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Abstract: Color fading naturally occurswith time under light illumination. It is triggered by the high
photon energy of light. The rate of color fading and darkening depends on the substance, lighting
condition, and storage conditions. Color fading is only observed after some time has passed. The
current color of objects of interest can only be compared with old photographs or the observer’s per‑
ception at the time of reference. Color fading and color darkening rates between two or more points
in time in the past can only be determined using photographic images from the past. For objective
characterization of color difference between two or more different times, quantification of color in
either digital or printed photographs is required. A newly developed image analysis and compar‑
ison software (PicMan) has been used for color quantification and pixel‑by‑pixel color difference
mapping in this study. Images of two copies of Japanese wood‑block prints with and without color
fading have been selected for the exemplary study of quantitative characterization of color fading
and color darkening. The fading occurred during a long period of exposure to light. Pixel‑by‑pixel,
line‑by‑line, and area‑by‑area comparisons of color fading and darkening between two images were
very effective in quantifying color change and visualization of the phenomena. RGB,HSV, CIE L*a*b*
values between images and their differences of a single pixel to areas of interest in any shape can be
quantified. Color fading and darkening analysis results were presented in numerical, graphical, and
image formats for completeness. All formats have their own advantages and disadvantages over the
other formats in terms of data size, complexity, readability, and communication among parties of
interest. This paper demonstrates various display options for color analysis, a summary of color fad‑
ing, or color difference among images of interest for practical artistic, cultural heritage conservation,
and museum applications. Color simulation for various moments in time was proposed and demon‑
strated by interpolation or extrapolation of color change between images, with and without color
fading, using PicMan. The degree of color fading and color darkening over the various moments in
time (past and future) can be simulated and visualized for decision‑making in public display, storage,
and restoration planning.

Keywords: color fading; color quantification; color difference; image analysis; statistical analysis;
software; pixel‑by‑pixel color difference mapping

1. Introduction
The energy of photons has the potential to cause irreversible damage to objects [1–3].

The photon energy increaseswith the shortening ofwavelength. For the visiblewavelength
range of 380–700 nm (violet to red), the photon energy corresponds to 3.26–1.77 eV [4].
The higher energy side of photons, from blue to ultraviolet (UV) light, can be especially
deleterious to colorants, resulting in visible fading [5]. Conservators understand that light‑
sensitive objects have a finite life for display under illumination. Most collecting institu‑
tions often adopt guidelines to indicate the lighting conditions and duration of exhibitions
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based on the characteristics of substances and art media such as oil paintings, watercolors,
metal sculptures, and so on. These guidelines assume that objects within a class share a
similar known stability under the same illumination conditions. Some of those assump‑
tions have been brought into question, and additional investigations use a micro fading
tester (MFT) to predict a colorant’s rate of fade over time [6].

The MFT is an analytical technique proposed and developed by Paul Whitmore of
Carnegie Mellon University to determine the in situ light sensitivity of a piece of
artwork [6,7]. TheMFTwas designed to rapidly induce andmonitor color change in small
areas of fugitive materials. This is achieved by exposing the sample surface to a stable,
high‑intensity focused light spot (typically 0.5 mm or less in diameter) and simultaneously
examining the affected area using a spectrophotometer. The resulting color change may
be perceived as photo‑induced damage from the small area of exposure to very intense
light. Once a minimum color change threshold is reached, even if the change is visually
imperceptible, the test is terminated. The MFT allows the direct identification of the most
fugitive colorants in an artwork by comparing the color change behavior of other colorants
and light‑sensitive standard materials. This predictive information for specific colorants
used in an artwork is very valuable when deciding on a preservation lighting policy [1,7].
Characterization of color fading and its rate determination as a function of aging condi‑
tions are of strong interest in the fields of art, museum, cultural heritage, paint, fabrics,
food, plant, materials, and so on [8–16].

There is a well‑documented European Standard on the Conservation of cultural
property—Test methods—Colour measurement of surfaces [17]. It describes a test method
to measure the surface color of porous inorganic materials and their possible chromatic
changes. However, no reference to the appearance of glossy surfaces is described. The
method may be applied to porous inorganic materials either untreated or subjected to any
treatment or aging. The method is suitable for the measurement of color coordinates of
representative surfaces of objects, indoors or outdoors, and representative surfaces of spec‑
imens described in the document.

In this paper, we propose a novel approach to quantitative characterization visual‑
ization of color fading and color darkening by image comparisons using image analy‑
sis/processing software (PicMan) capable of color analysis from single pixels, lines, and
areas of any shape and size up to the entire image. We demonstrate various display op‑
tions for color analysis comparisons of color fading or color difference among images of
interest for practical applications in the field of art, cultural heritage, andmuseums. Poten‑
tial applications of color interpolation between images and the possibility of extrapolation
beyond referenced images for predicting future color appearance simulation are discussed.

2. Images and Analysis Methods
2.1. Test Images

Two copies of a Japanese woodblock print by Utamaro used in a Microfading Work‑
shop given in 2014 were selected as test images [1,18]. Figure 1 shows the two copies of
the Japanese woodblock print by Utamaro (a) before and (b) after light exposure to cause
significant color fading. According to the source, theywere identical twinswhen theywere
printed. Theyweremade from the samematerials and printed in the sameway. Theywere
probably printed by the same people. Then the two copies were separated after printing,
with one image experiencing significant color fading by light exposure. The light exposure
has caused profound changes to a majority of colors used in the print. Some colors, such
as the blue on the kimono (Japanese dress), are not very light‑sensitive compared to the
other colors. The purpose of the microfading experiment at the Getty workshop was to
gain information on the light sensitivity of each colorant without the identical twins as a
reference. Assuming the images were used as an example in a Microfading Workshop for
professionals in the field, the images were digitized using the same equipment under the
same conditions, including lighting conditions and environment.
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sired tasks should be able to be performed from a regular PC with reasonable computing 
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As reported previously, the authors’ group has been developing user-friendly soft-
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Figure 1. Two identical copies of a Japanesewoodblock print by Utamaro before and after significant
light exposure [17]: (a) as printed; (b) after light exposure.

2.2. Image Analysis/Processing Software (PicMan)
Image processing and analysis are very different from image editing (brightening,

straightening, white balancing, contrast stretching, resizing, etc.) or image modification
using commercially available software such as Photoshop, Illustrator, or Lightroom, as
well as many other photo‑editing software. More than one type of software is required to
efficiently perform desired tasks on digital photographs, images, videos, and documents.
Multiple image‑editing application software requires tremendous data processing power
andmemory as resources. They are operating on PCs simultaneously in the background to
perform very specific tasks of varying complexity. The demand for computing resources
is increasing exponentially with the increase in the number of files and size of image files.
The development of integrated image analysis/processing software suitable for frequently
needed image editing, processing, and various analysis functions with image, video, and
numerical data exporting capabilities is strongly desired. Ideally, all desired tasks should
be able to be performed from a regular PC with reasonable computing power and without
opening multiple applications and switching between applications.

As reported previously, the authors’ group has been developing user‑friendly soft‑
ware (PicMan, WaferMasters, Inc. Dublin, CA, USA) for image‑based dimension (length,
area, circumference, circularity, etc.) measurement/analysis, quantitative color analysis,
statistical analysis, and various image‑tailoring functions to address the deficiencies in the
above‑mentioned areas with existing software [19–21]. Pattern selection, area selection,
highlighting, editing, coloring, and transparency application to any digital image can be
easily done. A few applications of these functions have been successfully applied to archae‑
ology, cultural heritage, conservation science, material science, biology, medical science,
semiconductor research, and development studies [21–25]. PicMan can handle various
formats of digital image and video files such as JPG, BMP, GIF, PNG, TGA, TIFF, WEBP,
JPEG XR, PDF, CR2, DM3, ND2, MIRAX, MOV, MP4, AVI, WMV, etc. for image analysis
and processing. Detailed application examples of PicMan can be found in previous reports
from other study groups [19–25]. Several new functions, such as pixel‑by‑pixel color differ‑
ence mapping, block comparison, color interpolation, and extrapolation, for color fading
characterization, have been added to this study.
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All digital images have a set of pixel information on the x and y coordinates and RGB
brightness. Combinations of RGB brightness values at different coordinates determine
the color, brightness, and shapes of interest. Combining the RGB brightness (8 bits per
channel), values can generate more than 16 million colors (28 = 256 brightness values × 3
channels = 28 × 3 colors = 224 colors = 16,777,216 colors) in displays and monitor screens.
However, it is more difficult to understand how we feel, recognize, and interpret colors
and shapes from visual stimulation. The differences in the spectral intensity distribution of
light (wavelength dependence of brightness in the visible wavelength range of 380–700 nm,
400–700 nm, or 400–780 nm) make us perceive corresponding colors. In the course of color
model and theory development, many different concept customs of color spaces have been
introduced to characterize and classify colors in quantitative and traceable manners suit‑
able for the field of applications.

The most popular color spaces used across disciplines are RGB, HSV, CIE L*a*b*, and
Munsell models. The RGB and CIE L*a*b* color spaces are built on cartesian coordinates,
while the HSV and Munsell color spaces are based on cylindrical coordinates. The CIE
L*a*b* coordinate is based on RGYB instead of RGB. The CIE L* value indicates lightness
assuming grayscale, while the a* and b* values are determined by the balance between
red–green and yellow–blue, respectively. For conversion between RGB and CIE L*a*b*
color spaces, a new cartesian coordinate of XYZ is introduced to add Y (yellow) color com‑
ponent into account [20,25–27]. Then, the XYZ values were used for L*a*b* values in the
CIE L*a*b* color spaces. All digital images are based on combinations of RGB channel
brightness. The color information in the other color spaces can be calculated from the RGB
values. Details of color space transformations and color conversion in different color spaces
can be found elsewhere [25–27]. All 16,777,216 colors are assigned six‑digit hexadecimal
color codes for computer graphics. The capability of pixel‑by‑pixel color extraction, and
the average color extraction of selected areas, can be very useful for quantitative color char‑
acterization for a variety of applications. All colors can be quantified as numerical values
or corresponding hexadecimal color codes. It is extremely helpful for objective communi‑
cation and reproduction of colors, hue, tint, tone, and shade.

3. Results
Color quantification and comparisons between the two images before and after color

fading (shown in Figure 1)weremade point‑by‑point, line‑by‑line, area‑by‑area, and block‑
by‑block. Color informationwas extracted and exported as data files in CSV format for fur‑
ther analysis. Details of color characterization, statistical analysis, and comparison results
are described in the following subsections.

3.1. Histogram Analysis
Figure 2 shows a screenshot image of image analysis software (PicMan) for color in‑

formation extraction at 34 points of five‑pixel diameter regions of interest (ROIs) and a
284× 422 pixel (=119,848 pixels) rectangle (white border line) area per printed image. The
selected rectangular ROIs are the identical location on individual images. RGB and L*a*b*
histogram analysis was done for the rectangle (white border line) areas of the two images
to gain insight into the overall color distribution and lightness values. Then, the identical
34 points were selected for point‑by‑point color comparison and color information extrac‑
tion for further analysis.

The RGB and CIE L*a*b* histograms of two rectangle areas with white border lines on
the images before and after color fading and color darkening (in Figure 2) were plotted in
Figure 3a–d. The image before color fading showed wide RGB intensity distribution due
to the vibrant colors of the print image, as shown in Figure 3a. The CIE L*a*b* histogram
showed a highCIE L* value peak at around 78, corresponding to bright colors on the image.
As seen in Figure 3b, the majority of colors show a slightly reddish color (i.e., low positive
value for CIE a*) and mild yellowish color (i.e., low positive values for CIE b*). The pres‑
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ence of small portions of pixels with a greenish color component can be recognized from
the small area under negative CIE a* values in the range of −5 to 0.
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Figure 2. A screenshot image of image analysis software (PicMan) for color information extraction
at 34 points of five‑pixel diameter regions of interest (ROIs) and a 284 × 422 pixel (= 119,848 pixels)
rectangle (white border line) area per print. For easy comparisons, different colors for the numbers
of ROIs for two images were used.

The RGB and CIE L*a*b* histograms of the print after color fading were also plotted
in the same vertical and horizontal scales for easy comparison (Figure 3c,d). The red peak
became stronger, and small peaks below 192 became flatter, showing the brightening of the
print after color fading (and darkening) after light exposure. The increase of RGB intensity
and the loss of variation in RGB histogram are the results of discoloration and detailed pat‑
tern loss in print. The CIE L*a*b* histogram also showed a very sharp and intense positive
CIE a* peak between 5–10 and a broadening of the positive side of the CIE b* histogram
graph extending toward the higher positive CIE b* values toward yellowish color after
color fading. These agree well with the RGB histogram and the effect of color fading.

As seen in Figure 3, a decrease of ‘frequency (number of pixels with a given brightness
in RGB channel)’ and broadening of the green and blue channel histogramand the opposite
trends of the green channel histogram are noticed after color fading or darkening of certain
colors. Similar trends in L*a*b* color space (i.e., some values increased, others decreased)
are observed. Most colors became lighter (color fading), and some became darker (color
darkening) with light exposure. It should be noted that the pixels with the L* value in the
range of 40–70 before color fading have increased their L* value to 60–74 after color fading.
It is a good indicator for color fading in most printed areas by light exposure.

Table 1 shows the RGB and CIE L*a*b* statistics of a rectangle area before and af‑
ter color fading (and darkening). As seen from the table, the average values of RGB in‑
creased while the standard deviation of RGB intensity decreased after color fading. The
average color change between the two test images before and after color fading/darkening
can be easily judged in L*, a*, b*, and RGB values. It clearly indicates that the color be‑
came brighter, and details are lost after color fading. The CIE L*a*b* statistics showed an
increase in the average CIE L* value and a decrease in CIE a* and CIE b* values. This can
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be interpreted that most colors were lightened and approached natural tone colors. The
standard deviations of the CIE L*a*b* values were decreased after color fading, a clear
indicator of the loss of contrast after color fading.
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Figure 3. RGB and CIE L*a*b* histograms of a 284 × 422 pixel (=119,848 pixels) rectangle area per
print: (a) RGB histogram of the original copy; (b) CIE L*a*b* histogram of the original copy; (c) RGB
histogram of the faded copy; (d) CIE L*a*b* histogram of the faded copy.

Table 1. RGB and CIE L*a*b* statistics of a 284 × 422 pixel (= 119,848 pixels) rectangle area before
and after color fading.

Before Color Fading After Color Fading

Red Green Blue L* a* b* Red Green Blue L* a* b*

Count 119,848 Pixels 119,848 Pixels
Minimum 18 22 10 7.7 −12.5 −5.4 21 13 10 4.9 −13.4 −8.3
Average 180.1 160.6 135.9 66.7 3.5 15.5 187.2 170.9 145.4 70.2 1.9 15.3
Maximum 242 215 190 86.4 51.5 52.9 231 219 199 87.8 15.3 33.6
Range 224 193 180 78.7 64.0 58.2 210 206 189 82.8 28.7 41.9
StdDev 47.2 46.0 41.2 17.7 6.6 7.2 44.4 41.6 38.8 16.6 1.9 5.4

3.2. Point‑by‑Point Color Extraction
Point‑by‑point color informationwas extracted from 34 points per image, as indicated

in Figure 2. The identical locations on the two images, before and after color fading, were
selected for color information extraction. The average colors of the five‑pixel diameter
circles were extracted and summarized in Table 2. Average RGB values, average HSV val‑
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ues, and average CIE L*a*b* values with average colors of 34 five‑pixel diameter areas
on the prints, before and after color fading (and darkening), are listed side‑by‑side for
easy comparison.

Table 2. Average RGB values, average HSV values, average CIE L*a*b* values, and average colors of
34 five‑pixel diameter areas at identical locations on the prints before and after color fading.

Before Fading After Fading

No. R G B H S V L* a* b* Color R G B H S V L* a* b* Color
1 210 194 172 34.7 0.2 0.8 79.2 2.1 13.1 211 197 176 36.0 0.2 0.8 80.1 1.5 12.3
2 181 153 95 40.5 0.5 0.7 64.5 2.7 34.2 187 173 151 36.7 0.2 0.7 71.3 1.4 13.1
3 47 46 40 51.4 0.2 0.2 18.8 −0.9 4.0 49 47 43 40.0 0.1 0.2 19.5 0.0 2.9
4 207 144 118 17.5 0.4 0.8 65.4 20.7 23.4 206 185 154 35.8 0.3 0.8 76.2 2.7 18.5
5 200 175 116 42.1 0.4 0.8 72.4 0.9 33.5 207 190 156 40.0 0.3 0.8 77.6 0.7 19.4
6 212 194 167 36.0 0.2 0.8 79.3 2.0 15.9 215 201 183 33.7 0.2 0.8 81.6 1.9 10.7
7 181 155 96 41.6 0.5 0.7 65.1 1.7 34.4 179 162 136 36.3 0.2 0.7 67.4 2.0 15.8
8 145 137 117 42.9 0.2 0.6 57.3 −0.5 11.8 172 156 133 35.4 0.2 0.7 65.2 2.1 14.2
9 226 205 175 35.3 0.2 0.9 83.4 2.7 17.6 217 204 183 37.1 0.2 0.9 82.6 1.1 12.1
10 216 198 171 36.0 0.2 0.9 80.7 2.0 15.8 210 194 171 35.4 0.2 0.8 79.2 1.9 13.6
11 211 168 144 21.5 0.3 0.8 72.1 12.4 18.4 180 162 140 33.0 0.2 0.7 67.6 3.0 13.8
12 218 201 171 38.3 0.2 0.9 81.6 1.2 17.2 213 197 176 34.1 0.2 0.8 80.3 2.2 12.6
13 192 143 123 17.4 0.4 0.8 63.6 15.9 17.9 192 174 151 33.7 0.2 0.8 72.0 2.8 14.2
14 209 157 134 18.4 0.4 0.8 69.0 16.3 19.6 208 185 154 34.4 0.3 0.8 76.3 3.4 18.8
15 188 94 75 10.1 0.6 0.7 50.9 36.2 28.3 191 163 127 33.7 0.3 0.8 68.6 5.0 22.5
16 157 154 134 52.2 0.2 0.6 63.3 −2.5 10.9 207 188 152 39.3 0.3 0.8 77.0 1.2 20.7
17 161 159 141 54.0 0.1 0.6 65.2 −2.5 9.7 209 190 154 39.3 0.3 0.8 77.7 1.2 20.7
18 215 198 167 38.8 0.2 0.8 80.5 1.1 17.7 207 189 162 36.0 0.2 0.8 77.4 2.1 16.0
19 102 95 78 42.5 0.2 0.4 40.5 −0.3 10.8 140 129 110 38.0 0.2 0.6 54.5 0.9 11.8
20 218 200 174 35.5 0.2 0.9 81.4 2.2 15.3 205 189 166 35.4 0.2 0.8 77.4 1.9 13.7
21 117 88 64 27.2 0.5 0.5 39.8 8.6 18.5 94 89 66 49.3 0.3 0.4 37.7 −2.1 14.1
22 201 176 126 40.0 0.4 0.8 72.9 1.9 28.9 193 176 142 40.0 0.3 0.8 72.5 0.8 19.7
23 135 102 101 1.8 0.3 0.5 46.4 13.1 5.7 191 161 122 33.9 0.4 0.8 68.0 5.5 24.4
24 125 96 78 23.0 0.4 0.5 43.2 9.1 14.8 122 110 81 42.4 0.3 0.5 46.8 −0.1 17.9
25 139 104 98 8.8 0.3 0.6 47.3 13.1 8.8 190 158 115 34.4 0.4 0.8 67.0 5.8 26.9
26 130 99 84 19.6 0.4 0.5 44.7 10.3 13.4 149 131 97 39.2 0.4 0.6 55.6 1.6 20.9
27 190 175 151 36.9 0.2 0.8 72.1 1.5 14.3 180 164 141 35.4 0.2 0.7 68.2 2.1 14.1
28 156 154 134 54.5 0.1 0.6 63.3 −2.9 10.8 206 186 150 38.6 0.3 0.8 76.3 1.6 20.9
29 112 84 61 27.1 0.5 0.4 38.1 8.4 17.9 122 112 81 45.4 0.3 0.5 47.4 −1.2 18.7
30 193 171 129 39.4 0.3 0.8 70.9 1.7 24.6 193 177 146 39.6 0.2 0.8 72.8 0.8 18.0
31 205 137 111 16.6 0.5 0.8 63.4 23.0 24.5 183 156 121 33.9 0.3 0.7 65.9 4.8 22.1
32 105 98 70 48.0 0.3 0.4 41.5 −2.0 17.0 131 122 92 46.2 0.3 0.5 51.3 −1.6 17.7
33 205 155 127 21.5 0.4 0.8 68.0 14.9 21.9 207 186 152 37.1 0.3 0.8 76.5 2.2 20.0
34 208 191 164 36.8 0.2 0.8 78.1 1.7 15.8 208 193 167 38.0 0.2 0.8 78.7 1.1 15.0

All color information in a digital image file consists of a set of RGB intensity and pixel
coordinate information. The RGB values can be translated into color values in other color
space systems such as HSV, CIE L*a*b*, Munsell color, XYZ, and hexadecimal color codes.
Table 2 shows HSV, CIE L*a*b*, and corresponding hexadecimal colors translated from
RGB values of the images before and after color fading. As seen from the average colors
for the 34 locations on the images, before and after color fading in Table 2, the majority
of locations showed noticeable changes of colors after color fading (and darkening) by
light illumination.

To make color differences before and after fading, the average colors at 34 locations
were summarized in the order of∆EL∗a∗b∗ (Table 3). The colors before and after color fading
were shown side‑by‑side and provided differences in R, G, B, H, S, V, L*, a*, b*, and∆EL*a*b*.
The color difference ∆EL∗a∗b∗ is defined as:

EL∗a∗b∗ =

√(
L∗

1 − L∗
2
)2

+
(
a∗1 − a∗2

)2
+

(
b∗1 − b∗2

)2 (1)

where ∆EL∗a∗b∗ ≈ 2.3 (JND: a noticeable difference in the CIE76 formula. The ∆EL∗a∗b∗

values ranged from 1.2 to 36.3. Only three out of 34 locations have ∆EL∗a∗b∗ ≈ 2.3 (or JND)
before and after color fading and color darkening. Background and hair colors were the
only colors with negligible or unrecognizable fading. In other words, 31 out of 34 locations
showed noticeable color differences.
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Table 3. Difference between average RGB values, average HSV values, average CIE L*a*b* values,
and their average colors of 34 five‑pixel diameter areas at identical locations on the prints before and
after color fading in the ascending order of ∆EL*a*b* rank.

Color Color Difference between before and after Fading (before—after)

∆E
Rank No. Before After ∆R ∆G ∆B ∆H ∆S ∆V ∆L* ∆a* ∆b* ∆EL*a*b*

1 34 0 −2 −3 −1.2 0.01 0 −0.6 0.62 0.8 1.2
2 1 −1 −3 −4 −1.3 0.01 −0.01 −0.9 0.6 0.81 1.4
3 3 −2 −1 −3 11.4 0.03 −0.01 −0.7 −0.89 1.15 1.6
4 10 6 4 0 0.6 0.02 0.03 1.5 0.13 2.22 2.7
5 18 8 9 5 2.8 0 0.03 3.1 −1 1.74 3.7
6 27 10 11 10 1.5 −0.01 0.04 3.9 −0.59 0.21 3.9
7 20 13 11 8 0.1 0.01 0.05 4 0.24 1.62 4.3
8 12 5 4 −5 4.2 0.05 0.01 1.3 −0.99 4.6 4.9
9 6 −3 −7 −16 2.3 0.06 −0.01 −2.3 0.14 5.15 5.6
10 9 9 1 −8 −1.8 0.07 0.04 0.8 1.61 5.53 5.8
11 30 0 −6 −17 −0.2 0.09 0 −1.9 0.92 6.61 6.9
12 8 −27 −19 −16 7.5 −0.04 −0.1 −7.9 −2.6 −2.38 8.7
13 22 8 0 −16 0 0.11 0.03 0.4 1.11 9.28 9.4
14 32 −26 −24 −22 1.8 0.03 −0.1 −9.8 −0.43 −0.73 9.8
15 24 3 −14 −3 −19.4 0.04 0.01 −3.6 9.15 −3.11 10.3
16 11 31 6 4 −11.5 0.1 0.12 4.5 9.38 4.56 11.4
17 21 23 −1 −2 −22.1 0.15 0.09 2.1 10.67 4.46 11.8
18 29 −10 −28 −20 −18.3 0.12 −0.04 −9.3 9.59 −0.75 13.4
19 19 −38 −34 −32 4.5 0.03 −0.15 −14 −1.19 −1.07 14.1
20 14 1 −28 −20 −16 0.1 0 −7.3 12.85 0.81 14.8
21 5 −7 −15 −40 2.1 0.17 −0.03 −5.2 0.2 14.17 15.1
22 33 −2 −31 −25 −15.6 0.11 −0.01 −8.5 12.7 1.94 15.4
23 26 −19 −32 −13 −19.6 0 −0.07 −10.9 8.69 −7.57 15.9
24 13 0 −31 −28 −16.3 0.15 0 −8.4 13.09 3.72 16.0
25 28 −50 −32 −16 15.9 −0.13 −0.2 −13 −4.43 −10.1 17.0
26 17 −48 −31 −13 14.7 −0.14 −0.19 −12.5 −3.67 −11 17.1
27 16 −50 −34 −18 12.9 −0.12 −0.19 −13.7 −3.64 −9.79 17.2
28 31 22 −19 −10 −17.3 0.12 0.08 −2.5 18.19 2.49 18.5
29 7 2 −7 −40 5.3 0.23 0.01 −2.3 −0.34 18.6 18.7
30 4 1 −41 −36 −18.3 0.18 0 −10.8 18.05 4.91 21.6
31 2 −6 −20 −56 3.8 0.29 −0.02 −6.8 1.27 21.11 22.2
32 25 −51 −54 −17 −25.6 −0.1 −0.2 −19.7 7.27 −18.1 27.7
33 23 −56 −59 −21 −32.1 −0.11 −0.22 −21.6 7.65 −18.7 29.6
34 15 −3 −69 −52 −23.6 0.26 −0.01 −17.7 31.17 5.76 36.3

Figure 4 shows theRGBvalue change before and after fading and their colors at 34 five‑
pixel diameter ROIs in the ascending order of CIE ∆EL∗a∗b∗ rank, from left to right. Thick
colored lines and thin black lines are the intensity (or brightness) of each color channel
before and after color fading. Color fading generally makes the intensity (or brightness)
increase in all RGB color channels except for a few measurement locations indicated with
arrows. It clearly indicates that most colors become lighter after color fading. However,
a few colors became darker under light illumination, as seen in the locations with nega‑
tive CIE ∆L* values in Table 3. The red and green channel intensity changed noticeably
compared to the blue channel intensity after color fading by light illumination. In gen‑
eral, darker colors with lower red and green intensities tend to fade more and result in
noticeable color changes. As the results changed in the CIE, ∆EL∗a∗b∗∆ was higher for the
darker colors.
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Figure 4. RGB value change before and after fading and their colors at 34 five‑pixel diameter ROIs
in the ascending order of CIE ∆EL∗a∗b∗ rank, from left to right.

3.3. Line‑by‑Line Color Extraction
Line‑by‑line color information was extracted from 10 lines, as shown in Figure 5.

Color information can be extracted from all lines in any direction, including free lines.
Figure 6 shows the RGB intensity profile along 4 selected lines 2, 6, 8, and 10. Colors of
a few locations per line showing noticeable color differences before and after color fading
were shown together with RGB intensity line graphs.

Similar trends for color change by color fading, summarized in Tables 2 and 3, can
be verified in Figure 6. Average RGB values and their ranges are very different between
the two copies of the prints, before and after color fading. The average RGB value for the
original copy of the print is smaller than the color faded copy. The RGB intensity range for
the original copy of the print is much wider due to the large contrast of colors along the
horizontal lines 6, 8, and 10. In contrast, the color‑faded copy of the print shows a narrower
range of RGB intensity values.

All colors can be quantified as RGB, HSV, CIE L*a*b*, XYZ, and Munsell color val‑
ues, even with hexadecimal color codes. The extracted color information can be graphed
for objective evaluation. Discoloration (or color fading) rate can be quantitatively deter‑
mined per colorant as a function of the light exposure conditions. The MFT results can
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also be characterized by digital photography and used as a color fading database for indi‑
vidual colorants.
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Figure 5. Ten numbered lines for color extraction and comparison between two identical copies of
a Japanese woodblock print by Japanese artist Utamaro before and after significant light exposure:
(a) as printed; (b) after light exposure.

3.4. Pixel‑by‑Pixel Image Comparison
Figure 7 shows a summary of the pixel‑by‑pixel image comparisons of the two copies

of a print before and after color fading. For the alignment of two images, we overlapped
the two images and translated one image in x and y coordinates pixel‑by‑pixel to mini‑
mize the color difference due to the misalignment. In fact, we found that the two images
were digitized in the same magnification, and only two pixels in the y coordinate were
off between the two images. Thus, the two images were suitable for pixel‑by‑pixel color
comparisons. The pixel‑by‑pixel color differences were mapped in terms of the CIE ∆L*,
CIE ∆a*, CIE ∆b*, and CIE ∆E* values at full scale (100% scale) and at quarter scale (25% of
full scale) for easy recognition of changes by color fading. The full‑scale images are shown
in the top row, and the quarter‑scale images are shown in the bottom row. Since the color
differences along the CIE a* and CIE b* axes were small compared to the lightness of the
CIE L* axis, the full‑scale pixel‑by‑pixel color difference mapping images for the CIE ∆a*
and CIE ∆b* values did not show significant color differences. The light exposure induced
color differences in lightness in CIE ∆L*, color shift (in CIE ∆a* and CIE ∆b*), and color
difference in CIE ∆E* were four (4) times magnified in quarter scale images.

The CIE L*a*b* color space expresses color as three values. The lightness value CIE L*
defines black as 0 and white as 100. The CIE a* axis is relative to the green–red opponent
colors, green (negative CIE a* values) to red (positive CIE a* value). The b* axis is relative
to the blue–yellow opponent colors, blue (negative CIE b* values) to yellow (positive CIE
b* value). The CIE a* and CIE b* axes are independent in the range of −128 to 127. In
CIE L*a*b* color space, CIE L* is for perceptual lightness, and CIE a* and CIE b* are for
the four unique colors of human vision, red, green, blue, and yellow. The CIE ∆L* and
CIE ∆E* values are in grayscale because they only have a magnitude in the brightness and
overall color difference. The CIE ∆a* and CIE ∆b* values can be negative, zero (i.e., no
color difference along the CIE a* axis for red and green balance or CIE b* axis for yellow
and blue balance), or positive.
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Figure 6. RGB values change across lines 2, 6, 8, and 10 on the image on the left. Colors of sections
of noticeable color change before and after light illumination are shown for easier recognition and
interpretation of RGB values.
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The degrees of the color shifts along the CIE a* and CIE b* axes can be easily recog‑
nized, pixel by pixel, from Figure 7. The color difference CIE ∆E* can easily be determined
and visualized pixel by pixel. This type of detailed pixel‑by‑pixel color difference charac‑
terization cannot be measured or visualized by conventional chromameter measurements
due to spatial resolution limits [19–21,28,29].
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Figure 7. Pixel‑by‑pixel color difference in images in full scale (top row) and quarter scale
(4× zoomed scale or 25% of full scale) (bottom row); (a) ∆L*; (b) ∆a*; (c) Db*; (d) DE* in full scale;
(e) DL*; (f) ∆a*; (g) ∆b*; (h) ∆E* in quarter scale (4× zoomed scale or 25% of full scale). Legends are
given for easy recognition of pixel‑by‑pixel brightness, color shift, and color difference.

3.5. Block‑by‑Block Image Comparison
The two copies of a print, before and after color fading, were compared block‑by‑

block using image processing/analysis software (PicMan). The block size was varied from
20 × 20 pixels to 50 × 50 pixels in 10‑pixel increments (Figure 8). Upper‑left and lower‑
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right triangles show partial images before and after color fading for an easy comparison of
the effect of color fadingwithin areas of the same color patterns. The block‑by‑block image
comparison technique, by alternating partial masking of the two comparing images with
changing block size, provides intuitive synthesized images for side‑by‑side comparison on
the reference image.
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Figure 8. Block‑by‑block comparison images (top left triangle for the original image and bottom
right triangle for color faded image) with four different block sizes of 20 × 20 pixel, 30 × 30 pixel,
40 × 40 pixel, and 50 × 50 pixel squared blocks.

The actual area ofmeasurement can be calculated by the scale of an image in pixel/mm.
The scale of an image can be easily calculated by measuring the actual dimensions of the
print in mm and the size of the image in pixels. The image resolution of the scale is ex‑
pressed in pixels/mm.
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Background colors became darker after color fading by light exposure. The color dif‑
ference in black hair and wig areas was hard to recognize by visual inspection due to their
very low brightness (i.e., very low RGB values, low CIE L* value, low V value in a HSV
color space). The red, pink, yellow, bluish, and purple colored areas showed noticeable
color fading. The purple‑colored area showed the most discoloration. The red, pink, and
bluish‑colored areas also had undergone significant discoloration and transformed into
almost similar colors, as seen in Figures 1 and 8.

While the point‑by‑point, line‑by‑line, and area‑by‑area color characterization tech‑
niques are useful for quantifying color differences between two images, the block‑by‑block
color comparison provides visual instinct on color differences between images at the de‑
sired block size.

3.6. Color Simulation by Interpretation and Extrapolation
In theory, if images of identical objects from different times are available, new images

can be generated by image blending and/or image morphing. It is very similar to the inter‑
polation between data sets acquired from two different times. The micro fading test data
for discoloration under controlled light exposure conditions can be used as important data
points for understanding color fading phenomena andmechanisms. If color extrapolation
beyond the two data points is feasible, simulated images outside of the time frame for the
two images can be generated.

Figure 9 shows image blending simulation results using two true images by inter‑
polation. Figure 9a,b is the original image at time A, and the color faded image at time B.
Figure 9c is the interpolated result image for color fading in progress in themiddle of times
A and B. The imagewas generated by 50:50 blending or interpolation of the two images. By
changing the blending ratio, many simulated images can be generated at different times
between times A and B, as shown in Figure 10. Furthermore, extrapolation can be done
before time A and beyond time B assuming the rate of color change are constant.
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time A (at the time of printing, before color fading occurs or any reference point of time) and B (at
any point of time after time A for color comparison).

In the real world, the rate of color change of each colorant is neither linear nor infinite.
The purpose of this paper is to demonstrate possible color change simulations using a sim‑
ple color change model under a given light illumination condition. When the color change
rate of individual colorants at a given illumination and time condition is characterized, a
real color change rate can be applied for color change simulations for a realistic effect.

3.7. Potential Applications
Diagnoses of the conservation status of painting cultural heritages and color fading

characteristics of pigments using this quantitative colorimetric analysis technique were
also very promising [19–21]. It has been extremely useful for digital forensic studies of
cultural heritage identification processes. In particular, printing techniques of ancient Ko‑
rean books through ink tone analyses and character image comparisons with images of
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bookswith known printing techniques and printing dates [30–33]. Darkening by oxidation
of Hanji (Korean paper) used in the ancient books was removed from photographed im‑
ages for unbiased ink tone analysis and fair comparison between several versions of nearly
identical ancient books. This led to the discovery of the world’s oldest metal‑type printed
book (The Song of Enlightenment (南明泉和尙頌證道歌) in Korea in 1239). The world’s old‑
est metal‑type printed book from the Goryeo dynasty of Korea, from the 13th century,
has been identified by comparing six nearly identical books from Korea from the 13th to
16th centuries, the Jikji (直指) printed in 1377 and the Gutenberg 42‑line Bible, printed in
1455 using this quantitative image analysis technique [34]. Many other applications based
on color/shape extraction and area measurement techniques using the newly developed
image processing/analysis software (PicMan) are expanding. Image processing software
applications combinedwith imaging devices such as USB cameras and professional digital
cameras have been reported in previous papers [19–24].

4. Summary
Quantitative characterization of color from images is very important in the fields of

color‑related applications. In the fields of art, cultural heritage, and museum, color fading
and color darkening under light exposure is one of many important and unavoidable natu‑
ral processes. Color naturally fades with time under light illumination in an oxidizing en‑
vironment. If the chemical environment of storage is altered, the color may fade or darken
abnormally. Quantitative characterization of colors becomes very important, regardless
of the conventional colorimetric approach or photometric approach. In this paper, a novel
approach to the quantitative characterization of color and visualization of color fading and
color darkening, using a newly developed image analysis and comparison software (Pic‑
Man), is proposed and demonstrated.

The rate of color fading depends on the substance, lighting condition, and chemical
environment of storing facilities. Color fading is only observed as a result after the damage
is done. The current color of objects of interest can only be comparedwith old photographs
or the observer’s perceivedmemory at the time of reference. There is no guarantee that the
same individual will inspect or properly evaluate the color change. Color difference and
color fading rate between two or more points of time in the past can only be determined
using photographic images from the past unless the other colorimetricmeasurementswere
made at the time of inspection.

Quantification of color in either digital or printed photographs is required for objec‑
tive characterization of color differences between two or more different times. Image anal‑
ysis and comparison software‑assisted color quantification and pixel‑by‑pixel color differ‑
ence mapping were proposed and demonstrated in this study. Images of two copies of
Japanese woodblock prints, with and without color fading, have been selected for exem‑
plary study. Pixel‑by‑pixel, line‑by‑line, area‑by‑area, and block‑by‑block comparisons of
color fading between two images were found to be very effective in the quantification of
color fading and visualization of the phenomena. RGB, HSV, CIE L*a*b* values between
images and the differences of single pixels to areas of interest in any shape and size can be
quantified and exported as numerical and traceable data.

Color fading and color darkening analysis resultswere presented in numerical, graph‑
ical, and image formats for completeness. As demonstrated in this study, all formats have
their own advantages and disadvantages over other formats in terms of data size, complex‑
ity, readability, and communication among parties of interest. Various display options for
color analysis summary of color fading and color darkening were demonstrated using the
images of interest for practical artistic, cultural heritage conservation, and museum appli‑
cations. Color simulation for various moments in time was proposed and demonstrated
by interpolation or extrapolation of color change between images, with and without color
fading, using PicMan. The degree of color fading and color darkening in the various mo‑
ments in the past and future can be simulated and visualized for decision‑making in public
display, storage, and restoration planning.
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