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Abstract: Image denoising is a critical task in computer vision aimed at removing unwanted noise
from images, which can degrade image quality and affect visual details. This study proposes a novel
approach that combines deep hybrid learning with the Self-Improved Orca Predation Algorithm
(SI-OPA) for image denoising. Leveraging Bidirectional Long Short-Term Memory (Bi-LSTM) and
optimized Convolutional Neural Networks (CNN), the hybrid model aims to enhance denoising
performance. The CNN’s weights are optimized using SI-OPA, resulting in improved denoising
accuracy. Extensive comparisons against state-of-the-art denoising methods, including traditional
algorithms and deep learning-based techniques, are conducted, focusing on denoising effectiveness,
computational efficiency, and preservation of image details. The proposed approach demonstrates
superior performance in all aspects, highlighting its potential as a promising solution for image-
denoising tasks. Implemented in Python, the hybrid model showcases the benefits of combining
Bi-LSTM, optimized CNN, and SI-OPA for advanced image-denoising applications.

Keywords: image denoising; deep learning; Bi-LSTM; CNN; SI-OPA

1. Introduction

The goal of image denoising, a crucial task in image processing and computer vi-
sion, is to eliminate the noise that is frequently added to images during image collecting,
transmission, or processing. Noise can degrade image quality, impair the precision of
image-based analysis, and negatively impact how well activities like object recognition,
segmentation, and tracking function later on [1,2]. As a result, image denoising has gar-
nered a lot of research attention over the years, leading to the development of several
techniques to solve it. But conventional image denoising techniques, like Masked Joint
Bilateral Filtering (MJBF) and CT- image based Generative adversarial network (CT-GAN)
approaches, frequently have several drawbacks, including high computational complexity,
poor adaptability to various noise types and levels, and difficulty preserving image details
and textures [3,4]. Deep learning-based methods have recently come to light as a potential
approach to image denoising, generating cutting-edge results in terms of both quantitative
measures and visual quality. The success of deep learning-based denoising can be due to
its capacity to acquire sophisticated image features and high-level representations directly
from the training data without depending on explicit handcrafted features or presumptions
on the noise distribution [5–7]. Deep learning models also enable joint optimization of
the denoising method and the image representation because they may be trained from
beginning to end. Discriminative and generative models are two main categories that can
be used to classify deep learning-based image-denoising techniques.
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CNN, among other discriminative models, can directly transfer noisy images to the
equivalent clean versions [8,9]. The purpose of training these models is to reduce the
reconstruction error between the predicted and ground-truth images. Typically, pairs of
clean and noisy images are used, and each pair is used to train a different model. On many
datasets, including BSD68, Set12, and Kodak24, CNN-based denoising techniques have
demonstrated outstanding performance, surpassing more established denoising techniques
by a significant margin. Additionally, CNN-based electrical noise removable models can
be denoised optoacoustic tomography data by significantly improving the data quality
of using multispectral optoacoustic tomography (MSOT). As well as, similarity informed
self learning (SISL) is proposed to remove seismic image, trained unsupervised or semi-
supervised, minimizing the need for annotated training data. While generative models,
on the other hand, the sample from the distribution of clean and noisy images based on
the observed noisy image, they seek to learn the underlying probability distribution of
both types of images [10–12]. The variational autoencoder (VAE), a kind of deep gen-
erative model that learns a latent representation of an image and a decoder that maps
this representation to a clean image, is the most widely used generative model for image
denoising. In several applications, including MRI denoising, video denoising, and low-
dose CT imaging, VAE-based denoising techniques have demonstrated promising results.
Additionally, VAE-based algorithms can produce numerous believable denoised images
by sampling from the learned distribution, which can be helpful for downstream tasks
like uncertainty assessment. Additional, theoretically-grounded blind and universal deep
learning to revmove additive guassion noise called Blind Universal Image Fusion Denoiser
(BUIFD), complex value convolutional neural network (CDNet). In CDNet. Nueral net-
work (NN) suffer from possible instability of back propagation computational issues for
gradient-descend-based training, so, it is better to design activiation function. As well as,
amulti stage image denoising CNN with the wavelet transform (MWDCNN) is suggested
to reduce noise [13–16].

Other deep learning architectures, in addition to CNNs, have also been investigated for
image denoising [17], including recurrent neural networks (RNNs), generative adversarial
networks (GANs), and attention-based models. The performance of RNN-based denoising
techniques is enhanced by using the temporal correlations between neighboring frames
in video sequences. The GAN-based denoising methods encourage the generated images
to be indistinguishable from the clean images by introducing an adversarial loss to the
denoising objective [18]. The efficiency and effectiveness of the denoising process can be
increased by using attention-based models to preferentially focus on the most informative
image regions and features [19,20]. Deep learning-based denoising techniques have been
successful, but there are still several issues that need to be resolved.

Present Proposed Work:

• Approach: Hybrid deep learning combining Bi-LSTM and optimized CNN.
• Objective: Improve image denoising performance.
• Bi-LSTM captures temporal dependencies, while the optimized CNN focuses on

spatial features.
• CNN weights are optimized using SI-OPA, a nature-inspired algorithm mimicking

orca hunting behavior.
• Extensive comparisons against state-of-the-art methods.

Previous Existing Works:

• Various image denoising methods: traditional algorithms and deep learning-based
techniques.

• Approach: Diverse algorithms with different denoising strategies.
• Evaluation: Various performance metrics and visual assessments.
• Baseline for comparison against the proposed hybrid approach.

The major contribution of this research work is as follows:
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• A hybrid deep learning approach is proposed, combining Bi-LSTM and an optimized
CNN, for the task of image denoising. Bi-LSTM is utilized to capture temporal
dependencies in the image data, while the optimized CNN focuses on extracting
spatial features. This combination aims to leverage the strengths of both architectures
for improved denoising performance.

• The weights of the CNN model are optimized using SI-OPA. OPA is a nature-inspired
optimization algorithm that mimics the hunting behavior of orcas. By applying
OPA to the CNN training process, the algorithm aims to enhance the performance
and convergence of the network. The OPA algorithm adapts the positions of the
orcas, representing the CNN weights, based on a fitness function that evaluates the
denoising performance.

• The performance of the proposed approach is compared against state-of-the-art im-
age denoising methods. Various existing methods for image denoising, including
traditional algorithms and deep learning-based techniques, are considered baselines.
Through comprehensive evaluation metrics and visual assessments, the proposed
hybrid approach is assessed in terms of denoising effectiveness, computational effi-
ciency, and its ability to preserve image details and textures. The comparison aims to
highlight the advantages and improvements offered by the proposed approach over
existing methods.

The subsequent sections of this paper are organized as follows: Section 2 provides
an overview of the literature reviews related to the subject matter. Section 3 presents the
proposed methodology. Section 4 presents the documented results of the study. Finally,
Section 5 concludes this paper.

2. Literature Review

In recent years, significant progress has been made in the field of image denoising,
driven by advancements in deep learning techniques. This literature review explores
several notable studies published between 2019 and 2022, which introduce innovative
approaches for denoising different types of images as follows:

In 2019, Dong et al. [21] used a novel deep-learning framework for 3-D hyperspectral
image (HSI) denoising, which encodes rich multi-scale information using a modified 3-D
U-net. The approach is computationally efficient and achieves substantial savings on the
number of network parameters by using a separable filtering strategy. Transfer learning is
also used to generate synthetic HSI data for initial training, which outperforms existing
model-based HSI denoising methods according to experimental results.

Another study by Hashimoto et al. (2019) [22] developed a DIP approach for dynamic
PET image denoising, which does not require pre-training or large datasets. Static PET data
are used as input, while dynamic PET images are used as training labels. The proposed
method is applied to both computer simulations and real data and produces less noisy and
more accurate images than other algorithms. The DIP method is found to perform better
than other post-denoising methods in terms of contrast-to-noise ratio and can be applied to
low-dose PET imaging.

Another study by Kokkinos and Lefkimmiatis (2019) [23] proposed a novel algo-
rithm for joint image demosaicking and denoising using a trainable residual denoising
network. Our approach is inspired by classical image regularization methods, large-scale
optimization, and deep learning techniques. The derived iterative optimization algo-
rithm outperforms previous approaches for both noisy and noise-free data across different
datasets and requires fewer trainable parameters than the current state-of-the-art solution.

In 2020, Liu et al. [24] proposed a joint approach to image denoising and high-level
vision tasks using deep learning, exploring how they can influence each other. The pro-
posed method includes a Convolutional Neural Network that fuses contextual information
on different scales and a deep neural network solution that cascades two modules for
image denoising and high-level tasks, respectively. Experimental results show that the
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approach can overcome performance degradation and produce visually appealing results
with guidance from high-level vision information.

A study by Wu et al. (2021) [25] used a self-supervised deep-learning method for
denoising dynamic computed tomography perfusion (CTP) images without requiring high-
dose reference images for training. The proposed method maps each frame of CTP to an
estimation from its adjacent frames, effectively removing noise due to independent noise
in the source and target. The method achieves improved image quality, spatial resolution,
and contrast-to-noise ratio compared to conventional denoising methods and supervised
learning approaches.

Li et al. (2021) [26] developed deep neural network (DNN)-based image denoising
methods on binary signal detection tasks in medical imaging. Traditional image quality
measures are not sufficient for evaluating DNN-based denoising methods. The study uses
task-based IQ measures to evaluate the performance of DNN-based denoising methods
on binary signal detection tasks. The results suggest the need for objective evaluation
of IQ for DNN-based denoising technologies to improve their effectiveness in medical
imaging applications.

Another study by Ma et al. (2022) [27] introduced a new deep network architecture,
called DBDnet, for image denoising. The network generates a noise map and gradually
updates it using a boosting function. The denoising process is framed as reducing the noise
of the noise map (NoN), and the proposed method includes a non-eliminating module to
simulate this process.

Chen et al. (2022) [28] used a novel denoising framework, TEMDnet, for the transient
electromagnetic method (TEM) signal denoising task. The existing DNN methods for TEM
denoising are not flexible enough to deal with various signal scales. TEMDnet transforms
the signal-denoising task into an image-denoising task by using a novel signal-to-image
transformation method and a deep CNN-based denoiser with a residual learning mecha-
nism. The proposed framework achieves better performance than traditional methods and
is more flexible for various signal scales.

Bahnemiri et al. (2022) [29] proposed a deep learning method for estimating the map
of local standard deviations of noise (sigma-map) to improve image denoising performance
in the case of non-stationary noise. The method achieves state-of-the-art accuracy in
estimating sigma maps and outperforms recent CNN-based blind denoising methods by up
to 6 dB in PSNR. It also provides better usage flexibility compared to other state-of-the-art
sigma-map estimation methods. The proposed method shows a small difference in PSNR
values compared to the ideal case when a ground-truth sigma map is available.

Wang et al. (2022) [30] developed a new denoising method for hyperspectral images
combining traditional machine learning and deep learning techniques. The method, called
NL-3DCNN, exploits the high spectral correlation of an HSI using subspace representation
and groups non-local similar patches for denoising using a 3-D Convolutional Neural
Network. Experimental results show that the proposed method outperforms state-of-the-
art methods for both simulated and real data.

In the realm of image denoising, conventional methods have faced limitations when
dealing with complex and noisy environments, particularly in the case of salt and pepper
noise. While deep learning techniques have displayed significant success in this domain,
there is still a pressing need to further improve noise reduction without compromising
image quality. Numerous image-denoising approaches, encompassing statistical, filtering-
based, and deep learning-based methods, have been proposed. Nevertheless, achieving
high-quality denoising outcomes continues to be a challenging task [1,8]. To address this
issue, this research puts forth a hybrid deep learning strategy that combines Bi-LSTM
with CNN. By coordinating the strengths of both models, this approach aims to attain
superior image-denoising results. Moreover, to further boost performance and overcome
the existing limitations in image denoising, the Self-Improved Orca Predation Algorithm
(OPA) is utilized to optimize the weights of the CNN. This adaptive optimization process
aims to enhance the denoising capabilities of the CNN, specifically targeting salt and
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pepper noise reduction. By fusing the power of Bi-LSTM and Optimized CNN with the
adaptive capabilities of OPA, this research seeks to achieve a novel and efficient solution
for high-quality image denoising in challenging and noisy environments. The proposed
approach has the potential to advance the field of image processing, offering improved
denoising results and finding applications in various domains such as medical imaging,
surveillance, and image. Table 1 shows the research gaps.

Table 1. Research Gaps.

Author Aim Methods Advantage Disadvantage

Wu et al. [25]

Develop
self-supervised deep

learning for CTP
denoising without

high-dose reference
images, improving

acute ischemic
stroke diagnosis.

Train network to map
CTP frames, removing
noise independently in
the source and target,
validated on real and
simulated datasets.

Eliminates need for
high-dose images,

facilitates adaptation to
different protocols and
improves image quality,
spatial resolution, and
contrast-to-noise ratio.

Performance reliant on
dataset quality and size,

potentially limited
effectiveness if dataset is

limited or biased.

Ma et al. [27]

Introduce DBDnet, a
deep boosting

denoising net, to
improve image

denoising by
eliminating noise of the

noise map.

Utilize residual
learning to generate a

noise map and
progressively reduce

noise of the noise map
via boosting function.

Effective denoising,
theoretical analysis,

NoN-eliminating module
outperforms

state-of-the-art methods
in Gaussian and real

image denoising.

Performance subject to
noise levels, potential

sensitivity to input
variations and
computational
complexity not

discussed in detail.

Bahnemiri et al. [29]

Propose a deep
CNN-based method for
estimating sigma-map

to address
non-stationary noise in

image denoising.

Use deep CNN to
estimate a local

patch-wise standard
deviation map

(sigma-map) for
non-stationary
noise removal.

Achieves state-of-the-art
accuracy in sigma-map

estimation for
non-stationary noise and

outperforms other
methods in denoising
flexibility and PSNR.

Still requires noise
estimation, performance
may vary based on noise

levels, CNN-based
approach may have

computational
overhead.

Li et al. [26]

Evaluate DNN-based
denoising methods for
medical images using

task-based IQ measures
to assess their impact

on signal
detection tasks.

Employ task-based IQ
measures for binary

signal detection tasks
under SKE with BKS

conditions to quantify
denoising impact.

Provides objective
evaluation of DNN-based
denoising methods and

assesses denoising
network depth’s impact

on task performance.

Task-specific evaluation
may not cover all

aspects of denoising,
limited to binary signal

detection tasks in
specific conditions.

Hashimoto et al. [22]

Propose dynamic PET
image denoising using

a deep image prior
(DIP) approach without

pre-training or
large datasets.

Employ DIP method
with static PET data as
input and dynamic PET

images as labels
for denoising.

Doesn’t require large
datasets or pre-training,
produces less noisy and
more accurate dynamic

PET images and is
applicable to low-dose

PET imaging.

Limited to PET image
denoising, may not fully

generalize to other
medical imaging tasks

or modalities.

3. Proposed Methodology

Image denoising is a crucial task in various applications like medical image analysis,
remote sensing, and computer vision. Traditional methods have limitations in complex
and noisy environments. Deep learning has achieved remarkable success, but further
improvements are needed. This research developed a hybrid approach combining Bi-LSTM
and optimized CNN to enhance image-denoising results. The weights of the CNN are
optimized using the Self-Improved Orca Predation Algorithm (SI-OPA) algorithm to reduce
noise while maintaining image quality.
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Step 1: Data Collection: The first step in the proposed methodology for image denois-
ing using deep learning with a hybrid Bi-LSTM and optimized CNN is data collection. In
this step, Gaussian noise is added to the collected input data.

Step 2: Denoising: A new hybrid deep learning model is introduced for image denois-
ing. This model combined Bi-LSTM and optimized CNN to improve denoising results.
The weights of the CNN are optimized using the Self-Improved Orca Predation Algorithm
(SI-OPA), which is an efficient optimization algorithm inspired by the hunting behavior of
Orcas. The SI-OPA aims to enhance the performance of the CNN by optimizing its weights.

Step 3: Evaluation: The proposed hybrid deep learning model can be evaluated using
metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
to assess its performance in image processing tasks. These metrics are commonly used
to measure the quality and similarity between the reconstructed or enhanced images and
their original versions. The overall architecture diagram is shown in Figure 1.
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3.1. Data Collection

Adding Gaussian noise to collected input data is a common technique used to simulate
noisy environments or to test the robustness of models against noise. Gaussian noise
follows a Gaussian distribution and can introduce random variations to the data. By
adding Gaussian noise to the input data, it is possible to evaluate the performance of the
proposed approach (hybrid deep learning model) under noisy conditions. When evaluating
the model’s performance with Gaussian noise, it is important to consider how the noise
affects the output and compare it to the original data. Metrics such as PSNR and SSIM can
still be used to assess the quality and similarity of the reconstructed or enhanced images,
even in the presence of added Gaussian noise. These metrics can provide insights into how
well the model can handle noise and preserve the important features of the data. Adding
Gaussian noise to collected input data can help assess the robustness and performance of
the proposed hybrid deep learning model in the presence of noise.

3.1.1. Pre-Processing

In this research work, preprocessing is performed using Gaussian Filtering to remove
noise, correcting intensity inhomogeneity via histogram equalization and skull stripping.

3.1.2. Skull Stripping

The collected raw MRI images are fed as input to skull stripping. Skull stripping is a
pre-processing step commonly used in medical image analysis to remove the non-brain
tissues, such as the scalp, skull, and meninges, from the brain MRI images. It is essential
for intensity inhomogeneity correction, which aims to address the problem of varying
signal intensities in different regions of the image due to the differences in magnetic field
strengths, acquisition protocols, and hardware variations. Intensity inhomogeneity in
MRI images can cause a significant problem in the segmentation and registration of brain
images as it affects the accuracy and reliability of these procedures. Skull stripping helps
to reduce intensity inhomogeneity by removing non-brain tissues that may cause signal
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variations. The removal of non-brain tissues also reduces the computational burden and
processing time required for segmentation and registration algorithms. Model-based and
atlas-based skull stripping procedures can be divided into two major categories. Model-
based approaches rely on statistical models that describe how the brain and non-brain
tissues are shaped and appear. Atlas-based methods involve registering a pre-labeled atlas
brain image to the patient’s image and using the resulting transformation to remove the
non-brain tissues. Gaussian filtering is employed on skull-stripped images.

3.1.3. Gaussian Filtering

In order to eliminate noise from an image, the Gaussian filtering technique is frequently
utilized. It is used in the pre-processing step of AD early detection to reduce noise in MRI
images. The method operates by convoluting the image using a bell-shaped-curve function
called a Gaussian kernel. The degree of image smoothing is based on the size of the kernel.
The image is made clearer and simpler to deal with by eliminating noise, which might
increase the precision of the following steps in the pipeline for AD detection. The size of
the kernel must be carefully set to balance noise reduction with retention of key visual
features because excessive smoothing can also result in loss of clarity and information in the
image. In the processing of multi-resolution images, Gaussian filters are frequently used.
The image must typically be convolutional with numerous Gaussian filters of increasing
spread in multi-resolution approaches. A finite impulse response method requires a lot of
work to compute the convolution for large values of the spread because there are many
filter coefficients involved. Pyramid techniques exploit the fact that a Gaussian function
can be factorized into a convolution of Gaussian functions with a smaller spread as per
Equation (1).

F(σ) = F(σ, ) ∗ F(σ2) ∗ . . . . . . ∗ F(σM), (1)

where σs ≤ σ and σ2 = ∑M
s=1 σ2

s .
The saving in calculations is achieved by using fewer filter coefficients for each F(σs),

since the spread σs is smaller than σ, and by subsampling the image after each interme-
diate convolution F(σs), since each Gaussian filter F(σs) reduces the bandwidth of the
images. The intensity inhomogeneity correction is performed on the noise-free image using
histogram equalization.

3.1.4. Histogram Equalization

Intensity inhomogeneity is a common problem in medical images, including MRI
scans, where some parts of the image may appear darker or brighter than other areas.
This can make it difficult to accurately detect and analyze features in the image, including
abnormalities such as those associated with AD. Histogram equalization is a technique used
to correct intensity inhomogeneity by enhancing the contrast of an image. This is performed
by redistributing the intensity values of the image so that they are spread out more evenly
across the available range. In other words, histogram equalization maps the original pixel
values to new pixel values that have a more uniform distribution, resulting in a more
balanced image that is easier to analyze. The histogram equalization process involves
creating a histogram of the image, which shows the distribution of pixel values across
the image. The histogram is then used to create a mapping function that adjusts the pixel
values of the image to improve the contrast. This mapping function can be applied to the
entire image or to specific regions of interest (ROIs) in the image. By applying histogram
equalization to MRI images, the intensity inhomogeneity can be corrected, leading to
improved accuracy in the detection of AD. After the pre-processing stage, the noise-free
image with corrected intensity inhomogeneity is passed on to the segmentation phase. In
this phase, the goal is to identify the region of interest (ROI) in the MRI image that contains
the brain structures necessary for AD detection.
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3.2. Denoising

Introducing a new hybrid deep learning model that combined Bi-LSTM and optimized
CNN for image denoising sounds promising. By leveraging the strengths of both archi-
tectures, it is possible to enhance the denoising results and achieve better image quality.
In this hybrid model, the Bi-LSTM component can capture long-term dependencies in the
image data, allowing for more effective denoising. The Bi-LSTM can learn and preserve
the contextual information in the image, which can aid in removing noise while retaining
important image features. The optimized CNN plays a crucial role in the model by using
SI-OPA to optimize its weights. SI-OPA, inspired by the hunting behavior of Orcas, is
an optimization algorithm designed to enhance the performance of CNN. By optimizing
the weights of the CNN using SI-OPA, the model can adaptively adjust its parameters to
improve its denoising capabilities. The proposed hybrid deep learning model combining
Bi-LSTM and optimized CNN shows promise for image denoising. By leveraging the
strengths of both components and employing SI-OPA for weight optimization, the model
aims to deliver improved denoising results and enhance the overall image quality.

3.3. Bi-LSTM

Networks are separately fed the retrieved horizontal and vertical spatial feature
sequences to produce deep spatial–angular features. Each Bi-LSTM [31] network can be
modeled as two separate conventional LSTM networks, one of which analyses the input
sequence in the forward direction (left to right) and the other which analyses it in the
backward direction. This allows each Bi-LSTM network to capture both forward and
backward relationships within a sequence (right to left). The outputs of the Bi-LSTM
network are then created by concatenating the hidden output states. The Bi-LSTM and its
associated layers are illustrated in Figure 2.
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Due to the recurrent connections between each unit, RNNs are effective in representing
hidden sequential patterns of data. However, updating the network parameters during
backpropagation is difficult because of the “vanishing gradient” problem and the RNN
recurrent structure’s “internal memory” feature. RNNs are, therefore, inefficient at com-
prehending early information and replicating the long-term temporal contexts of feature
vector sequences. Fortunately, LSTM avoids this fundamental issue because of its unique
cell structure, which consists of forget, input, and output gates controlled by sigmoid units
to decide what data to update and store in memory cells. Through linear connections, these
LSTM units transmit the previous data to the current time step”. The processes inside the
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LSTM cell may be expressed as follows given the current input vector At, the most recent
hidden state ht−1 and the most recent memory cell state ct−1 as per Equations (2)–(7).

Inpt = Sa(IA.Inp At + Rh. inpht−1 + bv(inp) (2)

Fgt = Sa(IA.Fg At + Rh. Fght−1 + bv(Fg) (3)

Outt = Sa(IA.Out At + Rh. Outht−1 + bv(Out) (4)

mt = B(IAt At + Rhcht−1 + bv(c) (5)

ct = Fgtct−1 + mt. Inpt (6)

ht = Outt.B(ct) (7)

where Inpt, Fgt, Outt, and mt stand for the input, forget, output, and input modu-
lation gates, respectively, at time t. Input weights, recursive weights, and bias vec-
tors are denoted by the letters IA, R, and bv. The sigmoid activation function is repre-
sented by Sa(A) =

(
1 + e−A)−1, while the hyperbolic tangent function is represented by

B(A) = (eA − e−A)/(eA + e−A). The tanh activation function derives. Fgt is a vector that
offers potential values to update the memory cell from the current input and the prior state.
The memory cell’s contents are controlled by the input gates it and Fgt, while the forget gate
Fgtv determines which previously communicated data should be discarded. The output
gate Outt stores the data for forthcoming operations that control the cell’s output at time t.
The output gate vector Outt and the current memory cell state Outt, after being projected
by the tanh function, may be multiplied element-wise to find the hidden state ht at time t.
Afterward, the memory cell is designated as ct is updated. By stacking two LSTM layers in
opposition to one another, we create a network that starts with the bidirectional temporal
patterns of feature vector sequences. In contrast to the outputs of a typical single-layer
LSTM at time t, the combined outputs of Bi-LSTM layers are influenced by signals from
both past and future vectors. Bi-LSTM networks may thus build higher-level global context
connections of sequential data from movies by including the additional information from
future data. CNN feature vectors acquired from the encoder and organized in temporal
sequences serve as the visual representation of each video clip. The temporal connections
of the characteristics are written as per Equation (8).

Dt = m(Fgt|Dt−1) (8)

In this context, Dt denotes the temporal data, Fgt denotes the feature vectors modeled
at time t, and m is the modeling function for temporal connections. Our study employed
the Bi-LSTM network to separately abstract the temporal representation of the past and
future data, which only takes into account the past data. The output of the LSTM was then
created by combining two of its hidden states”, which is given as per Equation (9).

Dt = m(Fgt|Dt−1, Dt+1) (9)

3.4. Optimized CNN

CNN [32], an Artificial Neural Network (ANN) based on deep learning theory, has
been widely used in the field of object identification and prediction. Images with a 2D grid
can automatically be processed using CNN to extract spatial characteristics. The activation
function, pooling layer, fully connected layer, and convolutional layer make up the majority
of CNN.
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(a) Convolutional Layer

The convolution process in the convolutional layer, which is used to extract visual
information and learn the map out between the input and output layers, replaces the matrix
multiplication operation in the classic neural network. Sharing parameters during the
convolution process allows the network to learn only one set of parameters, substantially
lowering the number of parameters and improving computing performance. A convolution
operation is described as per Equation (10).

vi,j = ∑C
q=0 ∑C

n=0 lq,nsk+q,b+n (10)

where lq,n is the scale of the convolutional kernel. sk,b is the pixel value of the image at k
and b.

(b) Activation Function

To avoid vanishing gradients and hasten training, CNN commonly uses rectified linear
unit (ReLU) activation functions. The following is a description of ReLU’s goal. This is
mathematically shown in Equation (11). The optimized CNN is illustrated in Figure 3.

ReLU(r) =
{

r r > 0
0 r ≤ 0

. (11)
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(c) Pooling layer

The pooling layer can concentrate the details in feature maps while reducing the
complexity of the computerized network. Max pooling is the common pooling layer. This
is mathematically shown in Equation (12).

MaxPool(e◦, m◦) =

 e◦ = f loor
(
(ei+2p−o)

c + 1
)

m◦ = f loor
(
(mi+2p−o)

c + 1
) (12)

where Floor(S) was the function of bringing together numbers, e◦ is the output height of
the feature map, and m◦ is the output width of the feature map. ei is the intake height of
feature maps, mi is the input breadth of feature maps, p is the padding of feature maps, o is
the kernel size of max pooling, and c is the kernel stride of max pooling. Using SI-OPA, the
weights of a CNN can be optimized to enhance its performance.

3.5. Self-Improved Orca Predation Algorithm (SI-OPA)

The Orca Optimization Algorithm [33] is a metaheuristic optimization algorithm
inspired by the hunting behavior of killer whales (orcas) in nature. It mimics the hunting
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strategies of orcas to solve optimization problems. In the Orca Optimization Algorithm,
a population of virtual orcas is initialized, and each orca represents a potential solution
to the optimization problem. The orcas swim through the search space, simulating the
exploration of potential solutions. The movement of orcas is guided by their individual
and collective behaviors.

3.5.1. Driving Phase

In the driving phase of the OPA algorithm, recent advancements have introduced
the integration of acceleration mechanisms, memory and learning, and social interactions.
These additions aim to enhance the algorithm’s performance and capabilities. Acceler-
ation mechanisms have been incorporated to improve exploration and exploitation. By
dynamically adjusting their movement speed based on solution quality, orcas can efficiently
navigate the search space, allowing for better exploration of potential solutions and ex-
ploitation of promising regions. Memory and learning mechanisms have been integrated to
enable orcas to learn from past experiences. By retaining the memory of successful solutions,
orcas can make informed decisions in future iterations, gradually improving the algorithm’s
performance over time. Social interactions have been introduced to promote information
sharing and cooperation among orcas. By communicating and exchanging information
about promising solutions, orcas collectively enhance their intelligence, facilitating the
convergence towards better solutions.

• Acceleration

In SI-OPA, acceleration mechanisms have been incorporated to enhance exploration
and exploitation capabilities. These mechanisms enable orcas to dynamically adjust their
movement speed based on solution quality, resulting in efficient navigation of the search
space. This, in turn, facilitates improved exploration of potential solutions and exploitation
of promising regions. The velocity update equations used in the algorithm during the chase
phase are given as per Equations (13) and (14).

Vtchase, 1, i = a ∗ (d ∗ xtbest− F ∗ (b ∗ Mt + c ∗ xti)) + w ∗ Vtchase, 1, i− 1 (13)

Vtchase, 2, i = e ∗ (xtbest− xti) + w ∗ Vtchase, 2, i− 1 (14)

Here, the weight or acceleration factor w controls the influence of historical velocity on
the current velocity. By adjusting this weight, the orcas can effectively maintain momentum
and exploit search directions that show promise. This allows them to traverse the search
space more efficiently, increasing the likelihood of finding optimal solutions.

• Memory And Learning

In SI-OPA, memory and learning mechanisms have been integrated to enable orcas
to benefit from past experiences. These mechanisms allow orcas to retain the memory of
successful solutions and make informed decisions in future iterations, gradually improving
the algorithm’s performance over time. The velocity update equation in the chase phase of
the algorithm is modified to incorporate memory and learning given as per Equation (15).

Vtchase, 1, i = a ∗ (d ∗ xtbest− F ∗ (b ∗ Mt + c ∗ xti)) + w ∗ Vtchase, 1, i
−1 + m ∗ (Xbest− xti)

(15)

Here, weight or learning factor m determines the influence of the historical best
position (Xbest) on the current velocity. By adjusting this weight, orcas can effectively
learn from successful past experiences and adapt their movement accordingly. This al-
lows them to exploit promising search directions based on their memory of previously
successful solutions.

• Social Interactions

In SI-OPA, social interactions among the orcas are introduced to facilitate information
sharing and collaboration during the driving process. These interactions enable orcas
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to exchange valuable information and cooperate, leading to improved exploration and
exploitation of the search space. The velocity update equation in the chase phase of the
algorithm is further modified to incorporate social interactions:

Vtchase, 1, i = a ∗ (d ∗ xtbest− F ∗ (b ∗ Mt + c ∗ xti)) + w ∗ Vtchase, 1, i
−1 + s ∗ (Xsocial − xti)

(16)

As per Equation (16), the weight or social factor s determine the influence of the social
information, Xsocial, on the current velocity. The social information can be obtained from
neighboring orcas or a global best position, depending on the specific implementation of
the algorithm. By adjusting this weight, orcas can effectively incorporate the knowledge
and experiences of others, promoting cooperation and exploration.

3.5.2. Encircling Phase

In the encircling phase of the SI-OPA algorithm, a “bubble-net” mechanism is em-
ployed to facilitate the encircling behavior of the orcas. The bubble-net mechanism is
inspired by the cooperative hunting technique used by some marine mammals, such as
humpback whales. In this mechanism, a group of orcas collaboratively encircles a target,
similar to how humpback whales create a net of bubbles to trap fish. During the encircling
phase, the orcas work together to surround the target solution by forming a virtual “net”
around it. Each orca adjusts its position and movement to contribute to the formation of
the net. By coordinating their actions, the orcas create a collective force that effectively
encircles the target solution.

• Bubble net Formation

During the encircling phase of the OPA algorithm, the orcas can utilize a Bubblenet
formation inspired by the cooperative hunting technique employed by orcas in nature.
The Bubblenet formation helps the orcas to corral and concentrate the target solution in
a specific area, enhancing their collective hunting efficiency. The position update equa-
tion for the third chasing technique, incorporating the Bubblenet formation given as per
Equations (17) and (18).

xtchase, 3, i, k = xtd1, k + u ∗ (xtd2, k− xtd3, k) + b ∗ Bt (17)

Bt = ∑ Nn (xtbest− xti)/Nn (18)

Here, xtchase, 3, i, k represents the updated position after selecting the third chasing
technique with Bubblenet formation. The Bubblenet formation is achieved by adding a
weighted sum of the differences between the current position of each orca (xti) and the
historical best position (xtbest) across all orcas. The weight b determines the influence of
the Bubblenet formation on the movement, allowing the orcas to coordinate their positions
to create the virtual net. To calculate the Bubblenet force (Bt), the differences between the
current positions and the historical best position for all orcas are summed and divided by
the total number of orcas (Nn).

• Bubblenet Position Changes

During the encircling phase, the positions of the orcas are adjusted based on the
Bubblenet formation, considering the fitness function. The position update is determined
as per Equation (19).

xtchase, i = xtchase, i i f f (xtchase, i) < f (xti) (19)

If the fitness value of the position after incorporating the Bubblenet formation (xtchase, i)
is better than the fitness value of the current position (xti), the position remains unchanged.
This ensures that the orcas maintain their positions if the Bubblenet formation does not
lead to an improvement in the fitness value.

xtchase, i = xti i f f (xtchase, i) ≥ f (xti) (20)
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However, as per Equation (20), if the fitness value of the position after incorporating
the Bubblenet formation is not better or equal to the fitness value of the current position,
the position is updated to be the current position. This prevents the orcas from moving to a
less optimal position. By considering the fitness function in the position update process,
the orcas in the Bubblenet formation focus on maintaining or improving their fitness levels.
This ensures that the Bubblenet formation contributes to the exploration and exploitation
of the search space, guiding the orcas toward better solutions.

• Adaptive Attack Speed

In the attacking phase, adaptive attack speeds are introduced to dynamically adjust
the movement speed of the orcas based on their proximity to the prey and the current
iteration. This adaptive speed allows the orcas to optimize their attack strategy and increase
their chances of capturing the prey. The adaptive attack speed function, denoted as S(t),
calculates the appropriate attack speed based on factors such as distance to the prey, prey
movement, and convergence criteria. The specific calculation of S(t) depends on the
problem and can be designed accordingly. The velocity updates for the orcas during the
attacking phase are given as per Equations (21) and (22).

Vtattack, 1, i = (xt1 + xt2 + xt3 + xt4)/4− xtchase, i ∗ S(t) (21)

Vtattack, 2, i = (xtchase, d1 + xtchase, d2 + xtchase, d3)/3− xti ∗ S(t) (22)

Here, Vtattack, 1, i represents the velocity update for the orcas in the first attacking
technique, and Vtattack, 2, i represents the velocity update for the orcas in the second
attacking technique. The updates are calculated based on the positions of the orcas and
their chase targets, taking into account the adaptive attack speed determined by S(t).
Finally, the new positions of the orcas during the attacking phase are determined as per
Equation (23).

xtattack, i = xtchase, i + g1 ∗ Vtattack, 1, i + g2 ∗ Vtattack, 2, i (23)

Here, xtattack, i represents the updated position of the orcas, taking into account the
chase position, the velocity updates, and the weights g1 and g2. The weights g1 and g2
control the influence of the velocity updates on the movement, allowing for the fine-tuning
of the attack strategy. The pseudo-code for SI-OPA is given in Algorithm 1.

Algorithm 1: SI-OPA

Input: population size, maximum number of iterations
Output: best solution
Begin
Initialize SI-OPA parameters

• Driving phase
Acceleration: navigate the search space for better exploration and exploitation,

velocity updated as per Equations (13) and (14)
Memory and learning enable orcas to remain successful solutions, inform decisions

and enhance algorithm performance as per Equation (15)
Social interaction in SI-OPA enable orcas to share information, co-operate and

enhance search space exploration.
• Encircling phase

Update the position using Equations (17) and (18) with bubblenet formation for
efficient collective hunting in SI-OPA.

Fitness updation using Equation (19)
Velocity update during attacking phase with adaptive attack speed based on

proximity to prey and iteration using Equations (21) and (22).
Update the new position as per Equation (23).

End

The parameters used in the proposed system are number of population = 10;
epoch/iteration = 100; p1 = 0.1; e = 0.2; upper bound = 1; lower bound = 0; F = 2; q = 0.1.



Technologies 2023, 11, 111 14 of 20

4. Result and Discussion

The proposed model has been implemented in PYTHON. The dataset was used to
gather the evaluation’s dataset [34]. The proposed model is compared with various existing
techniques like Orca Predation Algorithm (OPA), Convolutional Neural Network (CNN),
Bidirectional Long Short-Term Memory (Bi-LSTM), Interdependent Self-Cooperative Learn-
ing (ISCL) [5]. The performance metrics Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) are commonly used to assess the quality and similarity between
two images. These metrics can be utilized to evaluate the performance of the proposed
model for Image 1 to Image 5. PSNR measures the peak signal-to-noise ratio between the
original image and the reconstructed image, indicating the fidelity of the reconstruction.
Higher PSNR values indicate better image quality and closer resemblance to the original
image. On the other hand, SSIM compares the structural similarities between the original
and reconstructed images, considering factors like luminance, contrast, and structural
content. A higher SSIM value indicates a higher similarity between the two images. The
input size of the image is 150 × 150.

4.1. Dataset Description

The classical dataset is used in this work. This dataset provides an abundance of visual
data that can improve the recommendation system’s accuracy significantly. Developers can
use this dataset to train machine learning models that analyze images of fashion products,
spot trends, and affinities and produce precise recommendations based on these visual
aspects. The dataset allows for the development of a recommendation engine that accom-
modates a variety of fashion tastes and preferences thanks to its wide selection of apparel
products. The collection also includes high-quality images, guaranteeing the visibility of
the fashion items and making it easier to extract visual cues to improve suggestion accuracy.
The dataset also contains images taken from various views and angles, further enhancing
the analysis-ready visual data. Overall, the Myntra Fashion Product Dataset is a useful tool
for developers looking to create a fashion recommendation system utilizing image data.
By utilizing the dataset’s high-quality images and detailed visual information, developers
may improve the shopping experience for consumers.

4.2. Overall Performance Analysis

Table 2 presents the performance analysis of different existing algorithms proposed
for PSNR. The suggested method yields an OPA of 25.309635 and a PSNR of 20.746605
for Image 1. Comparatively speaking to Bi-LSTM, CNN, and ISCL, the PSNR value is
low [5]. In comparison to the other algorithms, the OPA value is moderate. The suggested
method for Image 2 displays a PSNR of 22.015400, which is greater than Bi-LSTM but
lower than CNN and ISCL [5]. The proposed method’s OPA (24.291343) is comparable
to that of the previous algorithms. With a PSNR of 23.906961 for Image 3, the suggested
method outperforms Bi-LSTM and ISCL [5] but falls just short of CNN. The proposed
method’s OPA (27.426644) is competitive with those of the other algorithms. In contrast
to Bi-LSTM and ISCL [5], the suggested technique for image four yields a high PSNR of
22.167478, indicating enhanced image quality. The proposed method’s OPA (25.754681) is
competitive with those of the other algorithms. With a PSNR of 20.177721 for Image 5, the
suggested method consistently outperforms other methods like Bi-LSTM and ISCL [5] but
falls short of CNN. The proposed method’s OPA (24.068178) is competitive with those of
the other algorithms.

Table 3 presents the performance analysis of different existing algorithms proposed
for SSIM. For Image 1, the proposed approach achieves an SSIM of 0.785890 and an OPA
of 0.813365, which is comparable to the ISCL algorithm and higher than the Bi-LSTM
and CNN algorithms. For Image 2, the proposed approach shows the highest SSIM of
0.890331, indicating better structural similarity compared to other algorithms. The OPA
of the proposed approach (0.834619) is also competitive with the other algorithms. In
Image 3, the proposed approach performs well with an SSIM of 0.799917 and an OPA of
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0.704974, outperforming the Bi-LSTM, CNN, and ISCL algorithms. Image 4 demonstrates
that the proposed approach achieves a high SSIM of 0.942487, indicating excellent structural
similarity compared to other algorithms. The OPA of the proposed approach (0.755377) is
also competitive with the other algorithms. In Image 5, the proposed approach performs
consistently with an SSIM of 0.877609 and an OPA of 0.799414, surpassing the Bi-LSTM,
CNN, and ISCL algorithms.

Table 2. Existing and proposed performance analysis.

PSNR OPA Bi-LSTM CNN ISCL Proposed

Image 1 20.746605 25.309635 26.057357 29.670801 33.970612

Image 2 22.015400 24.291343 27.803250 29.935921 32.459123

Image 3 23.906961 27.426644 28.677967 29.453383 31.565056

Image 4 22.167478 25.754681 27.452890 30.045432 31.476256

Image 5 20.177721 24.068178 24.278986 29.264613 29.340515

Table 3. Existing and proposed performance analysis.

SSIM OPA Bi-LSTM CNN ISCL Proposed

Image 1 0.785890 0.813365 0.753839 0.840116 0.841548

Image 2 0.840124 0.834619 0.702283 0.849532 0.890331

Image 3 0.704974 0.614622 0.644379 0.742919 0.799917

Image 4 0.827343 0.755377 0.762549 0.927048 0.942487

Image 5 0.799414 0.689810 0.711497 0.753433 0.877609

4.3. Overall Graphical Representation

The PSNR for the OPA, Bi-LSTM, CNN, ISCL, and the proposed model with hybrid
Bi-LSTM with OPA is depicted in Figure 4. The quality of the reconstructed images is
quantified by the PSNR metric, which measures the ratio between the power of the noise
and the maximum possible power of the signal. The PSNR in the proposed method is better
than existing works.

The SSIM values for the existing techniques and the proposed model are shown
in Figure 5. The similarity between the original and reconstructed images is evaluated
using the SSIM metric, which takes into account factors such as luminance, contrast, and
structural content.

The denoising performance of the proposed model is demonstrated in Figure 6. The fig-
ure is divided into two subfigures: (a) showcases the original noisy images, and (b) presents
the corresponding denoised images generated by the proposed model. Table 4 depicts
the base paper comparison. Also, Tables 5 and 6 show the statistical analysis and ablation
study, respectively.

Table 4. Base paper comparison.

Metrics CGAN—JSRT Datasets [7] SURE-LET [9], σ = 20 Proposed

PSNR 33.264 23.5677 33.9706

SSIM 0.9206 0.8234 0.8415

Table 5. Statistical analysis.

Statistical Analysis OPA Bi-LSTM CNN ISCL [5] Proposed

Image 1 0.791549 0.741559 0.714910 0.822610 0.870378

Image 2 0.799414 0.755377 0.711497 0.840116 0.877609
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Table 5. Cont.

Statistical Analysis OPA Bi-LSTM CNN ISCL [5] Proposed

Image 3 0.052985 0.090551 0.047251 0.075952 0.053493

Image 4 0.704974 0.614622 0.644379 0.742919 0.799917

Image 5 0.840124 0.834619 0.762549 0.927048 0.942487
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with OPA, Bi-LSTM, CNN, ISCL, and Hybrid Bi-LSMT with OPA (d) Image 4 with OPA, Bi-LSTM, 
CNN, ISCL, and Hybrid Bi-LSMT with OPA and (e) Image 5 with OPA, Bi-LSTM, CNN, ISCL, and 
Hybrid Bi-LSMT with OPA. 

The denoising performance of the proposed model is demonstrated in Figure 6. The 
figure is divided into two subfigures: (a) showcases the original noisy images, and (b) 

Figure 5. SSIM (a) Image 1 with OPA, Bi-LSTM, CNN, ISCL, and Hybrid Bi-LSMT with OPA, OPA,
LSTM (b) Image 2 with OPA, Bi-LSTM, CNN, ISCL, and Hybrid Bi-LSMT with OPA (c) Image 3 with
OPA, Bi-LSTM, CNN, ISCL, and Hybrid Bi-LSMT with OPA (d) Image 4 with OPA, Bi-LSTM, CNN,
ISCL, and Hybrid Bi-LSMT with OPA and (e) Image 5 with OPA, Bi-LSTM, CNN, ISCL, and Hybrid
Bi-LSMT with OPA.
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Image 1 0.791549 0.741559 0.714910 0.822610 0.870378 
Image 2 0.799414 0.755377 0.711497 0.840116 0.877609 
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Table 6. Ablation Study.

Ablation D = 3 D = 5 D = 10 D = 15 D = 20

Image 1 0.829547 0.824112 0.693441 0.838836 0.879122

Image 2 0.696099 0.606884 0.636266 0.733566 0.789846

Image 3 0.775995 0.803125 0.744348 0.829539 0.830953

Image 4 0.789349 0.681125 0.702540 0.743947 0.866560

Image 5 0.816927 0.745867 0.752949 0.915377 0.930621

5. Conclusions

In computer vision, removing undesired noise from images is a critical task known
as “image denoising”. Noise can drastically reduce the quality of an image, reducing
its details, textures, and overall aesthetic appeal. It can come from a variety of sources,
including sensor limits, transmission problems, and compression artifacts. Using the self-
improved Orca Predation Algorithm (SI-OPA) for image denoising, this work proposed a
revolutionary method that harnessed the power of hybrid deep learning. The suggested
hybrid approach sought to improve denoising performance by combining the benefits
of optimized Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term
Memory (Bi-LSTM). In particular, SI-OPA was used to specifically optimize the CNN’s
weights, which enhanced performance and provided more precise noise removal. A de-
tailed comparison with cutting-edge image denoising techniques was made to gauge the
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effectiveness of the suggested strategy. With a focus on denoising efficacy, computational
economy, and preservation of image details and textures, the comparison covered a variety
of conventional algorithms and deep learning-based solutions. The benefits and improve-
ments provided by the suggested approach were emphasized through this comparative
analysis, highlighting its potential as a promising option for image-denoising tasks. Python
was used to put the proposed model into practice.
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