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Abstract: In this work, a coupled 3D thermo-elastic shell model is presented. The primary variables
are the scalar sovra-temperature and the displacement vector. This model allows for the thermal stress
analysis of one-layered and sandwich plates and shells embedding Functionally Graded Material
(FGM) layers. The 3D equilibrium equations and the 3D Fourier heat conduction equation for
spherical shells are put together into a set of four coupled equations. They automatically degenerate
in those for simpler geometries thanks to proper considerations about the radii of curvature and
the use of orthogonal mixed curvilinear coordinates α, β, and z. The obtained partial differential
governing the equations along the thickness direction are solved using the exponential matrix method.
The closed form solution is possible assuming simply supported boundary conditions and proper
harmonic forms for all the unknowns. The sovra-temperature amplitudes are directly imposed at the
outer surfaces for each geometry in steady-state conditions. The effects of the thermal environment
are related to the sovra-temperature profiles through the thickness. The static responses are evaluated
in terms of displacements and stresses. After a proper and global preliminary validation, new
cases are presented for different thickness ratios, geometries, and temperature values at the external
surfaces. The considered FGM is metallic at the bottom and ceramic at the top. This FGM layer can
be embedded in a sandwich configuration or in a one-layered configuration. This new fully coupled
thermo-elastic model provides results that are coincident with the results proposed by the uncoupled
thermo-elastic model that separately solves the 3D Fourier heat conduction equation. The differences
are always less than 0.5% for each investigated displacement, temperature, and stress component.
The differences between the present 3D full coupled model and the the advantages of this new model
are clearly shown. Both the thickness layer and material layer effects are directly included in all the
conducted coupled thermal stress analyses.

Keywords: 3D coupled thermo-elastic shell model; 3D Fourier heat conduction equation; 3D elastic
equilibrium equations; functionally graded materials; plates; shells

1. Introduction

The thermal stress analysis, for innovative and modern aerospace industries, is funda-
mental for new projects about space vehicles and aircraft where high temperature gradients
and fast changes in temperature are classical operational conditions [1–4]. The study of the
temperature gradient influence on strains and stresses is mandatory for the correct analysis
of the performances of avant-garde structures. The main topic is related to the heat flux
loads acting on the external structures of the airplanes and launch vehicles. These thermal
loads and the mechanical loads can cause serious damage to the structure. For this reason,
a proper mathematical formulation to analyse all these load effects must be developed.
In addition, thanks to the technological improvement, the Functionally Graded Materials
(FGMs), capable of continuously varying their mechanical and thermal properties along a
given direction thanks to two or more constituent phases that vary over a defined volume,
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permit enhancing performances of the classical composite materials. The FGMs can vary
their properties in each direction, but, in the aerospace sector, the thickness direction is
the most common one. FGMs are even used for the thermal applications because they can
better stand high temperatures at the same strength-to-weight ratio and there are not any
layer interfaces [5]. In this paper, a full coupled thermo-elastic model is presented where the
3D equilibrium equations and the 3D Fourier heat conduction equation for spherical shells
are employed. In this way, the sovra-temperature and the three displacement components
are unknown variables of the problem. The most important characteristics of full coupled
thermo-elastic models were shown in [6–12] where divergence and gradient equations,
constitutive equations, boundary conditions, variational principles, field equations, pro-
portionality equations between the heat flux and gradient of the thermal variable, energy
balance equations, and the initial conditions were deeply discussed.

Several papers about the thermal stress analysis of FGM structures, both numerical
and analytical models, are present in the open literature. In order to better remark the
new characteristics of this new formulation, thermo-mechanical models for plates and
shells embedding FGM layers are grouped as those related to 1D exact solutions, 1D
numerical models, 2D exact solutions, 2D numerical models, 3D exact solutions, and 3D
numerical models.

For what concerns the literature about the 1D exact solutions, Kapuria et al. [13]
presented a third-order zigzag theory, together with the modified rule of mixtures for
the effective modulus of elasticity for layered FGM beams. This model was evaluated
for static and free vibration analyses. Ghiasian et al. [14] presented the buckling of FGM
beams under different thermal loads. The beam was resting over a three-parameter elastic
foundation with hardening/softening cubic nonlinearity, which acted in tension as well as
in compression. Kiani and Eslami [15] showed the static and dynamic buckling of an FGM
beam under uniform temperature rise and uniform compression. The material properties
in [14,15] varied along the thickness direction. The Timoshenko beam model resting on
a two-parameter non-linear elastic foundation was implemented in [16] in the case of
the thermal buckling of FGM beams subjected to a temperature rise. Ma and Lee [17]
presented a closed-form solution for the nonlinear static responses of FGM beams under
uniform in-plane thermal loads. The three governing equations for the axial and transverse
deformations of beams were reduced to a single nonlinear fourth-order integral–differential
equation. The geometrically non-linear post-buckling load–deflection behaviour of FGM
Timoshenko beams under in-plane thermal loadings was discussed in [18]. The thermal
loads were applied by providing a non-uniform temperature rise across the beam thickness
in steady-state conditions. Zhang et al. [19] proposed a thermal buckling of ceramic–metal
FGM beams subjected to a transversely non-uniform temperature rise. The investigation
method was the symplectic theory in the Hamiltonian system.

In the framework of 1D numerical models, Chakraborty et al. [20] presented a beam
element for thermoelastic analysis based on the first-order shear deformation theory where
elastic and thermal properties changed along the thickness direction. The interpolating
polynomials were created thanks to the exact solution of the same beam model. In [21],
a thermo-elastic vibration analysis of FGM beams with general boundary conditions was
presented. A higher-order shear beam deformation theory with material properties depen-
dent on the temperature was used. An improved Finite Element Method (FEM) was shown
in [22]. Thanks to this new FE model, the transverse and axial vibrations of FGM beams
under thermal fields and exposed to a moving mass were analysed. Esfahani et al. [23]
proposed a thermal buckling and post-buckling analysis of FGM structures using the
Timoshenko beam model resting on a non-linear elastic foundation. Both thermal and
mechanical properties were functions of the temperature and position. Tang and Li [24]
proposed FGM slender beam analyses. The numerical model was created via the principle
of the minimum for the total potential energy in order to derive the non-linear governing
equations of the structures. The buckling of FGM beams with different boundary condi-
tions was presented in [25]. The numerical model was based on the Timoshenko beam
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theory and the critical buckling load of the structures was evaluated using the Ritz method.
Ziane et al. [26] presented a numerical model, using the Galerkin method, to analyse the
thermal buckling of simply supported and clamped–clamped FGM box beams.

In the case of 2D exact solutions, Jahaveri and Eslami [27] presented stability and
equilibrium equations for rectangular plates constituted of FGM layers under thermal loads.
The equations were derived from the high-order shear deformation theory. Akbaş [28]
proposed free vibration and static analyses of simply supported FGM plates; the porosity
effect was included. Saad and Hadji [29] showed a thermal buckling problem for porous
thick rectangular plates constituted of FGM layers using a high-order shear deformation
theory. Sangeetha et al. [30] presented a closed form solution for FGM plates under thermal
loads using a refined model based on the first-order shear deformation theory. The effects
of thermal stresses were studied for several temperature variations across the thickness
direction of the plate. In [31], Zenkour and Mashat presented thermal buckling responses
using a Sinusoidal shear deformation Plate Theory (SPT). The governing equations were
derived using SPT and solved in a closed form. Yaghoobi and Ghannad [32] proposed a
thermal analysis for FGM cylinders under non-uniform heat fluxes. The governing equa-
tions were based on the first-order temperature theory and the energy method. Zeighami
and Jafari [33] proposed a solution for the thermo-mechanical analysis of functionally
graded carbon nanotube-reinforced composite plates with a central hole. This solution was
possible thanks to the Lekhnitskii complex potential approach and the proper conformal
mapping functions.

In the area of 2D numerical models, Praveen and Reddy [34] proposed a finite element
able to take into account transverse shear strains, rotary inertia, and large rotations for
FGM ceramic–metal plates. Static and dynamic analyses were conducted. Thai et al. [35]
presented a four-unknown shear and normal deformation theory for static, dynamic and
buckling analyses of FGM plates where the 3D material matrix was used. The system
of equations was derived using the Galerkin weak form and the isogeometric analysis.
In [36], a non-linear finite element model was presented to study the dynamic response of
FGM structures under the thermal and mechanical harmonic loads. In this case, the FGM
properties depended on the temperature and they varied in the thickness direction via
a power law distribution. The effects of the material variation through the thickness
and the size of the FGM were studied using the finite element method in [37] using the
Crank–Nicolson–Galerkin scheme. Alibeigloo [38] showed the bending analysis of the
FGM sandwich circular plates under thermo-mechanical loads. The used method was
the Generalized Differential Quadrature method (GDQ) and the temperature distribution
in the 3D form was computed by solving the heat conduction governing the equation
in closed form. Hong [39] proposed a GDQ third-order shear deformation plate theory
for FGM structures under thermal vibrations. Karakoti et al. [40] showed an eight-nodes
isoparametric finite element in order to obtain a nonlinear transient response of porous
FGM sandwich plates and shells. The FGM structure was subjected to blast loadings
and thermal loads. Jooybar et al. [41] presented a numerical model where the equations
of motion (and related boundary conditions), derived thanks to the Hamilton principle,
were solved with the use of the differential quadrature method. The embedded FGM
was temperature dependent. In [42], a thermal buckling analysis of the FGM sandwich
plates, using an improved mesh-free Radial Point Interpolation Method (RPIM), was
presented. This buckling formulation for plates was derived from an improvement of RPIM
employing a new radial basis function. Therefore, the shape functions were built without
any supporting fixing parameters based on the higher-order shear deformation plate theory.
Qi et al. [43] showed a dynamic analysis for stiffened doubly curved sandwich composite
panels with an FGM core and two isotropic layers under thermal loads. This analysis
was based on von Kármán non-linear strain–displacement relationships and classical plate
theory. The mathematical problem was solved by adopting the finite difference model and
the Newmark method. Taj et al. [44] presented the static analysis of FGM plates using the
HSDT (High Shear Deformation Theory) where the transverse shear stress was represented
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as quadratic along the thickness direction; the material properties of the FGM varied along
the same direction.

For what concerns the 3D analytical solutions, they can be used to validate all the
previously discussed models because they can consider all the peculiarities for geometry
and lamination. Reddy and Cheng [45] proposed a theory for the bending of rectangular
plates embedding FGM layers and piezoelectric actuators. In this way, when the FGM
surface was subjected to thermal loads, displacements and stresses can be controlled. In [46],
an analytical solution was presented for 3D steady and transient heat conduction problems
of double-layer plates (including a coating layer and an FGM layer) with a local heat
source. For this solution, the Poisson method and the layerwise approach were employed.
Chen et al. [47] proposed a method based on state–space formulations with laminate
approximations. The employed FGM was temperature dependent. Ootao e Tanigawa [48]
showed a theoretical method for transient thermoelastic problems involving orthotropic
FGM rectangular plates and non-uniform heat supply. The transient 3D temperature was
analysed with an exponential law in the thickness direction. The same authors also [49]
proposed a theoretical analysis of a 3D thermal stress problem for FGM structures subjected
to a partial heat supply in a transient state. Jabbari et al. [50] discussed an exact solution
for the steady state thermo-elastic problem of 3D simply supported circular FGM plates.
Thermal and mechanical loads were axisymmetrically applied at the outer surfaces. Vel
and Batra [51] presented an exact solution for 3D deformations of simply supported FGM
rectangular plates subjected to mechanical and thermal loads at the external surfaces.
Proper temperature and displacement functions were used in order to satisfy the boundary
conditions at the edges and to reduce the system of partial differential equations for the
thermo-elastic problem. Liu [52] discussed a 3D axisymmetric FGM circular plate under
thermal loads at outer surfaces. A proper temperature function for the thermal boundary
conditions at the edges was used and the variable separation method was employed
to reduce the order of the set of governing equations in steady-state heat conduction.
Alibeigloo [53] showed a 3D thermo-elastic model for FGM rectangular plates with simply
supported edges under thermo-mechanical loads. The analytical solutions for temperature,
stress, and displacement fields were proposed by using the Fourier series and the state–
space method.

In the framework of 3D numerical (FEM, meshless methods, and GDQ) models, a study
about the thermal elastic residual stresses occurring in Ni–Al2O3, Ni–TiO2, and Ti–SiC FG
plates, due to different temperature fields through the plate thickness, was presented in [54].
A 3D eight-nodes isoparametric-layered finite element with three degrees of freedom per
node was implemented here. In [55], Hajlaoui et al. proposed a modified first-order
enhanced solid-shell element formulation for the thermal buckling of functionally graded
shells. The material properties varied in the thickness direction via a power law. In [56],
a 3D free vibration analysis of shells constituted of laminated FGMs was shown thanks
to the use of the quadrature element method. The shell geometry was analysed both in
thermal and non-thermal configurations. Burlayenko et al. [57] presented a 3D analysis
for free vibrations of thermally FGM sandwich plates. The material properties varied
along the thickness direction and the analysis was conducted using the ABAQUS FE code.
A 3D analysis of FGM cylinders containing semi-elliptical circumferential surface crack
and thermo-mechanical loading was presented in [58]. The variation law for the Young
modulus was exponential through the thickness. Naghdabadi and Kordkheili [59] proposed
an FE formulation for the thermoelastic analysis of FGM plates and shells. The power law
distribution for the composition of the constituent phase varied in the thickness direction.
Qian and Batra [60] proposed a transient heat conduction analysis for thick FGM plates
by using a higher-order plate theory and a meshless local Petrov–Galerkin method. Mian
and Spencer [61] proposed models for both laminated and FGM structures in a Cartesian
coordinate system. The comparisons between the two materials were discussed.

This new 3D coupled thermo-elastic shell model is valid for several geometries: spher-
ical shells and cylindrical panels, cylinders, and plates. A closed-form solution is proposed
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using the simply supported hypotheses for the edges and the harmonic forms for the
primary variables. The materials embedded in the proposed structures could be classical or
functionally graded along the thickness direction. The 3D equilibrium equations coupled
with the 3D heat conduction equation for shells are solved thanks to the exponential matrix
method along the thickness direction. A layer-wise approach is employed. The present
3D exact coupled thermo-elastic shell model can be seen as the general case of the pure
mechanical model already developed by Brischetto in [62,63] in the case of free vibration
and bending analyses, respectively. The addition of the thermal-related equation in the
orthogonal mixed curvilinear coordinates (see [64–67]) to 3D equilibrium relations creates a
homogeneous differential equation set that can be solved via the procedure shown in [68,69].
The new results are presented in terms of displacements, stresses, and temperature profiles.
They can be used as benchmarks for the development and testing of new 3D, 2D, and 1D
numerical models for thermal stress analyses of FGM structures.

The paper is organized as follows. Section 2 is about the coupled thermo-elastic
governing equations for spherical shells and the related solution methodology. Section 3
covers the results and is split in a first subsection for preliminary assessments and a second
subsection for new benchmarks. Section 4 provides the main conclusions.

2. 3D Exact and Coupled Thermo-Elastic Governing Equations for Spherical Shells

This section shows the development of the 3D coupled exact thermo-elastic shell
model for FGM structures. Plates, cylinders, cylindrical, and spherical shells (see the
differences between the four geometries in Figure 1) are analysed using the same model
thanks to appropriate considerations about the radii of the curvature Rα and Rβ.
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Figure 1. Geometries for assessments and benchmarks. Spherical shell and related particular cases as
plate, cylindrical shell, and cylinder.
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In Figure 1, the orthogonal mixed curvilinear reference system (α, β, z) has its origin in
a corner. The in-plane directions α and β are parallel to the lateral curved sides and they lie
on the middle surface Ω0. The Ω0 surface is the reference surface for the computation of
all the geometrical parameters. The thickness direction z is normal to the Ω0 surface and
directed from the bottom to the top surface. This model has, as unknown variables, the three
displacement components u, v, and w in the three directions of the reference system and
the scalar sovra-temperature θ. The 3D elastic equilibrium equations and the 3D Fourier
heat conduction equation are put together in the same system that is solved as a system
of second-order partial differential equations where the unknowns are displacements,
temperature, and related derivatives created with respect to z.

2.1. 3D Equilibrium and Heat Conduction Equations for Spherical Shells

The starting point for the mathematical formulation of the present 3D full coupled
exact thermo-elastic shell model is the writing of the 3D equilibrium equations and the 3D
Fourier heat conduction relation for spherical shells:

Hβ(z)
∂σk

αα

∂α
+ Hα(z)

∂σk
αβ

∂β
+ Hα(z)Hβ(z)

∂σk
αz

∂z
+
(2Hβ(z)

Rα
+

Hα(z)
Rβ

)
σk

αz = 0, (1)

Hβ(z)
∂σk

αβ

∂α
+ Hα(z)

∂σk
ββ

∂β
+ Hα(z)Hβ(z)

∂σk
βz

∂z
+
(2Hα(z)

Rβ
+

Hβ(z)
Rα

)
σk

βz = 0, (2)

Hβ(z)
∂σk

αz
∂α

+ Hα(z)
∂σk

βz

∂β
+ Hα(z)Hβ(z)

∂σk
zz

∂z
−

Hβ(z)
Rα

σk
αα −

Hα(z)
Rβ

σk
ββ+

+
(Hβ(z)

Rα
+

Hα(z)
Rβ

)
σk

zz = 0, (3)

κ∗1
k(z)

∂2θ

∂α2 + κ∗2
k(z)

∂2θ

∂β2 + κ∗3
k(z)

∂2θ

∂z2 = 0. (4)

Equations (1)–(3) are the 3D equilibrium equations, and they are linked with the
3D Fourier heat conduction equation in steady-state condition (Equation (4)) in order
to couple the mechanical field with the thermal one. The 3D Fourier heat conduction
relation in Equation (4) is proposed in a steady-state form. Therefore, the dependence
on the time is discarded. Rα and Rβ are the radii of curvature in the α and β directions,
respectively, and they are constant values. The Hα(z) and Hβ(z) coefficients presented in
Equations (1)–(4) are linear functions of the thickness coordinate z or z̃. They introduced
the curvature effects of the shells and they are defined, for each direction, as:

Hα(z) =
(

1 +
z

Rα

)
=

(
1 +

z̃− h/2
Rα

)
, (5)

Hβ(z) =
(

1 +
z

Rβ

)
=

(
1 +

z̃− h/2
Rβ

)
, (6)

Hz = 1. (7)

The term h shown in Equations (5)–(7) represents the total thickness of the structure.
h is always considered as constant. The variable z is in the range between −h/2 and h/2
and z̃ is in the range between 0 and h. In Equation (4), the conduction coefficients κ∗1

k(z),
κ∗2

k(z), and κ∗3
k(z) are defined as:

κ∗1
k(z) =

κk
1(z)

H2
α(z)

, κ∗2
k(z) =

κk
2(z)

H2
β(z)

, κ∗3
k(z) = κk

3(z) . (8)
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where κk
1(z), κk

2(z) and κk
3(z) are the conduction coefficients in the three directions of the

mixed orthogonal reference system. If the k layer is an FGM, they depend on z. κ∗1
k(z),

κ∗2
k(z), and κ∗3

k(z) also depend on the curvature via the use of Hα(z) and Hβ(z). It must
be noted that, in the case of a plate, the κ∗i

k(z) conduction coefficients degenerate in κk
i (z)

because there are no curvatures involved (Hα = Hβ = 1).

2.2. 3D Geometrical and Constitutive Relations

The geometrical equations used for this thermo-mechanical model consider both the
strains linked to the displacements uk and the strains linked to the sovra-temperature θk.
The equations can be written in matrix form as:

εk =
(

∆(z) + G(z)
)

uk − µk(z)θk (9)

where εk is the 6× 1 strain vector, ∆(z) is a 6× 3 matrix containing the differential terms for
the shell configuration, G(z) is a 6× 3 matrix that includes the pure geometrical curvature
terms, uk is the 3× 1 displacement vector, and µ(z)k is the 6× 1 vector containing the
thermal expansion coefficients evaluated in α, β, and z directions. The explicit form of these
matrices and vectors are here presented:

εk =



εk
αα

εk
ββ

εk
zz

γk
βz

γk
αz

γk
αβ


, ∆(z) =



∂
∂α

1
Hα(z)

0 0

0 ∂
∂β

1
Hβ(z)

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂β

1
Hβ(z)

∂
∂z 0 ∂

∂α
1

Hα(z)
∂

∂β
1

Hβ(z)
∂

∂α
1

Hα(z)
0


,

G(z) =



0 0 1
Hα(z)Rα

0 0 1
Hβ(z)Rβ

0 0 0
0 − 1

Hβ(z)Rβ
0

− 1
Hα(z)Rα

0 0
0 0 0


,

uk =

uk

vk

wk

, µk(z) =



µk
α(z)

µk
β(z)

µk
z(z)
0
0
0


. (10)

The superscript k indicates that the matrix and the vector are valid for each physical
layer. In order to obtain these coefficients, a rotation from the material reference system
(1,2,3) to the structural reference system (α, β, and z) has been employed.

Thanks to the constitutive equations, the strain components can be related to the
six stress components σk = [σk

αα σk
ββ σk

zz σk
βz σk

αz σk
αβ]

T . The constitutive relation is the
well-known Hooke law:

σk = Ck(z)εk (11)

where the vector of mechanical strains εk is the algebraic summation of geometrical strains
and thermal strains. The elastic coefficient matrix Ck(z) has 6× 6 dimension and it depends
on z in the case of a k layer constituted of an FGM. The elastic coefficient matrix used in this
formulation has Ck

16(z) = Ck
26(z) = Ck

36(z) = Ck
45(z) = 0 (it implies only 0◦/90◦ orthotropic
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angle) to solve, in closed form, the mathematical problem with respect to the unknown
displacements and temperature amplitudes by means of the Navier methodology in the α
and β plane directions and the exponential matrix method in the z direction.

Using the constitutive relation expressed in Equation (11) and substituting Equation (9)
in it:

σk = Ck(z)εk = Ck(z)
[(

∆(z) + G(z)
)

uk − µk(z)θk
]
=

= Ck(z)
(

∆(z) + G(z)
)

uk − Ck(z)µk(z)θk = M k(z)uk − λk(z)θk
(12)

where M k(z) has 6× 3 dimension and it indicates the pure mechanical coefficients; λk(z)
denotes the presence of the thermo-mechanical coupling coefficients in the structural
reference system. Vector λk(z) is defined as:

λk(z) =



λk
α(z)

λk
β(z)

λk
z(z)
0
0
0


=



Ck
11(z) Ck

12(z) Ck
13(z) 0 0 0

Ck
12(z) Ck

22(z) Ck
23(z) 0 0 0

Ck
13(z) Ck

23(z) Ck
33(z) 0 0 0

0 0 0 Ck
44(z) 0 0

0 0 0 0 Ck
55(z) 0

0 0 0 0 0 Ck
66(z)





µk
α(z)

µk
β(z)

µk
z(z)
0
0
0


. (13)

According to the previously described substituting steps, the stresses are linked with
u, v, w, and θ, which are the unknown variables of the formulation.

2.3. Exponential Matrix Methodology and Layer Wise Approach

In order to solve the problem in an exact and closed form, there is the necessity of the
harmonic form for the primary unknowns u, v, w, and θ:

uk(α, β, z) = Uk(z)cos(ᾱα)sin(β̄β) , (14)

vk(α, β, z) = Vk(z)sin(ᾱα)cos(β̄β) , (15)

wk(α, β, z) = Wk(z)sin(ᾱα)sin(β̄β) , (16)

θk(α, β, z) = Θk(z)sin(ᾱα)sin(β̄β) . (17)

Thanks to these impositions, the boundary conditions for all the structures are the
simply supported sides. The amplitudes of the unknowns are identified with the appropri-
ate capital letter (e.g., the amplitude of the displacement u is written as U). The ᾱ and β̄
coefficients depend on the in-plane dimensions a and b and on the half-wave numbers m
and n in the in-plane directions as follows:

ᾱ =
mπ

a
, β̄ =

nπ

b
. (18)

Substituting the unknowns written in harmonic form (Equations (14)–(17)), the ge-
ometrical relations (Equation (9)) and the constitutive relations (Equation (11)) into the
equilibrium relations (Equations (1)–(4)), four second-order differential equations are writ-
ten as follows:
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Ak
1(z)U

k(z) + Ak
2(z)V

k(z) + Ak
3(z)W

k(z) + Jk
1(z)Θ

k(z) + Ak
4(z)U

k
,z(z)+

+ Ak
5(z)W

k
,z(z) + Ak

6(z)U
k
,zz(z) = 0 , (19)

Ak
7(z)U

k(z) + Ak
8(z)V

k(z) + Ak
9(z)W

k(z) + Jk
2(z)Θ

k(z) + Ak
10(z)V

k
,z(z)+

+ Ak
11(z)W

k
,z(z) + Ak

12(z)V
k
,zz(z) = 0 , (20)

Ak
13(z)U

k(z) + Ak
14(z)V

k(z) + Ak
15(z)W

k(z) + Jk
3(z)Θ

k(z) + Ak
16(z)U

k
,z(z)+

+ Ak
17(z)V

k
,z(z) + Ak

18(z)W
k
,z(z) + Jk

4(z)Θ
k
,z(z) + Ak

19(z)W
k
,zz(z) = 0 , (21)(

Jk
5(z) + Jk

6(z)
)

Θk(z) + Jk
7(z)Θ

k
,zz(z) = 0 , (22)

where coefficients Ak
s(z) (s rises from 1 to 19) and Jk

r (z) (r varies from 1 to 7) are not constant
(they depend on z). Note that Equations (19)–(22) are written in a generic k-th physical layer.

The unknowns, from this moment forward, are the amplitudes of the displacements
and sovra-temperature and the related first-order derivatives (only created along the z
direction because the ones created in in-plane directions are exactly evaluated and they
become constant values). All four equations have coefficients that depend on z because of
the curvature terms Hα(z) and Hβ(z) (see Equations (5)–(7)) and some FGM layers. In order
to transform this set of non-constant coefficient second-order differential equations into a
constant coefficients set, each k physical layer is split up into several fictitious layers. So,
a number of M fictitious layers are employed along the thickness direction of the structure
to discretise curvature terms and FGM properties. To define these fictitious layers, a new
index has to be introduced: j is the index that counts these layers and it varies from 1 to
M (total number of fictitious layers employed in the thickness direction). M can be easily
calculated with the relation M = s · k where s indicates the number of subdivisions of
each k physical layer. In these fictitious layers, the coefficients Hα(z) and Hβ(z) and FGM
properties can be exactly calculated in their middle points and the obtained values are
constant within each fictitious layer. From this point forward, all the equations proposed
are written in the j fictitious layer and they have constant coefficients. After the introduction
of the fictitious layers, the system expressed in Equations (19)–(22) can be transformed into
a first-order system by redoubling the number of unknowns (as stated in [68,69]). After the
redoubling of the unknowns, the set of first-order differential equations can be reported in
compact form as: 

Aj
6 0 0 0 0 0 0 0

0 Aj
12 0 0 0 0 0 0

0 0 Aj
19 0 0 0 0 0

0 0 0 J j
7 0 0 0 0

0 0 0 0 Aj
6 0 0 0

0 0 0 0 0 Aj
12 0 0

0 0 0 0 0 0 Aj
19 0

0 0 0 0 0 0 0 J j
7





U j

V j

W j

Θj

U j
′

V j
′

W j
′

Θj
′



′

=



0 0 0 0 Aj
6 0 0 0

0 0 0 0 0 Aj
12 0 0

0 0 0 0 0 0 Aj
19 0

0 0 0 0 0 0 0 J j
7

−Aj
1 −Aj

2 −Aj
3 −J j

1 −Aj
4 0 −Aj

5 0
−Aj

7 −Aj
8 −Aj

9 −J j
2 0 −Aj

10 −Aj
11 0

−Aj
13 −Aj

14 −Aj
15 −J j

3 −Aj
16 −Aj

17 −Aj
18 −J j

4
0 0 0 −(J j

5 + J j
6) 0 0 0 0





U j

V j

W j

Θj

U j
′

V j
′

W j
′

Θj
′


, (23)
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where [U j, V j, W j, Θj, U j
′
, V j

′
, W j

′
, and Θj

′
]T is the new unknown vector containing both

the displacement and sovra-temperature amplitudes and the related first-order derivatives
along the z direction (indicated with the apex ′). Different from the model proposed
by Brischetto and Torre in [70], the sovra-temperature profile along the z direction is
computed without using an external tool. It is calculated as a primary variable by means of
Equation (4) combined with the equilibrium equations. Equation (23) can be written in a
compact form as:

DjX j
′
= AjX j, (24)

A further rewriting of Equation (24) is:

X j
′
= A∗

j
X j, (25)

with A∗j
= Dj−1

Aj. X j is the 8× 1 vector containing the unknowns and X j
′

includes the
derivatives along z of these unknowns. To solve the problem written in Equation (25), it is
possible to use the method of the exponential matrix proposed in [68,69]. The solution of
the problem in Equation (25) can be written as:

X j
t = e(A∗

j
z̃j)X j

b = A∗∗
j
X j

b . (26)

Knowing the exponential matrix term e(A∗
j
z̃j), it is possible to obtain the unknown

vector X j
t (corresponding to the unknown vector at the top of the j-th fictitious layer) related

with the unknown vector X j
b (bottom of the j-th fictitious layer). The e(A∗

j
z̃j) term must be

calculated introducing the thickness value hj of each j layer. The exponential matrix can
be expanded in a power series and it must be computed for each fictitious layer for the
values hj:

A∗∗
j
= e(A∗

j
hj) = I + A∗

j
hj +

A∗
j 2

2!
hj2 +

A∗
j 3

3!
hj3 + · · ·+ A∗

j N

N!
hj N

, (27)

where I is the 8× 8 identity matrix. Equation (26) links the top with the bottom within each
j fictitious layer. To link the top of the j fictitious layer with the bottom of the j + 1 fictitious
layer, proper interlaminar continuity conditions must be imposed. These interlaminar
continuity conditions must be imposed to u, v, and w displacements, sovra-temperature θ,
transverse shear, and transverse normal stresses σαz, σβz, σzz, and transverse normal heat
flux qz at each fictitious layers’ interface. The continuity of all these terms can be written in
matrix form as:

xj+1
b =


uj+1

b
vj+1

b
wj+1

b
θ

j+1
b

 = xj
t =


uj

t
vj

t
wj

t
θ

j
t

, (28)

σn
j+1
b =

σ
j+1
βzb

σ
j+1
αzb

σ
j+1
zzb

 = σn
j
t =

σ
j
βzt

σ
j
αzt

σ
j
zzt

, (29)

qj+1
zb = qj

zt . (30)

where Equation (28) is related to the displacements and sovra-temperature, Equation (29)
is related to stresses and Equation (30) to the heat flux along the z direction. The conditions
expressed in Equation (28) can be easily imposed for the amplitudes U j, V j, W j, and Θj.
It is possible to derive an amplitude form of Equations (28)–(30) using the constitutive
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Equation (11) and the harmonic forms in Equations (14)–(17). These conditions can be
rewritten in matrix form as:

U
V
W
Θ
U
′

V
′

W
′

Θ
′



j+1

b

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
T1 0 T2 0 T3 0 0 0
0 T4 T5 0 0 T6 0 0
T7 T8 T9 τ1 0 0 T10 0
0 0 0 0 0 0 0 τ2



j+1,j

U
V
W
Θ
U
′

V
′

W
′

Θ
′



j

t

, (31)

where the diagonal submatrix including 1 is Equation (28) written in matrix form. The other
coefficients Ti and τi are Equations (29) and (30) in matrix form. A compact form of
Equation (31) is:

X j+1
b = T j+1,jX j

t, (32)

where T j+1,j is the transfer matrix. All the analyses can be conducted using this mathemati-
cal formulation considering the simply supported boundary conditions. This constraint
configuration is automatically assured by Equations (14)–(17). It is possible to write:

θ = 0, w = v = 0, σαα = 0 for α = 0, a , (33)

θ = 0, w = u = 0, σββ = 0 for β = 0, b . (34)

The load boundary conditions must be enforced at the outer faces of the structure; it is
possible to write them as:

σzz = 0, σαz = 0, σβz = 0, Θ = T − T0 for z = ±h/2. (35)

Thanks to Equation (35), the sovra-temperature is directly imposed at the outer faces
of the structure. Equation (35) can be rewritten in a compact way as:



− CM
13

HM
αt

ᾱ − CM
23

HM
βt

β̄
CM

13
HM

αt Rα
+

CM
23

HM
βt

Rβ
−λM

z 0 0 CM
33 0

0 − CM
44

HM
βt

Rβ

CM
44

HM
βt

β̄ 0 0 CM
44 0 0

− CM
55

HM
αt Rα

0 CM
55

HM
αt

ᾱ 0 CM
55 0 0 0

0 0 0 1 0 0 0 0





U
V
W
Θ
U
′

V
′

W
′

Θ
′



M

t

=


0
0
0

Θt

, (36)



− C1
13

H1
αb

ᾱ − C1
23

H1
βb

β̄
C1

13
H1

αb
Rα

+
C1

23
H1

βb
Rβ
−λ1

z 0 0 C1
33 0

0 − C1
44

H1
βb

Rβ

C1
44

H1
βb

β̄ 0 0 C1
44 0 0

− C1
55

H1
αb

Rα
0 C1

55
H1

αb
ᾱ 0 C1

55 0 0 0

0 0 0 1 0 0 0 0





U
V
W
Θ
U
′

V
′

W
′

Θ
′



1

b

=


0
0
0

Θb

. (37)
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Equations (36) and (37) can be further compacted as:

BM
t X M

t = Pt , (38)

B1
bX1

b = Pb, (39)

where vectors Pt and Pb contain the impositions related to the mechanical load conditions
and the sovra-temperature. For the present thermal stress analysis, the mechanical load
conditions are enforced to zero.

In order to include Equations (38) and (39) into an algebraic system written in compact
form, it is possible to write X M

t in terms of X1
b to link the top of the last fictitious layer

with the bottom of the first fictitious layer. This operation can be achieved by recursively
introducing Equation (32) into Equation (26) as follows:

X M
t =

(
A∗∗MT M,M−1 A∗∗M−1T M−1,M−2...... A∗∗2T2,1 A∗∗1

)
X1

b = HmX1
b. (40)

Equation (40) defines the 8× 8 matrix Hm for structures embedding FGM layers. This
matrix has a different size with respect to the Hm matrix proposed in [63] for the pure
mechanical case developed by Brischetto. The matrix size difference is due to the coupling
of the 3D Fourier heat conduction equation directly with the elastic equilibrium relations of
the problem. Introducing Equation (40) in Equation (38), this last one can be rewritten in
terms of X1

b as:
BM

t HmX1
b = Pt , (41)

Equations (39) and (41) can be now compacted as:[
BM

t Hm
B1

b

]
X1

b = EX1
b =

[
Pt
Pb

]
= P ⇒ EX1

b = P . (42)

The main characteristic of the final system written in Equation (42) is the fact that
matrix E independently has an 8× 8 dimension by the number of fictitious layers employed,
even if the method uses a layer-wise approach. This new formulation can be considered as
the generalization of the pure mechanical model proposed in [63] by Brischetto. Vector P
now contains all the load impositions, both mechanical and thermal ones. The system in
Equation (42) is formally the same as shown in [63,70], and in [71], but the addition of the
3D Fourier heat conduction equation to the 3D equilibrium relations is now considered.

This formulation can be implemented in a Matlab code where stresses, strains, and
displacements can be evaluated along the thickness direction z of several structures em-
bedding different FGM configurations. Once the displacements at the bottom of the first
fictitious layer have been calculated, Equations (26) and (32) can be progressively used to
compute the displacements and sovra-temperature (and related derivatives with respect to
z) through all points in the z direction of the structure.

3. Results

This section is related to the comparison of results between the presented coupled
thermo-elastic model and the past uncoupled thermo-elastic model proposed by Brischetto
and Torre [70–73]. The section is divided into two different parts: in the first one, two
preliminary assessments are presented to validate the proposed general 3D exact coupled
thermo-elastic shell model and to clearly understand the proper choice of N (order of
expansion for the exponential matrix in Equation (27)) and the appropriate number of
M (mathematical layers) for the calculation of FGM properties and constant curvature
terms related to shell geometries. In the second part, four new benchmarks are proposed;
after the opportune choice of N and M parameters, the present 3D coupled thermo-elastic
model is considered validated and it allows for the discussion of effects due to the geom-
etry of structures, thickness ratios, FGM laws, and temperature impositions for several
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cases. All the presented assessments and benchmarks consider an FGM layer with two
constituent phases: a metallic one (Monel 70Ni-30Cu) and a ceramic one (Zirconia). These
two constituent phases have the following elastic and thermal properties:

Km = 227.24 GPa, Gm = 65.55 GPa, µm = 15 · 10−6 1
K

, km = 25
W
mK

(43)

Kc = 125.83 GPa, Gc = 58.077 GPa, µc = 10 · 10−6 1
K

, kc = 2.09
W
mK

(44)

where Km and Kc indicate the bulk modulus of the metallic and ceramic phase, Gm and
Gc indicate the shear modulus of the metallic and ceramic phase, µm and µc indicate the
thermal expansion coefficient of the metallic and ceramic phase, and km and kc indicate the
conductivity coefficient of the metallic and ceramic phase. For each presented case (both
assessments and benchmarks), the volume fraction of the ceramic phase Vc follows the
indicated law:

Vc =
( z̃FGM

hFGM

)p
(45)

where z̃FGM is the local thickness coordinate for the FGM layer (it goes from 0 at the bottom
to hFGM at the top of the FGM layer), hFGM is the thickness of the FGM layer, and p is
the related exponential coefficient. The FGM layer used for the proposed results is a full
metallic at the bottom and full ceramic at the top. This consideration is the same for both
sandwich and one-layered configurations. The bulk and shear moduli along the thickness
direction depend on the volume fraction of the ceramic phase Vc. These two material
properties are estimated using the Mori–Tanaka model as follows:

K− Km

Kc − Km
=

Vc

1 + (1−Vc)
Kc−Km

Km+ 4
3 Gm

,
G− Gm

Gc − Gm
=

Vc

1 + (1−Vc)
Gc−Gm
Gm+ fm

(46)

where fm = Gm(9Km+8Gm)
6(Km+2Gm)

. The heat conduction coefficient k is a function of the volume
fraction of the ceramic phase Vc as:

k− km

kc − km
=

Vc

1 + (1−Vc)
kc−km

3km

, (47)

and the thermal expansion coefficient µ can be computed using:

µ− µm

µc − µm
=

1
K −

1
Km

1
Kc
− 1

Km

. (48)

In Equation (48), the dependence on Vc is delegated to the bulk modulus K. The mate-
rial data employed in this section were proposed by Reddy and Cheng in [72].

3.1. Preliminary Assessments

The new proposed 3D coupled thermo-elastic exact solution for shells embedding
FGM layers, here indicated as 3D-u-θ, is validated using two preliminary assessments.
A square one-layered FGM plate and a one-layered FGM cylindrical shell are investigated
considering different thickness ratios. After these assessments, the 3D full coupled shell
model will be defined as validated: the validation occurs for N = 3 (order of expansion
for the exponential matrix) and M = 300 mathematical layers. For the cases presented in
this section, the convergence of the 3D-u-θ model is obtained even for fewer mathematical
layers than those used for the 3D uncoupled thermo-elastic model presented in [70] and
called 3D(θc, 3D) in Tables 1 and 2. However, higher values for N and M are chosen
in a conservative sense. The results for these preliminary assessments are provided in
non-dimensional forms as:
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{ū, v̄, w̄} = {u, v, w}
aC

, {σ̄αα, σ̄ββ, σ̄αβ, σ̄zz, σ̄αz, σ̄βz} =
{σαα, σββ, σαβ, σzz, σαz, σβz}

CK∗
(49)

where C = 10−6 is a constant value, a is the in-plane dimension of the structure in the α
direction, and K∗ = 109 Pa.

Table 1. First preliminary assessment, one-layered FGM (p = 2) square plate with external sovra-
temperature amplitudes Θt = +1 K and Θb = 0 K for m = n = 1. Reference solution is the 3D
uncoupled thermoelastic model by Brischetto and Torre [70] with the temperature profile calculated
using the 3D Fourier heat conduction Equation (3D(θc,3D)). The new 3D coupled thermoelastic
solution is 3D-u-θ.

3D(θc,3D) [70] 3D-u-θ

a/h = 4

w̄ (a/2, b/2, h) 3.042 3.042
w̄ (a/2, b/2, h/2) 2.142 2.142
w̄ (a/2, b/2, 0) 1.900 1.900
ū (0, b/2, h) −1.680 −1.680
ū (0, b/2, h/2) −0.6819 −0.6819
ū (0, b/2, 0) 0.08245 0.08245

a/h = 10

σ̄αz (0, b/2, h/2) 1.584 1584
σ̄zz (a/2, b/2, h/2) 1.015 1.015

a/h = 50

σ̄αα (a/2, b/2, h) −1009 −1009
σ̄αα (a/2, b/2, h/2) −251.7 −250.5
σ̄αα (a/2, b/2, 0) −76.15 −76.15

Table 2. Second preliminary assessment, one-layered FGM (p = 2) cylindrical shell with external
sovra-temperature amplitudes Θt = +1 K and Θb = 0 K for m = n = 1. Reference solution is the 3D
uncoupled thermoelastic model by Brischetto and Torre [70] with the temperature profile calculated
using the 3D Fourier heat conduction Equation (3D(θc,3D)). The new 3D coupled thermoelastic
solution is 3D-u-θ.

3D(θc,3D) [70] 3D-u-θ

Rβ/h = 50

w̄ (a/2, b/2, h) 7.1325 7.1325
w̄ (a/2, b/2, h/2) 6.4120 6.4120
w̄ (a/2, b/2, 0) 6.1931 6.1931
ū (0, b/2, h) −3.5461 −3.5461
ū (0, b/2, h/2) −1.4530 −1.4530
ū (0, b/2, 0) 0.4832 0.4832

Rβ/h = 1000

σ̄ββ (a/2, b/2, h) −1164.9 −1164.9
σ̄ββ (a/2, b/2, h/2) 159.05 159.92
σ̄ββ (a/2, b/2, 0) 990.89 990.89
σ̄αz (0, b/2, h/2) −5.2234 −5.2234
σ̄zz (a/2, b/2, h/2) 0.2392 0.2392

The first preliminary assessment shows a simply supported square plate (a = b) with
thickness h = 1 m and bi-sinusoidal (m = n = 1) sovra-temperature imposed at the top and
bottom surfaces (Θt = +1 K and Θb = −1 K). The structure is composed of a single FGM
layer with the top part constituted of a ceramic phase and the bottom a metallic phase,
as it is defined in Equations (43)–(48). The volume fraction of the ceramic phase Vc is a
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function of the thickness coordinate, with the exponential coefficient p = 2 in Equation (45).
The reference results are based on the 3D uncoupled thermo-elastic solution proposed by
Brischetto and Torre [70] where the temperature is calculated by separately solving the 3D
Fourier heat conduction Equation (3D(θc, 3D)) by means of hyperbolic functions (see the
mathematical formulation proposed by the authors in [70]). The present new solution uses
an order of expansion N = 3 for the calculation of the exponential matrix and M = 300
mathematical layers for the calculation of curvature terms and FGM properties. The novelty
of the 3D-u-θ model is the inclusion of the 3D Fourier heat conduction equation directly in
the system including the 3D elastic equilibrium equations. This feature permits to take into
account both the material layer and the thickness layer effects without the calculating the
temperature profile using an external tool. Table 1 shows no-dimensional transverse and
in-plane displacements and no-dimensional in-plane normal and transverse shear/normal
stresses for different thickness ratios a/h. The present 3D coupled model provides the same
results as the reference solution [70] for each thickness ratio a/h because, in both models,
the material and thickness layer effects are properly evaluated.

The second preliminary assessment shows a simply supported cylindrical shell with
radii of curvature Rα = ∞ and Rβ = 10 m, bi-sinusoidal (m = n = 1) sovra-temperature
imposed at the top and bottom surfaces (Θt = +1 K and Θb = 0 K), and in-plane dimen-
sions a = 1 m and b = π

3 Rβ. The cylindrical shell is composed of a single FGM layer
whose top part is constituted of a ceramic phase and the bottom of a metallic phase, as it
is defined in Equations (43)–(48). The power law for the volume fraction of the ceramic
phase Vc is quadratic (p = 2) and it depends on the thickness coordinate z̄FGM. The results
used as a reference are based on the previously discussed uncoupled 3D thermo-elastic
solution proposed by Brischetto and Torre in [70]. This second assessment uses the same
values of N and M seen in the first one. The new proposed 3D coupled shell model
(3D-u-θ) includes the 3D Fourier heat conduction equation in the same way seen in the
first assessment. Table 2 shows no-dimensional transverse and in-plane displacements
and no-dimensional in-plane and transverse stresses for two different thickness ratios
(Rβ/h = 50 and Rβ/h = 1000). The 3D-u-θ model is always coincident with the reference
solution [70] because both use the 3D Fourier heat conduction equation: coupled with the
3D elastic equilibrium Equations (3D-u-θ model) or separately solved using an external
tool (3D(θc,3D) model). The results confirm all the previous considerations.

The benchmarks proposed in the next section consider the cases where different
geometries, thickness ratios, FGM configurations, and temperature profiles are deeply
evaluated. For this purpose, M = 300 mathematical layers combined with an N = 3 order
of expansion will be employed in these new benchmarks, as suggested by the validation
here conducted using the preliminary assessments.

3.2. New Benchmarks

Here, four new benchmarks are proposed considering plates, cylinders, cylindrical
shells, and spherical shells. The involved geometries can be seen in Figure 1. Several
sovra-temperature impositions, different m and n half-wave numbers and different FGM
laws are considered for each case. The variation of the FGM law occurs with the variation of
the parameter p in the exponential law of Equation (45). For each possible geometry, a FGM
layer is involved (both single-layer and sandwich configurations). In all the proposed 3D
coupled results, the N = 3 order of expansion for the exponential matrix and M = 300
mathematical layers are used. The new 3D coupled exact thermo-elastic model (3D-u-θ) will
be used for these benchmarks and it will be compared with previously uncoupled 3D results
where the 3D Fourier heat conduction equation was separately solved (3D(θc,3D)), the 1D
Fourier heat conduction equation was separately solved (3D(θc,1D)), and the assumed
linear temperature profiles were considered a priori (3D(θa)). The results presented in
this subsection can be useful for those scientists involved in the development of 2D and
3D analytical and numerical models for the thermal stress analysis of plates and shells
embedding FGM layers.
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The first benchmark proposes a simply supported sandwich square plate (a = b = 10 m)
with an FGM core (see Figure 1). The thickness of the entire structure is h and the analysed
thickness ratios are a/h = 2, 5, 10, 20, 50, 100. The thickness of the top and bottom skins is
h1 = h3 = 0.2 h and the FGM core has h2 = 0.6 h. The sovra-temperature has an amplitude
value at the top of Θt = +0.5 K and at the bottom Θb = −0.5 K with bi-sinusoidal form
(half-wave numbers m = 1 and n = 1). The volume fraction law of the ceramic phase Vc for
the FGM core has exponential p = 2; all the mechanical and thermal property variations
of the FGM core through the thickness are described by means of Equations (46)–(48).
The bottom skin is full metallic and the top skin is full ceramic, while the FGM core has a
continuous variation (see Figure 2). Figure 3 shows the temperature profile through the
thickness of a moderately thick (a/h = 5) and a moderately thin (a/h = 20) plate. In the
case of the moderately thin configuration (a/h = 20), the calculated temperature profiles
using 3D Fourier heat conduction Equation (θc,3D), using 1D Fourier heat conduction
Equation (θc,1D), and using the coupled model (u-θ) are perfectly coincident. The assumed
linear temperature profile (θa) is inappropriate for this case. For the moderately thick plate
(a/h = 5), the temperature profile calculated using the full coupled model (u-θ) is coincident
with the uncoupled model that computes the temperature profile via the 3D Fourier heat
conduction Equation (θc,3D). These two models introduce both the thickness and material
layer effects. The temperature profile using the 1D Fourier heat conduction Equation (θc,1D)
does not consider the thickness layer effect. The uncoupled model that considers the
temperature profile using an a priori linear assumption (θa) does not take into account both
the effects. Table 3 shows the in-plane and transverse displacement components and the
in-plane normal, in-plane shear, transverse shear, and transverse normal stress components
in different positions through the thickness for different a/h ratios. In the case of very
thin plates (a/h = 100), the last 3D models presented in Table 1 are coincident. For thick
or moderately thick plates, the 3D(θc,3D) and the 3D-u-θ model provide the same results
because they properly consider the thickness layer and material layer effects thanks to the
implementation of the 3D Fourier heat conduction equation. The 3D(θa) model provides
different results because it did not properly consider any material layer and thickness layer
effect. Figure 4 shows the in-plane and transverse displacement components and two stress
components (σzz and σαz) through the thickness of a moderately thick plate (a/h = 10). The
in-plane displacement and transverse displacement are continuous through the thickness
direction because the mechanical properties of the FGM layer vary with continuity along
the thickness direction and the compatibility conditions are correctly introduced in the shell
model. The transverse normal stress and the transverse shear stress satisfies the boundary
load conditions imposed at the top and at the bottom external surfaces of the structures
(σt

zz = σb
zz = Pz = 0 and σt

βz = σb
βz = Pβ = 0) and they are continuous because of the

correct impositions of equilibrium conditions.
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z
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Volume fraction of the top phase

exponential coefficient FGM law = 0.5

Figure 2. First benchmark, volume fraction of the ceramic phase for a simply supported sandwich
square plate with FGM (p = 0.5) core.
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Figure 3. First benchmark, temperature profiles for thick and moderately thick simply supported
sandwich square plates with FGM (p = 0.5) core. The maximum amplitude of the temperature
θ(α, β, z) is evaluated at the centre of the plate (a/2,b/2).
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Figure 4. First benchmark, displacements and stresses for a thick (a/h = 10) simply supported
sandwich square plate with FGM (p = 0.5) core obtained via the 3D-u-θ model. Maximum amplitudes:
w and σzz at (a/2,b/2); u and σαz at (0,b/2).

Table 3. First benchmark, simply supported sandwich square plate with FGM (p = 0.5) core. Sovra-
temperature imposed as Θt = +0.5 K and Θb = −0.5 K for m = 1 and n = 1. 3D uncoupled
thermoelastic models from [70]. The new 3D coupled thermoelastic solution is 3D-u-θ.

a/h 2 5 10 20 50 100

u[10−5 m] at (α = 0, β = b/2, z̄ = 0)
3D(θa) [70] 1.6223 1.4866 1.4659 1.4606 1.4592 1.4589
3D(θc,1D) [70] 2.2351 2.0009 1.9613 1.9511 1.9482 1.9478
3D(θc,3D) [70] 1.9180 1.9463 1.9475 1.9477 1.9477 1.9477
3D-u-θ 1.9180 1.9463 1.9475 1.9477 1.9477 1.9477
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Table 3. Cont.

a/h 2 5 10 20 50 100

w[10−5 m] at (α = a/2, β = b/2, z̄ = h/2)
3D(θa) [70] 1.4865 4.1617 8.4399 16.937 42.382 84.776
3D(θc,1D) [70] 1.4159 3.9997 8.1190 16.297 40.783 81.577
3D(θc,3D) [70] 1.3743 3.9724 8.1047 16.289 40.780 81.575
3D-u-θ 1.3743 3.9724 8.1047 16.289 40.780 81.575

σββ[103 Pa] at (α = a/2, β = b/2, z̄ = h)
3D(θa) [70] −239.78 −258.49 −261.30 −262.01 −262.21 −262.24
3D(θc,1D) [70] −731.19 −676.95 −665.61 −662.63 −661.78 −661.66
3D(θc,3D) [70] −603.01 −652.62 −659.41 −661.07 −661.53 −661.60
3D-u-θ −603.01 −652.62 −659.41 −661.07 −661.53 −661.60

σαβ[103 Pa] at (α = 0, β = 0, z̄ = h/4)
3D(θa) [70] 292.33 311.02 314.19 315.00 315.23 315.26
3D(θc,1D) [70] 498.38 515.05 518.41 519.29 519.54 519.58
3D(θc,3D) [70] 404.32 496.08 513.46 518.04 519.34 519.53
3D-u-θ 404.32 496.08 513.46 518.04 519.34 519.53

σαz[103 Pa] at (α = 0, β = b/2, z̄ = h/4)
3D(θa) [70] −30.682 −17.013 −8.8995 −4.4999 −1.8056 −0.9032
3D(θc,1D) [70] 77.609 21.539 9.8156 4.7825 1.8988 0.9484
3D(θc,3D) [70] 37.694 18.520 9.4317 4.7343 1.8957 0.9480
3D-u-θ 37.693 18.521 9.4317 4.7343 1.8957 0.9480

σβz[103 Pa] at (α = a/2, β = 0, z̄ = 3h/4)
3D(θa) [70] 28.092 14.681 7.6209 3.8461 1.5424 0.7715
3D(θc,1D) [70] −84.322 −25.702 −12.028 −5.9059 −2.3501 −1.1742
3D(θc,3D) [70] −44.805 −22.672 −11.642 −5.8573 −2.3470 −1.1738
3D-u-θ −44.805 −22.672 −11.642 −5.8573 −2.3470 −1.1738

σzz[103 Pa] at (α = a/2, β = b/2, z̄ = 3h/4)
3D(θa) [70] −17.007 −3.0277 −0.7695 −0.1932 −0.0310 −0.0077
3D(θc,1D) [70] 49.914 6.4569 1.5345 0.3784 0.0603 0.0151
3D(θc,3D) [70] 28.983 5.8135 1.4934 0.3758 0.0602 0.0151
3D-u-θ 28.983 5.8135 1.4934 0.3758 0.0602 0.0151

For the case related to the second benchmark, a simply supported one-layered FGM
cylinder (see Figure 1) is analysed. The radii of curvature of the structure are Rα = 10 m
and Rβ = ∞. The global thickness of the structure is h. The in-plane dimensions are
a = 2πRα and b = 30 m. The applied sovra-temperatures at the external surfaces are the
same as those already proposed for the first benchmark, but half-wave numbers m = 2
and n = 1 are now imposed. The volume fraction of the ceramic phase Vc is linear (p = 1),
the bottom of the structure is full metallic and the top is full ceramic as can be seen
in Figure 5. The reference equations for all the material characteristics are proposed in
Equations (46)–(48). The temperature profiles through the thickness proposed in Figure 6
do not change when the thickness ratio varies. This feature is due to the symmetry and
rigidity of the cylinder. Therefore, the effect of the thickness is negligible even if the struc-
ture is really thick (Rα/h = 5 case). Table 4 shows the results in terms of displacements
and stresses for different Rα/h ratios. For thicker cylinders, the 3D(θc,3D) and 3D-u-θ
models are in accordance because they take into account both the material layer and the
thickness layer effects. The 3D(θc,1D) only considers the material layer effect and 3D(θa)
only considers a linear assumed temperature amplitude: for this reason, the results are
not correct. For thin cylinders, only the 3D(θa) model shows important differences with
respect to the other three models (3D(θc,1D), 3D(θc,3D), and 3D-u-θ. Figure 7 provides
the displacements and stresses for a moderately thick (a/h = 10) cylinder with one FGM
layer. In-plane and transverse displacements are continuous because the mechanical and
thermal properties of the FGM layer vary continuously in the thickness direction and
the compatibility conditions are correctly imposed for each mathematical interface. The
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same consideration is also valid for the stresses σαα and σβz shown in Figure 7. The trans-
verse shear stress satisfies the free mechanical load conditions at the external surfaces
(σt

βz = σb
βz = Pβ = 0).
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Figure 5. Second benchmark, volume fraction of the ceramic phase for a simply supported cylinder
with one FGM (p = 1) layer.
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Figure 6. Second benchmark, temperature profiles for thick and moderately thick simply supported
cylinders with one FGM (p = 1) layer. The maximum amplitude of the temperature θ(α, β, z) is
evaluated at the centre of the cylinder (a/2,b/2).

Table 4. Second benchmark, simply supported cylinder with one FGM (p = 1) layer. Sovra-
temperature imposed as Θt = +0.5 K and Θb = −0.5 K for m = 2 and n = 1. 3D uncoupled
thermoelastic models from [70]. The new 3D coupled thermoelastic solution is 3D-u-θ.

Rα/h 2 5 10 20 50 100

v[10−6 m] at (α = a/2, β = 0, z̄ = h)
3D(θa) [70] −8.6733 2.8714 5.3717 6.2023 6.5527 6.6441
3D(θc,1D) [70] 24.724 30.279 30.248 29.774 29.340 29.170
3D(θc,3D) [70] 22.657 29.994 30.184 29.758 29.337 29.170
3D-u-θ 22.657 29.994 30.184 29.758 29.337 29.170

w[10−5 m] at (α = a/2, β = b/2, z̄ = h/2)
3D(θa) [70] 1.2362 −0.1105 −0.7159 −1.0306 −1.2201 −1.2831
3D(θc,1D) [70] −2.9978 −4.6191 −5.2275 −5.5225 −5.6934 −5.7490
3D(θc,3D) [70] −2.7332 −4.5726 −5.2158 −5.5196 −5.6929 −5.7489
3D-u-θ −2.7332 −4.5726 −5.2158 −5.5196 −5.6929 −5.7489
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Table 4. Cont.

Rα/h 2 5 10 20 50 100

σαα[103 Pa] at (α = a/2, β = b/2, z̄ = 0)
3D(θa) [70] 2245.9 2104.6 2023.8 1977.7 1948.6 1938.6
3D(θc,1D) [70] 1802.3 1517.9 1396.1 1331.9 1292.8 1279.7
3D(θc,3D) [70] 1829.7 1523.9 1397.7 1332.4 1292.9 1279.7
3D-u-θ 1829.7 1523.9 1397.7 1332.4 1292.9 1279.7

σαβ[103 Pa] at (α = 0, β = 0, z̄ = h/4)
3D(θa) [70] 165.97 62.049 28.841 13.745 5.3213 2.6301
3D(θc,1D) [70] 143.90 44.761 19.011 8.5799 3.2023 1.5624
3D(θc,3D) [70] 143.38 44.833 19.024 8.5818 3.2025 1.5624
3D-u-θ 143.38 44.833 19.024 8.5818 3.2025 1.5624

σαz[103 Pa] at (α = 0, β = b/2, z̄ = h/4)
3D(θa) [70] −177.52 −70.179 −34.135 −16.746 −6.6109 −3.2901
3D(θc,1D) [70] −163.27 −57.830 −26.873 −12.859 −4.9976 −2.4739
3D(θc,3D) [70] −162.57 −57.869 −26.881 −12.860 −4.9977 −2.4739
3D-u-θ −162.57 −57.869 −26.881 −12.860 −4.9977 −2.4739

σβz[103 Pa] at (α = a/2, β = 0, z̄ = 3h/4)
3D(θa) [70] −104.50 −52.635 −27.225 −13.710 −5.4896 −2.7442
3D(θc,1D) [70] −142.28 −61.257 −30.160 −14.825 −5.8512 −2.9110
3D(θc,3D) [70] −138.41 −61.063 −30.139 −14.823 −5.8511 −2.9110
3D-u-θ −138.41 −61.063 −30.139 −14.823 −5.8511 −2.9110

σzz[103 Pa] at (α = a/2, β = b/2, z̄ = 3h/4)
3D(θa) [70] 92.991 46.640 24.829 12.766 5.1869 2.6064
3D(θc,1D) [70] 118.96 53.212 27.251 13.742 5.5187 2.7624
3D(θc,3D) [70] 116.03 53.050 27.232 13.740 5.5186 2.7624
3D-u-θ 116.03 53.050 27.232 13.740 5.5186 2.7624
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Figure 7. Second benchmark, displacements and stresses for a thick (Rα/h = 10) simply supported
cylinder with one FGM (p = 1) layer obtained using the 3D-u-θ model. Maximum amplitudes: w and
σαα at (a/2,b/2); v and σβz at (a/2,0).
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The third benchmark presents a simply supported sandwich cylindrical shell with an
FGM core (see Figure 1). The radii of curvature are Rα = 10 m and Rβ = ∞ and the in-plane
dimensions are a = π

3 Rα and b = 30 m. The FGM core has thickness h2 = 0.6 h and the two
skins have h1 = h3 = 0.2 h; h is the global thickness of the structure. The material properties
of this configuration are based on Equations (46)–(48) with a quadratic exponential coeffi-
cient (p = 2). The bottom skin is full metallic and the top skin is full ceramic with thermal
and mechanical properties expressed as in Equations (43) and (44) (as is visible in Figure 8).
The investigated thickness ratios are Rα/h = 2, 5, 10, 20, 50, 100. The sovra-temperature
in harmonic form (half-wave numbers m = 1 and n = 1) has amplitude values at the top
Θt = −1 K and at the bottom Θb = 0 K. The temperature profiles are provided in Figure 9
for a moderately thick (Rα/h = 5) and a moderately thin (Rα/h = 20) cylindrical shell.
For thicker configurations, the thickness layer effect is a little bit more evident than the
second benchmark because of the rigidity of the previous closed and symmetric cylinder.
For thinner configurations, 3D(θc,1D), 3D(θc,3D), and 3D-u-θ models have no differences
in terms of their temperature profiles. The 3D(θa) model always proposes an inadequate
temperature profile because it did not consider any material layer and thickness layer effect.
The same considerations are still valid for the discussion of displacements and stresses in
Table 5 where the 3D(θc,1D), 3D(θc,3D), and 3D-u-θ models are quite coincident for all the
Rα/h ratios proposed. The great difference involves only the 3D(θa) model that is always
inadequate for this configuration. Figure 10 shows displacement and stress evaluations
through the thickness of the simply supported sandwich cylindrical shell with an FGM
core. The analysed cylindrical shell is moderately thick and both proposed displacements
and stresses are continuous because the FGM properties continuously vary along the
thickness direction.
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Figure 8. Third benchmark, volume fraction of the ceramic phase for a simply supported sandwich
cylindrical shell with FGM (p = 2) core.
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Figure 9. Third benchmark, temperature profiles for thick and moderately thick simply supported
sandwich cylindrical shells with FGM (p = 2) core. The maximum amplitude of the temperature
θ(α, β, z) is evaluated at the centre of the cylindrical shell at (a/2,b/2).
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Figure 10. Third benchmark, displacements and stresses for a thick (Rα/h = 10) simply supported
sandwich cylindrical shell with FGM (p = 2) core obtained using the 3D-u-θ model. Maximum
amplitudes: w and σββ at (a/2,b/2); u at (0,b/2); σαβ at (0,0).

Table 5. Third benchmark, simply supported sandwich cylindrical shell with FGM (p = 2) core.
Sovra-temperature imposed as Θt = −1 K and Θb = 0 K for m = 1 and n = 1. 3D uncoupled
thermoelastic models from [70]. The new 3D coupled thermoelastic solution is 3D-u-θ.

Rα/h 2 5 10 20 50 100

u[10−5 m] at (α = 0, β = b/2, z̄ = 0)
3D(θa) [70] −0.1032 −2.5775 −6.5549 −13.028 −18.648 −18.423
3D(θc,1D) [70] −1.0043 −2.5320 −4.8150 −8.0331 −9.7702 −8.8619
3D(θc,3D) [70] −1.1076 −2.5335 −4.8060 −8.0263 −9.7682 −8.8613
3D-u-θ −1.1076 −2.5335 −4.8060 −8.0263 −9.7682 −8.8613

w[10−5 m] at (α = a/2, β = b/2, z̄ = h/2)
3D(θa) [70] −2.5005 −8.0358 −18.792 −37.833 −57.181 −58.624
3D(θc,1D) [70] −2.0740 −5.8451 −12.332 −22.256 −29.339 −27.831
3D(θc,3D) [70] −2.0327 −5.8020 −12.297 −22.235 −29.333 −27.829
3D-u-θ −2.0327 −5.8020 −12.297 −22.235 −29.333 −27.829

σββ[103 Pa] at (α = a/2, β = b/2, z̄ = h)
3D(θa) [70] 1100.6 1034.2 823.07 553.81 506.00 655.96
3D(θc,1D) [70] 1521.1 1495.3 1395.3 1292.9 1352.4 1468.5
3D(θc,3D) [70] 1564.2 1504.9 1398.5 1293.9 1352.5 1468.6
3D-u-θ 1564.2 1504.9 1398.5 1293.9 1352.5 1468.6

σαβ[103 Pa] at (α = 0, β = 0, z̄ = h/4)
3D(θa) [70] 211.18 46.212 50.865 −66.576 −120.91 −83.255
3D(θc,1D) [70] 46.213 7.5615 −39.847 −90.780 −89.957 −55.402
3D(θc,3D) [70] 28.473 4.5755 −40.378 −90.820 −89.951 −55.400
3D-u-θ 28.473 4.5755 −40.378 −90.820 −89.951 −55.400

σαz[103 Pa] at (α = 0, β = b/2, z̄ = h/4)
3D(θa) [70] 23.813 −15.719 −17.016 −7.0833 5.0945 5.3470
3D(θc,1D) [70] −79.295 −40.804 −21.620 −7.0251 2.5966 2.8247
3D(θc,3D) [70] −89.122 −41.263 −21.634 −7.0233 2.5961 2.8246
3D-u-θ −89.122 −41.263 −21.634 −7.0233 2.5961 2.8246
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Table 5. Cont.

Rα/h 2 5 10 20 50 100

σβz[103 Pa] at (α = a/2, β = 0, z̄ = 3h/4)
3D(θa) [70] −13.098 −15.405 −12.417 −6.3749 −0.1390 0.8218
3D(θc,1D) [70] 29.138 7.4634 2.3569 2.0687 2.5041 1.7405
3D(θc,3D) [70] 32.873 7.8962 2.4322 2.0798 2.5046 1.7406
3D-u-θ 32.873 7.8962 2.4322 2.0798 2.5046 1.7406

σzz[103 Pa] at (α = a/2, β = b/2, z̄ = 3h/4)
3D(θa) [70] 42.679 16.454 10.492 5.0412 −0.1093 −0.8396
3D(θc,1D) [70] −40.599 −11.996 −4.5234 −2.8784 −2.5498 −1.6952
3D(θc,3D) [70] −48.215 −12.534 −4.5992 −2.8887 −2.5503 −1.6952
3D-u-θ −48.215 −12.534 −4.5992 −2.8887 −2.5503 −1.6952

The last benchmark takes into account a simply supported spherical shell with one FGM
layer (see Figure 1). The global thickness is h, the radii of curvature are Rα = Rβ = 10 m,
the imposed sovra-temperatures are Θt = 0 K and Θb = −1 K, the in-plane dimensions
are a = π

3 Rα = b = π
3 Rβ, and the half-wave numbers are m = 2 and n = 1. The config-

uration and material characteristics are the same as seen in the second benchmark (see
Equations (46)–(48) for the bulk modulus, shear modulus, thermal expansion coefficient,
and conductivity coefficient and see Equation (45) and Figure 11 for the volume fraction of
the ceramic phase Vc with p = 2). In Figure 12, the temperature profile for the four models
are shown. The 3D(θc,3D) and 3D-u-θ models are mandatory for the correct analysis of the
thick shells. The 3D(θc,1D) model is a good approximation only for thin spherical shells,
but it always denotes some differences with respect to the previous two models. The 3D(θa)
model is always inappropriate for this benchmark for each Rα/h ratio considered. For the
spherical shell, the thick configuration shows an important thickness layer effect. As in
the previous benchmark, the 3D-u-θ model provides the same results obtained with the
3D(θc,3D) model because they consider both the thickness layer and the material layer
effects. The displacements and stresses for several Rα/h are proposed in Table 6 where it is
evident how the results obtained using the 3D(θa) model are inadequate for each thickness
ratio because the actual temperature profile is never linear along the thickness direction.
In Figure 13, the displacement and stress evaluations through the thickness of a spherical
shell with one FGM layer are shown. In-plane and transverse displacements, transverse
shear, and transverse normal stress are continuous because the compatibility and equilib-
rium conditions have been correctly imposed and also because the FGM layer continuously
varies its own mechanical and thermal properties along the thickness direction. Transverse
normal stress σzz satisfies the load boundary conditions (σt

zz = σb
zz = Pz = 0) as can be seen

in Figure 13.
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Figure 11. Fourth benchmark, volume fraction of the ceramic phase for a simply supported spherical
shells with one FGM (p = 2) layer.
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Figure 12. Fourth benchmark, temperature profiles for thick and moderately thick simply supported
spherical shell with one FGM (p = 2) layer.
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Figure 13. Fourth benchmark, displacements and stresses for a thick (Rα/h = 10) simply supported
spherical shell with one FGM (p = 2) layer obtained using the 3D-u-θ model. Maximum amplitudes:
w and σzz at (a/2,b/2); v and σβz at (a/2,0).

Table 6. Fourth benchmark, simply supported spherical shell with one FGM (p = 2) layer. Sovra-
temperature imposed as Θt = 0 K and Θb = −1 K for m = 2 and n = 1. 3D uncoupled thermoelastic
models from [70]. The new 3D coupled thermoelastic solution is 3D-u-θ.

Rα/h 2 5 10 20 50 100

v[10−6 m] at (α = a/2, β = 0, z̄ = h)
3D(θa) [70] 3.8133 4.3442 6.2723 6.3118 3.4996 1.8525
3D(θc,1D) [70] 8.1671 8.0198 9.3872 8.2942 4.2336 2.1785
3D(θc,3D) [70] 1.5635 6.0279 8.8526 8.1968 4.2271 2.1778
3D-u-θ 1.5635 6.0279 8.8526 8.1968 4.2271 2.1778
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Table 6. Cont.

Rα/h 2 5 10 20 50 100

w[10−5 m] at (α = a/2, β = b/2, z̄ = h/2)
3D(θa) [70] −0.0045 0.7679 0.1533 −2.3272 −5.4440 −6.5416
3D(θc,1D) [70] −0.2283 0.1565 −1.1720 −4.4728 −8.0033 −9.1116
3D(θc,3D) [70] 0.1726 0.4099 −0.9875 −4.3848 −7.9847 −9.1067
3D-u-θ 0.1726 0.4099 −0.9875 −4.3848 −7.9847 −9.1067

σαα[103 Pa] at (α = a/2, β = b/2, z̄ = 0)
3D(θa) [70] −627.94 1354.3 2306.7 2822.4 2666.3 2442.3
3D(θc,1D) [70] −1140.7 1156.2 2169.3 2555.0 2157.7 1832.7
3D(θc,3D) [70] 797.05 1425.5 2219.4 2570.5 2161.7 1833.9
3D-u-θ 797.11 1425.5 2219.4 2570.5 2161.7 1833.9

σαβ[103 Pa] at (α = 0, β = 0, z̄ = h/4)
3D(θa) [70] 827.55 754.23 583.00 310.60 85.349 30.478
3D(θc,1D) [70] 981.89 833.16 595.79 276.15 52.204 10.609
3D(θc,3D) [70] 500.42 747.63 584.62 276.18 52.348 10.634
3D-u-θ 500.41 747.63 584.62 276.18 52.348 10.634

σαz[103 Pa] at (α = 0, β = b/2, z̄ = h/4)
3D(θa) [70] 21.383 −227.08 −223.11 −149.47 −58.821 −27.092
3D(θc,1D) [70] 149.49 −219.90 −228.25 −145.56 −51.490 −22.143
3D(θc,3D) [70] −125.09 −225.85 −226.36 −145.42 −51.517 −22.149
3D-u-θ −125.09 −225.84 −226.36 −145.42 −51.517 −22.149

σβz[103 Pa] at (α = a/2, β = 0, z̄ = 3h/4)
3D(θa) [70] −184.45 −104.69 −91.933 −63.362 −25.499 −11.800
3D(θc,1D) [70] −296.96 −158.20 −121.36 −75.344 −27.707 −12.309
3D(θc,3D) [70] −60.985 −120.11 −114.83 −74.530 −27.670 −12.306
3D-u-θ −60.984 −120.11 −114.83 −74.530 −27.670 −12.306

σzz[103 Pa] at (α = a/2, β = b/2, z̄ = 3h/4)
3D(θa) [70] 237.90 70.115 51.648 35.425 15.234 7.3766
3D(θc,1D) [70] 391.90 107.16 67.497 41.558 16.381 7.6416
3D(θc,3D) [70] 73.490 79.064 63.665 41.100 16.360 7.6394
3D-u-θ 73.490 79.064 63.665 41.100 16.360 7.6394

4. Conclusions

A full coupled thermo-elastic 3D exact shell solution for thermal stress analysis of shells
and plates embedding FGM layers has been proposed. The sovra-temperature amplitudes
have been directly imposed at the external surfaces in steady-state conditions and the
sovra-temperature profile was evaluated along the z direction. The sovra-temperature
profile is a primary unknown variable similar to the displacements; this is possible because
the 3D Fourier heat conduction equation and the 3D equilibrium equations for shells are
put together into a set of four second-order differential equations. This temperature profile
considers both the thickness layer and material layer effects for each possible geometry,
without separately solving the related 3D Fourier heat conduction equation. The set of
four second-order differential equations for shells is solved in a closed-form thanks to
the Navier solution and the exponential matrix method. Different analyses, in terms of
displacements, temperature profiles, in-plane, and out-of-plane stresses have been shown
for several thickness ratios, geometries, FGM configurations, and temperature impositions.
The proposed results showed a complete match between the model that separately solves
the 3D Fourier heat conduction equation and the present 3D full coupled thermo-elastic
model. For each investigated variable (temperatures, displacements and stresses) and
for each thickness ratio, geometry, FGM configuration, and load imposition, the results
proposed differences that were always less than 0.5%. This new coupled method permits
taking into account both the material and the thickness layer effects using a simpler and
more consistent mathematical formulation. Moreover, a reduced number of fictitious layers
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M is requested in comparison with the uncoupled 3D model; this feature permits having
the same accurate results for a less complicated fictitious layer discretization.
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