. [CrossRef]
22. Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An overview of variants and advancements of PSO algorithm. Appl. Sci. 2022, 12, 8392.

[CrossRef]
23. Nematzadeh, S.; Kiani, F.; Torkamanian-Afshar, M.; Aydin, N. Tuning hyperparameters of machine learning algorithms and deep

neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases. Comput. Biol. Chem. 2022,
97, 107619. [CrossRef] [PubMed]

24. Nanda, S.J.; Panda, G. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 2014,
16, 1–18. [CrossRef]

25. Andonie, R. Hyperparameter optimization in learning systems. J. Membr. Comput. 2019, 1, 279–291. [CrossRef]
26. Asghari Oskoei, M.; Hu, H. Myoelectric control systems—A survey. Biomed. Signal Process. Control 2007, 2, 275–294. [CrossRef]
27. Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE

Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]
28. Fajardo, J.M.; Gomez, O.; Prieto, F. EMG hand gesture classification using handcrafted and deep features. Biomed. Signal Process.

Control 2021, 63, 102210. [CrossRef]
29. Luo, R.; Sun, S.; Zhang, X.; Tang, Z.; Wang, W. A low-cost end-to-end sEMG-based gait sub-phase recognition system. IEEE Trans.

Neural Syst. Rehabil. Eng. 2020, 28, 267–276. [CrossRef]

http://doi.org/10.1109/TNSRE.2020.2986884
http://dx.doi.org/10.3390/app10175988
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.3390/math10244730
http://dx.doi.org/10.1038/s41598-023-32027-3
http://www.ncbi.nlm.nih.gov/pubmed/36959245
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s13246-018-0646-7
http://dx.doi.org/10.3390/computation7010012
http://dx.doi.org/10.1016/j.ijleo.2018.09.040
http://dx.doi.org/10.23940/ijpe.20.09.p9.14041415
http://dx.doi.org/10.1016/j.bspc.2021.103048
http://dx.doi.org/10.3389/fnbot.2021.699174
http://dx.doi.org/10.1155/2021/9988823
http://dx.doi.org/10.3390/mi13122108
http://dx.doi.org/10.1007/s11062-022-09922-y
http://dx.doi.org/10.3390/app9204402
http://dx.doi.org/10.1251/bpo115
http://dx.doi.org/10.1016/j.bspc.2019.02.011
http://dx.doi.org/10.3389/fmech.2019.00030
http://dx.doi.org/10.1051/smdo/2019022
http://dx.doi.org/10.3390/app12178392
http://dx.doi.org/10.1016/j.compbiolchem.2021.107619
http://www.ncbi.nlm.nih.gov/pubmed/35033837
http://dx.doi.org/10.1016/j.swevo.2013.11.003
http://dx.doi.org/10.1007/s41965-019-00023-0
http://dx.doi.org/10.1016/j.bspc.2007.07.009
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1016/j.bspc.2020.102210
http://dx.doi.org/10.1109/TNSRE.2019.2950096


Technologies 2023, 11, 87 22 of 22

30. Tran, B.; Xue, B.; Zhang, M. Overview of particle swarm optimisation for feature selection in classification. In Lecture Notes in
Computer Science; Lecture notes in computer science; Springer International Publishing: Cham, Switzerland, 2014; pp. 605–617.

31. Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A survey of deep learning and its applications: A new paradigm to machine
learning. Arch. Comput. Methods Eng. 2020, 27, 1071–1092. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11831-019-09344-w

	Introduction
	Related Works
	Materials and Methods
	EMG Signals
	Multilayer Perceptron
	Particle Swarm Optimization and Gray Wolf Optimizer
	Hyperparameters
	Sensitivity Analysis

	Methodology
	EMG Data
	Signal Processing
	Feature Extraction
	Feature Selection
	Design and Integration of the Metaheuristic Algorithms and MLP

	Results
	Feature Selection
	Hyperparameter Selection
	Validation

	Discussion
	Conclusions
	References

