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Abstract: Kinematic motion detection aims to determine a person’s actions based on activity data.
Human kinematic motion detection has many valuable applications in health care, such as health
monitoring, preventing obesity, virtual reality, daily life monitoring, assisting workers during industry
manufacturing, caring for the elderly. Computer vision-based activity recognition is challenging
due to problems such as partial occlusion, background clutter, appearance, lighting, viewpoint, and
changes in scale. Our research aims to detect human kinematic motions such as walking or running
using smartphones’ sensor data within a high-performance framework. An existing dataset based on
smartphones’ gyroscope and accelerometer sensor values is utilized for the experiments in our study.
Sensor exploratory data analysis was conducted in order to identify valuable patterns and insights
from sensor values. The six hyperparameters, tunned artificial indigence-based machine learning, and
deep learning techniques were applied for comparison. Extensive experimentation showed that the
ensemble learning-based novel ERD (ensemble random forest decision tree) method outperformed
other state-of-the-art studies with high-performance accuracy scores. The proposed ERD method
combines the random forest and decision tree models, which achieved a 99% classification accuracy
score. The proposed method was successfully validated with the k-fold cross-validation approach.

Keywords: human motion kinematics; motion detection; activity recognition; smartphone sensors;
artificial intelligence; machine learning

1. Introduction

Smartphones are becoming increasingly intelligent in order to assist in humans’ daily
life activities. Smart healthcare systems have a wide range of body sensor applications [1].
The smart wearable sensor is used to improve the lifestyle of older people by observing them
in order to prevent unprecedented incidents such as falls. The more-advanced smartphone
features can detect the difference between the walking and running kinematic motions of a
human with the help of sensors. The new features of smartphones are famous in the fitness
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community for keeping a record of a person’s daily footsteps. As the significant need for
human daily life activity recognition increases, a more efficient artificial intelligence-based
framework must be proposed.

Previous classical studies commonly used computer vision techniques for human
activity recognition, which is a big challenge [2,3]. Computer vision techniques have
primary issues during activity recognition, such as partial occlusion, background clutter,
appearance, lighting, viewpoint, and changes in scale [4,5]. As human activity recognition
applications increase daily, an efficient approach using sensor data must be proposed in
order to overcome the environmental constraints that vision-based cameras often suffer
due to their fixed position. Sensor data has many advantages compared to vision-based
techniques: sensor data provides more privacy than vision-based approaches [6], and
vision-based methods are complex and carry processing costs.

Artificial intelligence-based techniques are primarily used, in every field, for numerous
applications involving predictive analysis [7]. Artificial intelligence models can learn
patterns from huge amounts of data and achieve higher predictive performance accuracy
than humans. Artificial intelligence is highly engaged in activity classification from vision
and sensor-based data [8]. Artificial intelligence-based machine learning and deep learning
methods are employed to detect whether a person is walking or running.

The use of smartphones in our daily lives has increased dramatically in recent years.
These devices are equipped with various sensors, such as accelerometers and gyroscopes,
that can be used to track human motion. This research proposes a novel methodology for
detecting human motion kinematics using sensor data. We utilize artificial intelligence
techniques in order to analyze sensor data and accurately detect different types of motion,
such as walking and running. This methodology can potentially revolutionize how we
track and monitor human movement across various applications from sports performance
to healthcare. Our primary research contributions to the detection of human motion
kinematics are as follows:

• A novel methodology is adopted for human kinematics motion detection based on
smartphone accelerometers and gyroscope sensor values. A novel ensemble method
based on random forest and decision tree models is used to detect motion as walking or
running. Sensor exploratory data analysis (SEDA) is employed in order to determine
usage patterns and gain insight from sensor data. The SEDA is based on the analysis
of different graphs and charts.

• The six machine learning and deep learning methods are applied in comparison to one
another. The applied machine learning methods are random forest, logistic regression,
decision tree, and support vector machine. Recurrent gated units and long short-term
memory are deep learning-based techniques. The proposed random forest approach
outperformed applied learning methods and other state-of-the-art approaches.

• The applied learning techniques are fully optimized and hyperparameter-tuned to
achieve high performance scores. We employed k-fold cross-validation to validate the
accuracy of each applied method.

The remaining sections of the study are assembled as follows. The related works on
human kinematics motion detection are comparatively analyzed in Section 2. The pro-
posed study methodology is examined in Section 3. The results, evaluations, and related
discussions are presented in Section 4. The research study is concluded in Section 5.

2. Related Work

The related literature on human motion kinematics and activity recognition is compar-
atively analyzed in this section. The proposed techniques applied in past approaches and
their performance results are examined.

EEG signal-based motion artifact recognition using machine learning methods was
presented in Reference [9]. The single-channel EEG signal-based dataset was utilized to
build the machine learning model. The machine learning model, a support vector machine
(SVM), was used for motion artifact detection. Many algorithms were applied for feature
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extractions from signal data. The SVM achieved a 98% accuracy score for motion artifact
recognition using the optimized Harris Hawks Optimization (HHO) algorithm [10].

The recognition of human daily life activities using a combination of machine and
deep learning was presented in Reference [11]. The research dataset was based on signals
extracted from the accelerometer sensor present in smartphones. A personalization model
based on a hybrid of AdaBoost and CNN techniques was proposed. The propped hybrid
model was trained and evaluated on the signal dataset. The research experiments showed
that the proposed method achieved a 90% accuracy score for recognizing human falls and
daily activities.

Daily life activity recognition [12] and fall detection using machine learning methods
were presented in Reference [13]. Two public databases based on angular velocity and
acceleration data were used for building the machine-learning models. The seven types of
activities, including daily living and falls, were used as labels in the dataset. The dataset’s
frequency and time domain features were extracted in order to train the applied learning
models. The ensemble bagged tree and quadratic support vector machine achieved high
performance in terms of accuracy score.

The human activity recognition achieved by unobtrusive health monitoring using
machine learning methods was presented in Reference [14]. A newly created SmartWall
dataset was used to train and evaluate the applied machine learning models. A novel
ambient HAR framework based on multivariate Gaussian was proposed for human activity
recognition. The proposed method achieved a 97% accuracy score for unobtrusive human
activity recognition.

Interleaved and concurrent human activity recognition using deep learning methods
were proposed in this study [15]. The proposed approach for human activity recognition
was a hybrid model based on long-short-term memory bi-directional and the skip-chain
conditional field. The two publicly available datasets, Kasteren House-B and Kyoto 3, were
used for building the deep learning-based models. The results express that the proposed
method achieved a 93% accuracy score for human activity recognition.

Human activity recognition using wearable sensor values based on deep learning
techniques was presented in Reference [16]. The proposed approach was based on the multi-
input convolutional and gated recurrent unit neural networks. The dataset obtained from
wearable sensors was utilized for training and evaluating the applied deep-learning models.
The three datasets, WISDM, UCI-HAR, and PAMAP2, were used for the experiments.
The proposed technique achieved an accuracy of 97% on the WISDM dataset for human
activity recognition.

A feature-learning technique based on deep learning was presented in Reference [17]
and was used for human activity recognition. Convolutional neural networks were the
proposed approach for human activity recognition. IMU and UCI-HAR datasets were used
for training and testing the applied deep learning-based model. The inertial measurement
unit [18] and the audio-based feature were used during model learning. The proposed
technique archived a 91% accuracy score on the UCI-HAR dataset for human activity recog-
nition.

Human activity recognition on edge devices using deep learning methods was pre-
sented in Reference [19]. A lightweight hybrid RNN-LSTM model was proposed for human
activity recognition. The proposed model archived a 95% accuracy score for activity recog-
nition with less computational power. The publicly available online WISDM dataset was
used for conducting the research experiments. The analysis of related literature is based on
different parameters, as analyzed in Table 1.
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Table 1. Comparative analysis and related literature summary for human motion detection.

Ref. Year Approach Dataset Accuracy
Score (%) Research Aim

[9] 2021 SVM Classifier Single-channel
EEG signal data 98

The EEG signal-based motion artifact
recognition using machine learning
techniques was proposed.

[11] 2020 AdaBoost-CNN

Smartphones
Accelerometer
signals of
Activities of Daily
Living and Falls

90
The recognition of human daily life activities
using machine learning and deep learning
was proposed.

[14] 2019
Novel
RFID-Enabled
Ambient

SmartWall data 97
The human activity recognition for
unobtrusive health monitoring using
machine learning techniques was presented.

[15] 2020 Hybrid BiLSTM
and SCCRF

Kasteren House- B
and Kyoto 3 93

Interleaved and concurrent human activity
recognition using deep learning techniques
were proposed.

[16] 2021 CNN-GRU
WISDM,
UCI-HAR,
and PAMAP2

97
Human activity recognition using wearable
sensors based on deep learning techniques
was proposed.

[17] 2020 CNN IMU and
UCI-HAR 91

The feature learning technique was
presented based on deep learning for human
activity recognition.

[19] 2020 RNN-LSTM WISDM dataset 95
The human activity recognition on edge
devices using deep learning techniques was
proposed.

Proposed 2023 ERD
Accelerometer
and gyroscope
sensors Data

99
Our research aims to detect human
kinematics motion as walking or running
with the high-performance tool.

3. Study Methodology

Smartphone sensor data labeled as walking or running were used for our research
experiments. The SEDA was applied in order to determine valuable patterns and gain
insight from sensor values. The SEDA was based on the analysis of graphical charts.
The structured dataset was divided into portions during data splitting. Roughly 80% of the
data was used to train the machine and deep learning-based methods, while the remaining
20% of the unseen test data was utilized to evaluate the applied models. Hyperparameter-
tuning techniques were employed in order to determine the best-fit detection parameters
of the learning techniques, those under which they achieved high accuracy scores. Finally,
the top-performing proposed method was utilized to identify human motion as walking or
running, as visualized in Figure 1.

3.1. Smartphones Sensors Dataset

The smartphone sensors dataset publicly available on Kaggle [20] was used for con-
ducting the research experiments, and it was created by the IOS app named “Data Collec-
tion”. The sensory data from smartphone devices were recorded and labeled as walking or
running. Smartphones’ accelerometer and gyroscope sensors were utilized to construct the
dataset. The dataset file contains the data from 88,588 sensors with an interval of 10 s and a
5.4/s frequency rate. We dropped the additional dataset features, such as the date and time
of data collection and the username of the human involved in data collection. The wrist
feature represents a value where the smartphone device was placed. The activity feature,
which was used as the target feature, contains a label indicating walking and running.
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The remaining features provide the sensor data for one of the sensor’s axes, as described in
Table 2.

Smartphones accelerometer and
gyroscope sensors data labeled as

walking or running.

Sensor Exploratory
Data Analysis Data Splitting

Artificial Intelligence
TechniquesModel Predictions

Hyperparameter
Tuning 

Walking

Running
Human Running Kinematics

Motion Detected!

20%:Test

80%:Train

Figure 1. Methodological analysis of the proposed research study in the context of detection in
human motion kinematics.

Table 2. Descriptive analysis of the dataset features used for experiments.

Feature Non-Null Count Data Type Description

wrist 88,587 int64

The wrist feature represents a value where
the smartphone device was placed. Zero
indicates the left wrist, and one indicates
the right wrist.

activity 88,587 int64

The activity feature, used as the target
feature, contains a label indicating
walking or running. Zero represents
walking, and one represents running.

acceleration_x 88,587 float64 The accelerometer sensor’s x-axis values.

acceleration_y 88,587 float64 The accelerometer sensor’s y-axis values.

acceleration_z 88587 float64 The accelerometer sensor’s z-axis values.

gyro_x 88,587 float64 The gyroscope sensor’s x-axis values.

gyro_y 88,587 float64 The gyroscope sensor’s y-axis values.

gyro_z 88,587 float64 The gyroscope sensor’s z-axis values.

3.2. Sensor Exploratory Data Analysis

Useful patterns and insights are drawn from our research dataset in this section. A bar
chart is generated, and correlation and three-dimensional space analysis are performed.
Different graphs and charts are visualized in this analysis.

Bar chart-based data balancing analysis using the target label is presented in Figure 2.
The analysis demonstrates that the sensors’ dataset is balanced. The walking label (0) and
running label (1) contain equal data distributions. The balanced dataset results in achieving
high accuracy performance and prevents model overfitting.
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Figure 2. Bar chart-based dataset balancing analysis using the target labels.

Correlation analysis of the features of our study dataset is visualized in Figure 3.
The analysis shows that a high positive correlation value of 0.6 is achieved by the features
acceleration-y and activity, and an acceptable correlation value of 0.3 is achieved by the
features acceleration-z, gyro-x, and gyro-y. A high negative correlation value of −0.6 is
achieved by the features acceleration-x and wrist. This analysis concludes that the values
of accelerometer sensor features have higher correlations than gyroscope sensor features.
The dataset features have high relevance values to the target feature activity in this analysis.
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Figure 3. The dataset features correlation analysis.

Three-dimensional space analysis determines the features’ separability, as shown
in Figure 4. The axis features of the accelerometer and gyroscope sensor are analyzed.
The analysis demonstrates that the values of the accelerometer sensor features are complex
and linearly separable for a learning classifier. The gyroscope sensor feature’s values are
not easily separable. However, they can be classified by advanced learning classifiers.
In conclusion, the linear classifiers may not perform well on this dataset.
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(a) (b)

Figure 4. Three-dimensional-space analysis of smartphone sensor data. (a) Analysis of the accelerom-
eter sensor data. (b) Gyroscope sensor data analysis.

3.3. Data Splitting

Dataset splitting is the most crucial aspect of machine learning techniques. Data
splitting is utilized in order to avoid overfitting techniques and to test the applied methods.
Our research dataset is divided into portions for training and testing the applied machine-
learning models. In our study, we split the dataset with a ratio of 80:20. The 80% portion of
the dataset was used to train the machine learning techniques. The 20% portion was used
to test the machine learning techniques and evaluate performance.

3.4. Machine Learning and Deep Learning Methods

The applied machine learning and deep learning methods are analyzed in this section
based on many parameters. The working mechanism adopted for each learning model is
descriptively analyzed.

3.4.1. Decision Tree

Decision tree (DT) is a supervised non-parametric machine learning technique com-
monly used to solve classification-related problems [21]. The DT method follows the
flowchart structure using the divide and conquer technique. The DT [22] has a hierarchical
tree representation consisting of internal nodes, branches, and leaf nodes. During DT model
building, the dataset features are symbolized by internal tree nodes, tree branches define
decision-making rules, and leaf tree nodes represent class labels. The decision-making
ability of the DT method is similar to the ability of human thinking to solve a problem.
In our research, we used the Gini index to measure impurity while creating a DT. The math-
ematical notation to calculate the Gini index is analyzed in Equation (1). Where p is the
probability function in the Equation.

Gini index = 1 − ∑
j

P2
j (1)

3.4.2. Random Forest

Random forest (RF) is another supervised machine learning technique used to solve
classification problems [23]. The working concept of the RF method is based on the ensem-
ble learning technique. In RF methods [24], multiple DT classifiers are combined to solve
a problem. The dataset features are given to various DT classifiers, and each prediction’s
average is taken as the final output. The majority voting technique is used to select the
outcome. The RF methods have many advantages, such as improving performance and
preventing overfitting.

3.4.3. Logistic Regression

The logistic regression (LR) method is another supervised machine learning model
used to tackle classification problems [25]. The LR method uses the input set of independent
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variables to predict the categorical dependent variable. The LR method [26] output must
be discrete or categorical. The outcome of the LR technique is the probabilistic values
between zero and one. The LR method uses an S-shaped logistic function that predicts
two maximum values. Equation (2) describes the mathematical notations for LR. The b
represents the bias, x represents the input features, and y is the target label in the expression.

log[
y

1 − y
] = b0 + b1x1 + b2x2 + b3x3 + ... + bnxn (2)

3.4.4. Support Vector Machine

Support vector machine (SVM) [27] also belongs to the family of supervised machine
learning models used for classification tasks. The essential objective of the SVM method [28]
is to create a best-fit decision system boundary that can classify data in the n-dimensional
space of features. The decision boundary is called a hyperplane in the SVM technique.
The SVM chooses the extreme data vectors used for building the hyperplane, also called
support vectors. The SVM chooses the best-fit hyperplane that correctly separates the
classes in order to minimize the error; then, the hyperplane is generated iteratively. The hy-
pothesis function h in SVM is expressed in Equation (3). Where w is the weight metric and
b is the bias variable in the Equation.

h(xi) =

{
+1 i f w.x + b ≥ 0
−1 i f w.x + b ≤ 0

(3)

3.4.5. Long Short-Term Memory

Long short-term memory (LSTM) is an artificial neural network-based supervised
deep learning model which is frequently used for data regression and classification [29].
The LSTM method is a special kind of recurrent neural network (RNN) with the advantage
of remembering long data sequences for a long time. The LSTM model [30] overcomes
the vanishing gradient problem. Three gates are involved in the working of the LSTM
model: the input, forget, and output gates. These gates are the filters that select and
remove irrelevant information. The output gate determines the final output, as expressed
in Equation (4). Table 3 describes the architecture of the applied LSTM model.

Ot = σ(Wo[ht − 1] + bo) where ht = ot × tanh(Ct) (4)

Table 3. Analysis of the architecture of the applied LSTM model.

Model Layers Output Shape Parameters

LSTM Layer (None, 32) 4352

Dropout Layer (None, 32) 0

Dense Layer (None, 1) 33

3.4.6. Gated Recurrent Units

Gated recurrent unit (GRU) is also an artificial neural network-based supervised deep
learning technique [31]. The GRU model’s working mechanism is the LSTM model’s
companion. The only differences are the GRU unit’s data operations and gate formations.
The GRU model [32] utilizes less memory, resulting in it being faster than the LSTM model.
Update and reset are the two gates used by the GRU model to solve a problem. The gate
decides which data information should be processed and sent to the output. Table 4
describes the architecture of the applied LSTM model.
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Table 4. Analysis of the architecture of the applied GRU model.

Model Layers Output Shape Parameters

GRU Layer (None, 32) 3360

Dropout Layer (None, 32) 0

Dense Layer (None, 1) 33

3.5. Hyperparameter Tuning

The hyperparameters under which the applied machine learning and deep learning
methods achieved high accuracy performances are examined in Table 5. The applied
machine learning and deep learning models are fully hyperparameter tuned. The best-fit
hyperparameters for each learning technique were determined using the recursive process
of hyperparameter tuning [33].

Table 5. Analysis of the hyperparameter tuning of the applied machine learning and deep learning
methods.

Technique Hyperparameters Description

RF

n_estimators = 300 The total number of trees.

max_depth = 300 Depth level of tree nodes

criterion = ‘gini’ Features splitting method in the tree.

DT
max_depth = 300 Depth level of tree nodes

criterion = ‘gini’ Features splitting method in a tree.

LR

solver = ‘lbfgs’ The algorithm used in the optimization problem.

max_iter = 50 The number of iterations.

multi_class = ‘auto’ Target label classification.

C=1.0 The inverse of regularization strength

SVM

max_iter = 100 The number of iterations.

kernel = ‘rbf’ kernel type to be used in the model.

degree = 3 Degree of the polynomial kernel function.

LSTM

loss = ‘binary_crossentropy’ Loss function.

optimizer = ‘adam’ Loss optimizer function.

activation = ‘sigmoid’ Ouput layer actitvation.

GRU

loss = ‘binary_crossentropy’ Loss function.

optimizer = ‘adam’ Loss optimizer function.

activation = ‘sigmoid’ Ouput layer actitvation.

3.6. Proposed Ensemble Method

This study proposes the ensemble learning-based novel ERD method to detect human
motion kinematics as walking or running. The architectural diagram of our proposed
ensemble method is visualized in Figure 5. The proposed ERD method combines the
random forest and decision tree models for the prediction. The complete dataset is input
to the random forest and decision tree models, then voting is performed between the two
combined models in order to determine the final output. The motion with a majority vote
is the final output for each dataset observation. The proposed ensemble method achieved
high performance in terms of accuracy for the classification of human motion.

Ensemble learning combines multiple models in order to make more accurate predic-
tions than any single model alone, providing more robust and reliable results. Our study
results show that ensemble learning effectively achieves high accuracy in using sensor data
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to classify human motion. For example, sensor data may be noisy, and different models
may be better suited to handle these issues in different ways. Ensemble learning also
helps to improve the robustness of the classification model, meaning that it is less likely
to overfit the training data and perform poorly on new, unseen data. This is particularly
important for the classification of human motion using sensor data, during which there
may be significant variation between individuals and movements. Ensemble learning is
a powerful technique for achieving high accuracy when classifying human motions with
sensor data. It can help improve the robustness of the model and reduce the impact of
individual model weaknesses.

P

DT RF

DT Predictions

Final Predictions

Gyroscope and
Accelerometer

Sensor Data

P

P

RF Predictions

Voting Classifier

Figure 5. The architectural diagram analysis of our proposed ensemble method.

4. Result Sand Discussions

The experimental evaluation of the experiments performed in our research study is
extensively analyzed in this section. This section contains comparative analysis of results
with detailed discussions of the applied machine learning and deep learning techniques.

4.1. Experimental Setup

The experimental setup is analyzed for building and evaluating the applied learning
techniques. All of our research experiments were conducted using the Python programming
language. Tensorflow framework version 2.9.2, Keras framework version 2.9.0, and Sklearn
framework version 1.0.2 were used for the building and evaluating of the applied artificial
intelligence-based techniques.

4.2. Performance Metrics

Scientific evaluation and validation of the performance metrics of the applied artificial
intelligence-based techniques are analyzed here. The metrics used for performance evalua-
tions were the error rate, accuracy, precision, f1, recall, Cohen’s kappa, geometric mean,
and the receiver operating characteristic (ROC) score.
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Accuracy is a commonly used metric that measures the percentage of correctly pre-
dicted outcomes. Precision is another important metric that measures the percentage
of true positive predictions out of all positive predictions. Conversely, recall measures
the percentage of true positive predictions out of all actual positives. The f1 score is the
harmonic mean of precision and recall and is a useful metric when there is an imbalance
between the classes. Cohen’s kappa is a metric that measures the agreement between two
raters. The geometric mean is calculated by taking the square root of the product of the true
positive and negative rates. Finally, the ROC score is a metric that measures the trade-off
between the true positive rate and the false positive rate.

4.3. Performance Comparison of the Applied Machine Learning and Deep Learning Methods

Here, the comparative performance analysis of the applied machine learning and deep
learning techniques based on different metrics is analyzed. Table 6 contains the compar-
ative performance metrics of the applied techniques on unseen test data. The analysis
shows that the machine learning-based LR and SVM methods achieved comparatively
poor performance. The LR and SVM techniques achieved 86% and 66% accuracy scores,
respectively. The machine learning technique DT performed well. However, the DT method
had a low Cohen’s kappa score. The deep learning-based techniques LSTM and GRU also
achieved comparatively acceptable performance scores. The analysis demonstrates that
the ensemble learning-based ERD technique outperformed the others, with high accuracy
scores and low error rates. The proposed ERD achieved 99% accuracy, precision, and f1
scores for human motion detection as walking or running.

Table 6. Comparative performance analysis of the applied machine learning and deep learning
techniques on unseen test data.

Techniques Accuracy
Score (%)

Error
Rate

Precision
Score (%)

Recall
Score (%)

F1 Score
(%)

Cohen’s Kappa
Score (%)

Geometric Mean
Score (%)

ROC
Score (%)

ML

ERD 99 0.011 99 99 99 97 98 98
RF 96 0.031 97 97 97 93 96 96

DT 97 0.020 98 98 98 95 97 97

LR 86 0.139 86 86 86 72 86 86

SVM 66 0.343 70 66 64 31 65 65

DL
LSTM 96 0.032 97 97 97 93 97 96

GRU 96 0.036 96 96 96 92 96 96

The bar chart-based performance analysis of the applied machine and deep learning
techniques is visualized in Figure 6. The analysis shows that the machine learning-based LR
and SVM techniques achieved poor performance scores for all performance metrics. The DT,
LSTM, and GRU techniques achieved fair results in comparison. Finally, the ensemble
learning-based ERD method achieved the highest scores comparatively of all of the used
performance metrics.

An error loss analysis of the applied machine and deep learning methods is presented
in Figure 7. The analysis demonstrates that the LR and SVM techniques achieved high error
rates and low accuracy scores while testing unseen data. The DT technique achieved a
moderate error rate, followed by the LSTM and GRU methods. The analysis shows that the
proposed ERD model achieved a minimum error loss of 0.011 compared to other applied
techniques. The proposed model achieved excellent performance for kinematic human
motion detection.
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Figure 6. The comparative performance analysis is based on the bar chart of the machine and deep
learning models.
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Figure 7. Error rate analysis of the applied machine learning and deep learning models.

The time series-based performance analysis of the applied deep learning techniques
during training is analyzed in Figure 8. The LSTM model analysis shows that a high
loss score was achieved during the first training epoch, resulting in low accuracy scores.
After the first epoch, the loss decreased, and the accuracy score increased. During the first
epoch of the GRU model, the loss and accuracy scores were low, the same as in the LSTM
model. Both deep learning techniques achieved good performance scores after the first
training epoch. This analysis demonstrates that as the epochs increased, the performance
of both deep learning models increased.
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(a) (b)

Figure 8. The time series-based performance analysis during training of deep learning-based models.
(a) The performance analysis of the LSTM model. (b) The performance analysis of the GRU model.

4.4. k-Fold Cross Validation Analysis

We have validated the performance of the used machine and deep learning techniques
based on 10-fold data. The k-fold cross-validation technique was applied to each learning
model. The k-fold cross-validation results are analyzed in Table 7. Cross-validation analysis
shows that our proposed ERD method achieved a 99% k-fold cross-validation accuracy
score. The proposed ERD technique’s standard deviation was minimal compared to other
applied techniques. The machine learning-based LR and SVM methods achieved very
poor k-fold cross-validation scores. The k-fold cross-validation analysis concludes that our
proposed approach is in generalized form.

Table 7. k-fold cross validation analysis of the applied machine and deep learning models.

Techniques k-Fold Accuracy Score (%) Standard Deviation (±)

ML

ERD 10 99 0.0011
RF 10 98 0.0010

DT 10 98 0.0015

LR 10 86 0.0021

SVM 10 60 0.0439

DL
LSTM 10 97 0.0081

GRU 10 97 0.0081

The confusion matrix exploration of the ERD technique proposed in this study for the
determination of human motion as walking or running is visualized in Figure 9. The con-
fusion matrix summarizes the overall classification performance of a learning model.
The analysis shows that our presented model achieved a high score for true positive and
negative rates. The confusion matrix exploration validates our proposed motion-detection
technique’s high performance scores.
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Figure 9. Confusion matrix analysis of the proposed model for human motion detection.

4.5. Computational Complexity Analysis

The computational runtime complexity is analyzed in Table 8. The analysis shows
that the applied machine learning techniques have lower computational complexity scores
and that the deep learning-based methods have the highest computational complexity
scores. The analysis concludes that our proposed machine learning-based technique has
less runtime computational complexity and has high accuracy-performance scores.

Table 8. The computational complexity analysis of the applied models.

Technique Runtime Computations (s)

RF 0.52

LR 0.24

SVM 1.41

LSTM 83.7

GRU 40.8

Proposed ERD 37.3

4.6. Performance Comparison with State-of-the-Art Studies

Our proposed approach is comparatively analyzed based on performance with the
other state-of-the-art studies in Table 9. We compared the state-of-the-art studies from
2020, 2021, and 2022. Deep learning and machine learning-based methods were applied
in the comparison studies. We utilized other state-of-the-art techniques on our dataset
and evaluated the results. The comparison analysis indicates that our proposed ensemble
learning-based ERD technique outperformed the other state-of-the-art studies with a high
accuracy score of 99%. The other state-of-the-art models also achieved good performance
scores on our study dataset.

Table 9. Comparative analysis of the proposed ERD approach with the other state-of-art studies.

Ref. Year Learning Type Technique Accuracy Score (%)

[34–36] 2020 Machine learning DT 97

[37,38] 2021 Machine learning DT 97

[39] 2022 Machine learning LGBM 97

[40,41] 2022 Deep learning LSTM 96

[42,43] 2022 Machine learning LR 86

Proposed 2023 Ensemble Learning ERD 99
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5. Conclusions and Future Work

The determination of human motion as walking or running using artificial intelligence-
based methods is proposed in this research. Smartphone accelerometer and gyroscope
sensor-based data were used for the building and evaluation of the applied methods.
Six fully hyperparameter-tuned machine and deep learning methods were applied in
comparison to one another. A cross-validation k-fold approach based on ten data folds
was used to validate the applied methods. Our proposed ensemble method outperformed
the other applied artificial intelligence-based techniques and other state-of-the-art studies.
The proposed method performed highly when identifying human motion. We will use
the transfer learning-based technique for human motion detection in the future. More
advanced smartphone sensors will also be tested.

In conclusion, the proposed human kinematic motion detection methodology using
smartphone sensor data and artificial intelligence is a promising approach for accurately
detecting and classifying various human motions. The experiments’ results demonstrate
the proposed method’s effectiveness compared to traditional methods.

The implementation of machine learning on a smartphone, smartwatch, or even
embedded microprocessor has the potential to revolutionize how we interact with these
devices. With the increasing availability of powerful processors and sensors on mobile
devices, we can use machine learning directly for activity recognition. The machine learning
model requires minimal resources and can run smoothly on embedded devices.

The proposed methodology could be further improved in future works by incorporat-
ing more advanced machine learning algorithms and data from additional sensors such as
depth sensors or cameras. Additionally, the method could be tested on a larger and more
diverse dataset in order to evaluate its performance in different scenarios.
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