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Abstract: An essential aspect to achieving safety with a UAV is that it operates within the limits of its
capabilities, the available flight time being a key aspect when planning and executing a mission. The
flight time will depend on the relationship between the available energy and the energy required by
the UAV to complete the mission. This paper addresses the problem of estimating the energy required
to perform a mission, for which a fuzzy Takagi–Sugeno system was implemented, whose premises
were developed using fuzzy C-means to estimate the power required in the different stages of the
mission. The parameters used in the fuzzy C-means algorithm were optimized using particle swarm
optimization. On the other hand, an equivalent circuit model of a battery was used, for which fuzzy
modeling was employed to determine the relationship between the open-circuit voltage and the state
of charge of the battery, which in conjunction with an extended Kalman filter allows determining
the battery charge. In addition, we developed a methodology to determine the minimum allowable
battery charge level. From this, it is possible to determine the available flight time at the end of a
mission defined as the flight time margin. In order to evaluate the developed methodology, a physical
experiment was performed using an hexarotor UAV obtaining a maximum prediction error equivalent
to the energy required to operate for 7 s, which corresponds to 2% of the total mission time.

Keywords: SoC estimation; fuzzy clustering; multirotor UAV

1. Introduction

UAVs are a booming technology, since they represent a versatile platform for a wide
range of applications. This technology has found wide acceptance in the energy, con-
struction, and agriculture industries, where it is mainly used for mapping, inspection,
photography, and filming. This situation has led to the global drone market being valued
at USD 30.6 billion in 2022, and it is estimated that this could reach USD 55.8 billion by
2030 [1]. However, these platforms are susceptible to emerging risks due to technical and
operational issues, such as environmental factors, tampering, technical failures, and even
cyber-attacks [2,3].

If we combine the continuing growth in the use of these platforms with the risks
associated with their operation, it is evident that establishing safety measures in their
operations is critical. This is reflected in the rules and regulations adopted worldwide,
which limit the types of vehicles, along with the allowed flying zones and operating
conditions [4,5].

One of the key factors to guarantee integrity during an operation is that the assigned
tasks are aligned with the capabilities of the vehicle. The maximum reachable flight time is
an essential parameter since, in order to establish a safe mission profile, in addition to the
determination of the time required to complete every mission stage, a safe energy margin
must be considered to allow operating for an additional amount of time to successfully
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complete it. This represents a safety measure against variations in energy consumption or
situations not contemplated that could compromise the aircraft’s integrity, people’s security,
and the environment in which the mission is carried out.

Multirotor UAVs are mostly battery-powered, and therefore, their maximum flight
time depends on the available battery energy and the discharge rate. In turn, as stated
in [6], the discharge rate will depend on many factors, such as:

• Vehicle design: aerodynamic design, weight, number of actuators, avionics, and
energy efficiency.

• Operating environment: air density, wind speed, relative wind direction.
• Dynamics: speed, acceleration, and direction of motion.
• Mission: payload and area of operation.

Furthermore, there are other factors that can affect the energy consumption of the
system, such as rotor and hardware failures. In this scenario, the remaining faultless rotors
are forced to operate in a region of lower energy efficiency [7], reducing the available energy
of the battery due to saturation phenomena in the actuators. Therefore, the information
provided by the manufacturers, or that obtained from a performance test under specific
conditions, should only be considered as a reference when a mission profile is established.

In this sense, predicting the behavior of the discharge rate and the available energy
in a battery makes it possible to know whether the planned mission can be completed
successfully, and even to anticipate whether or not it can be completed under conditions
that cause unforeseen changes in consumption.

There are two main ways of estimating the energy required to complete the trajectory:
(i) using mathematical models that employ the physical characteristics of the vehicle,
and its operating speed [8,9]; or (ii) using empirical models employing regressions for a
predefined data set [10]. However, such techniques do not consider possible fluctuations in
consumption that could affect the capacity to complete a mission successfully.

Fuzzy systems have been shown to be suitable for managing energy-related aspects of
UAVs, as can be seen in [11], where a fuzzy system in conjunction with the PSO algorithm
was employed to manage the power supply of a hybrid-powered system, showing favorable
results in fuel economy while maintaining robustness to variations in power consumption
variation. In addition, fuzzy systems have been employed in other UAV-related tasks, such
as in control [12] and decision making during the mission [13]; however, these systems
have not been used for the calculation of required energy during a mission.

In order to provide a solution for energy estimation in a multirotor UAV, so that it can
operate under persistent changes in the energy requirement, we developed a fuzzy-based
methodology to determine the total energy required to complete a specific mission based on
the vertical and horizontal velocities, the period during which it travels at those velocities,
and the power-estimation error for a given state of the UAV.

The proposed methodology is based on fuzzy systems, which are some of the empirical
methods. The use of Takagi–Sugeno fuzzy systems was due to their ability to recreate
with adequate accuracy the existing functions among the parameters affecting energy
consumption. In addition, the structure of the method allows it to be extended to include
other factors that affect the energy required without major modifications to the structure.
Unlike to the works presented in the literature, it has been conceived for use during the
execution of the mission, and not only as a way of estimating the energy required a priori.
This provides an important advantage for the safe operation of UAVs, since it not only
allows one to know in advance if the mission to be performed is feasible, but also, once it
is in progress, it allows one to anticipate variations in consumption that could jeopardize
the operation.

In addition, a methodology was developed to determine the minimum charge level to
which the battery can be brought considering the relationship between the thrust control
signal and the battery voltage. This allows knowing the available flight time, and moreover,
if we combine this with the estimate of the energy needed to execute a mission, we can
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determine the flight time during which the UAV will be able to operate with the expected
remaining energy.

The main contributions of this research work are summarized as follows:

1. We developed a required-energy estimation system capable of adapting to persistent
variations in energy consumption based on fuzzy C-means.

2. We propose a new methodology to determine the aircraft flight time, which to the
best of our knowledge, is the first to consider the effect of the battery’s state of charge
on the control signals.

The rest of the paper is organized as follows. Section 2 presents the works related
to the estimation of energy required during a flight and the estimation of flight time.
Section 3 presents the proposed methodology divided into energy estimation (Section 3.2),
state-of-charge estimation (Section 3.3) and flight-time-margin estimation (Section 3.4).
Section 4 shows the application of the proposed methodology in a hexarotor UAV. Finally,
Section 5 presents the conclusions and future improvements that can be applied to the
proposed methodology.

2. Related Work

In the process of estimating the energy required to conduct a specific mission, three
different approaches can be distinguished: (i) methods based on aerodynamic models,
(ii) methods using regressions, and (iii) those based on intelligent systems. Some of
the principal solutions that have been developed in the field of energy estimation are
discussed below.

One of the most widely used models is presented in [14]. This model provides a
simple way to approximate the required power based on the total weight of the vehicle, its
displacement speed, the efficiency in the transfer of energy from the motor to the propeller,
and the drag–lift ratio of the vehicle, in addition to a term corresponding to the power
consumed by the vehicle’s electronics. While this methodology provides an easy way to
estimate the consumed energy, it neglects significant factors such as the wind and the air
density, which could affect the vehicle’s energy consumption. Therefore, this methodology
should be used with caution when determining the energy required for a specific mission.

In [15], the authors proposed a power-estimation method wherein the vehicle motion
is decomposed into its horizontal and vertical components. For each component, the re-
quired power is evaluated considering the acceleration and velocity at which it moves.
The aerodynamic effect is considered assuming that the reference surface will have the
characteristics of a flat plate. Although the presented model showed favorable performance
in numerical simulations, it is complex to find the area affected by the airflow, which will
depend on the direction of flight, and the wind speed and direction. In addition, parameters
such as propeller tip speed are not available for most UAVs.

A simulation model was presented in [16] where aerodynamic, motor, and battery
models are considered. For the estimation of the torque required by each rotor, the blade
element moment theory is used, from which the consumed power is determined con-
sidering the efficiency of the motor. An equivalent circuit model is used for the battery,
considering that the effective capacity is determined using a correction factor as a function
of the required power. Finally, the flight time is calculated by dividing the effective battery
energy by the required power. This method, despite the positive relation between the
measured results and those obtained by a simulation, was not conceived as a method for
online energy estimation during a mission.

Regression-based estimation methods, such as the one presented in [17], estimate the
required energy based on the vehicle’s operation. The authors divided the mission phases
into: the idle mode, armed, takeoff, vertical and horizontal flight, and the effect of the
payload. For each of these stages, a polynomial regression was performed based on data
obtained from experimental tests. Although this method provides an easy way to estimate
the energy required to complete a mission, it is not able to adapt to conditions different
from those of the flights in which the modeling data were obtained.
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The method presented in [18] uses a set of regressors using elastic net regression.
The regressors were set up in two stages for ascent, descent, and horizontal movement.
The first stage determines the time during which a maneuver will be performed, and the
second stage determines the energy required based on the determined time. In the second
stage, the required energy for the moments when the vehicle is in hovering flight is added.
Although this method showed high accuracy in energy estimation, the method does not
include a way to adapt its estimation depending on the mission performance.

The problem of the lack of adaptability to variations in consumption can also be
observed in [19], where the authors employed a deep neural network that used as inputs the
velocity, acceleration, altitude, wind speed, weight, and surface of the load. Although the
proposed method considers multiple variables, which increases its accuracy in energy
estimation, it is also unable to adapt to changes not considered in the model’s training.

As can be seen in the literature review, data-driven energy-estimation methods, the
ones using regression analysis and the ones that employ neural networks, have shown
good performance for applications of energy estimation during a mission. However, it is
necessary to solve the lack of adaptability of the presented techniques to conditions not
considered during their training.

With respect to the flight time, it will depend on the energy required and the available
energy. Some of the principal methodologies developed to determine the flight time are
discussed below.

In [20], a method is presented to estimate the flight time using regressions and deep
learning, considering factors such as known flight time without load, payload, battery
capacity, and the onboard computer. However, this method only allows an a priori esti-
mation, since it does not provide a way to update the estimation during the execution of
the mission.

In [21,22], the flight time was obtained from the division of the battery capacity by the
discharge rate, where it was assumed that the available energy is known. However, there
are factors that can modify the amount of usable battery energy that must be considered to
provide an accurate estimation of the flight time.

Based on the above methodologies for flight time estimation, it can be observed that it
is necessary to have solutions to dynamically adapt the flight time estimations considering
that the usable energy may change in situations such as increasing of the payload weight,
adverse weather conditions, or system failures.

3. Methods

Energy estimation for a mission is a complex problem due to the multiple factors
and variables involved in the process. Nevertheless, to estimate the energy requirements
is crucial to guaranteeing the feasibility and safety of a mission. Moreover, given the
dynamism of the environment in which a multirotor UAV can fly, and the variations to
which it may be subject either by lowered energy efficiency due to wear of its components
or malfunctioning of one of its parts, it is necessary to continually reevaluate the energy
required to complete the mission. In addition, the knowledge of the flight time during
which the multirotor UAV can continue operating can be used in decision-making process
by an autonomous system or by a human operator.

The architecture of our proposed system is depicted in Figure 1. The system works
with a methodology consisting of three parts, which are described as follows:
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Figure 1. Overview of the available energy and flight time estimation process. The system consists of
three sections, energy estimation, battery-charge estimation, and flight-time-margin estimation.

(i) The first part of the methodology corresponds to the estimation of the energy
required in the mission once the vehicle is in flight, based on the knowledge of the horizontal
and vertical velocities at which it will move along the different stages of the mission, and
the time during which it will move at that velocity. To do this, we propose the use of a
cascaded Takagi–Sugeno fuzzy system, using the C-means algorithm for the premise of
the rules, to estimate the power required to move at a given speed. From the knowledge
of the power required to move at a given velocity and the time during which it performs
such action, it is possible to know the energy required for the mission. It is also proposed
to use the PSO algorithm for the optimization of the parameters used in the fuzzy C-means
algorithm to find a balance between the execution time of the system, which is affected
by the number of clusters, and the accuracy of the system, which is affected by both the
number of clusters and the weighting exponent.

(ii) The second part of the methodology consists of determining the state of charge
of the battery, for which it is proposed to use an extended Kalman filter based on the
equivalent circuit model of the battery, for which it is proposed to use fuzzy modeling to
define the relationship between the open-circuit voltage and the state of charge.

Finally, (iii) the third part of the methodology consists of determining the flight-time
margin considering the effect of the battery’s voltage change during discharge on the thrust
control signal. For this stage, it is proposed to use recursive least-squares to determine the
relationship between the battery voltage and the thrust control signal in order to determine
the minimum voltage at which the vehicle can operate considering a maximum value for the
average value of the thrust control signal. From this voltage, we determine the associated
battery charge level considering also the constraints given by the operator. Finally, based on
the knowledge of the energy required to complete the mission, the battery charge, and the
minimum allowable charge level, we calculate the flight time margin.

The methods used in each of the stages are detailed below.

3.1. Preliminaries

A brief introduction to Takagi–Sugeno fuzzy systems with premises given by trape-
zoidal membership functions and using the C-means method is presented, and a way
to determine the values of the consequent parameters of the fuzzy rules based on the
membership values and output values of a training data set. Additionally, we present the
operation of the particle swarm optimization algorithm with a constraint factor on the
particle velocity.

3.1.1. Takagi–Sugeno Fuzzy Systems with Fuzzy C-Means

Takagi–Sugeno (T-S) fuzzy systems have been adopted in several applications, since
they are able to approximate a function with adequate accuracy in a closed set, maintain
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a structure that is easy to interpret thanks to its high transparency, and maintain low
computational complexity [23]. These systems are defined by a set of M rules in the form:

If x is Ai, Then yi = aix + bi (1)

where the premise of the rule is formed by the input of the system x and the fuzzy set Ai,
and the consequent of the rule is defined as yi, ai and bi being design parameters.

The output of the T-S fuzzy system is given by

y =
∑M

i=1 uiyi

∑M
i=1 ui

(2)

where ui ∈ [0, 1] indicates the degree of membership of the input x to each of the fuzzy
sets Ai.

The form of determining the degree of membership will depend on the way in which
the fuzzy set is defined. One of the most common used ways to define the fuzzy set is with
a trapezoidal function [24], such as the one shown in Figure 2.

a b c d

Figure 2. Trapezoidal membership function. This function is defined by four points and will have a
value of 0 < ui ≤ 1 for a < x < d.

In these sets, the level of membership is calculated as:

ui = max
(

min
(

x− a
b− a

, 1,
d− x
d− c

)
, 0
)

(3)

Another way to determine the fuzzy sets is through the fuzzy C-means method, which
determines the membership value of x ∈ Rn to a fuzzy set, from the closeness to the cluster
center, defined by a vector v ∈ Rn [25]. For a set of N data, grouped in M fuzzy sets, we
must minimize the function

Jm =
N

∑
k=1

M

∑
i=1

(uik)
m‖xk − vi‖2 (4)

where m > 1 is the weighting exponent, which is a design parameter that modifies the
performance of the fuzzy C-means method.

The membership value used in (4) is given by

ui =
1

∑M
j=1

(
‖xi−vi‖
‖xi−vj‖

) 2
m−1

(5)

where the optimal values of the centers v for a given number of clusters M and exponent m
are obtained through the iterative process presented in [25].

3.1.2. Computation of Parameters for the Consequents in T-S Systems

Consider a set of training input data X ∈ RN×n, for which the membership value
Ui ∈ RN corresponding to each of the M fuzzy sets Ai is known, and the expected output of
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the fuzzy system is Y ∈ RN . It is possible to employ the least-squares method to determine
the design parameters ai and bi of each of the fuzzy rules as follows [26].

Let us define the extended matrix Xe as:

Xe =
[
X 1

]
(6)

where 1 ∈ RN is a vector of ones. Then, using the matrix Xe and the membership values
Ui, the following matrix is formed:

X′ =
[
diag(U1)Xe · · · diag(UM)Xe

]
(7)

Finally, with a global approach using the X′ matrix, the vector of parameters for the
consequents will be calculated as follows.

θ = [(X′)TX′]−1(X′)TY (8)

where the values obtained in the parameter vector have the following structure:

θ =
[
a1 b1 · · · aM bM

]
(9)

which correspond to the design parameters required in the consequent of each of the rules.

3.1.3. Particle Swarm Optimization

The particle swarm optimization (PSO) method is a bio-inspired optimization tech-
nique that was presented in [27]. In this method, a set of particles pi ∈ Rn is proposed,
which are moved through a search space to find the minimum (or maximum) of a function
J(pi). The displacement is performed based on the best solutions found by each of the
particles, which are initialized with random values within a search space.

In [28], a variant of the original PSO method was developed to improve the conver-
gence capabilities. In this variant, the velocity of each particle vi at instant k is calculated as:

vi[k] = χ(vi[k− 1] + c1rand()(pbi
− pi[k− 1]) + c2rand()(pbg − pi[k− 1])) (10)

where χ is a velocity constraint factor, c1 and c2 are constants that weigh the effect of
the cognitive and social components, pbi

is the value of the particle that generated the
minimum of that particle, and pbg is the value of the particle that generated the global
minimum among the particles. The factor χ is calculated as a function of c1 and c2 as:

χ =
2

|2− φ−
√

φ2 − 4φ|
, φ = c1 + c2 , φ > 4 (11)

Given the velocity of each particle, the position of each particle is updated as:

pi[k] = vi[k] + pi[k− 1] (12)

In order to find the minimum of J(pi), an iterative process of velocity calculation
and position update of each particle is performed, in which the values of pbi

and pbg are
acquired. The updating of pbg can be performed synchronously—i.e., this value is updated
when the cost function for all particles has been evaluated; or it can be asynchronous, where
the value of pbg is updated each time a new global minimum is encountered, regardless of
whether the iteration has not been completed. The performance of the synchronous and
asynchronous methods was evaluated in [29], where it was shown that the asynchronous
method improves the convergence speed of the method.



Technologies 2023, 11, 12 8 of 25

3.2. Estimation of the Required Energy in Flight

As discussed above, the energy consumption of a multirotor UAV depends on a wide
variety of factors, and since the fuzzy C-means technique performs well for systems up to
about 20 dimensions [30], it is used in the development of the energy estimation system.

3.2.1. System for the Estimation of the Required Energy

To estimate the required energy during a mission, it is assumed that during the devel-
opment of a mission with automatic navigation, the vehicle follows a series of waypoints,
which consist of coordinates related to information of the flight altitude, speed, and hover
time. To cover the points defined in a desired trajectory, the vehicle will move following
velocity profiles, which can be decomposed into their vertical and horizontal components.
Based on the behavior of the navigation algorithm used, it is possible to anticipate the
velocity profile that will be present along the trajectory, and therefore, the proposed energy
estimation system will use this information. It consists of two cascaded subsystems which
use fuzzy clustering, as shown in Figure 3.

Power estimator

-+

Power estimator with 
error compensation

MAF

Figure 3. Proposed system for the estimation of the required power during a flight. It is composed
of two cascaded subsystems based on fuzzy clustering. The first subsystem must determine the
required power for the current system velocity, and the second subsystem determines the required
power for subsequent mission stages based on the expected velocities and the determined power-
estimation error.

The first subsystem evaluates the current state of the system, having as input the
vertical velocity vv, positive in the downward direction; and the horizontal velocity, vh ≥ 0.
The output corresponds to the power estimation (P̂) for the present state of the vehicle.
Such power estimation is performed continuously as the flight develops. The value of P̂ is
determined from a set of M1 fuzzy rules of the form

If [vv vh] is Ai, Then yi = a1ivv + a2ivv + bi (13)

From the defined rules, the value of P̂ = y is calculated using Equation (2). The output
of the first subsystem is used in combination with the power measurement P, obtained
from the UAV sensors, to calculate the power-estimation error as:

ep = P− P̂ (14)

The estimation error ep will be smoothed by a moving average filter (MAF) given by:

ẽp =
1
j

k

∑
i=k−j

ep (15)

where j corresponds to the number of data samples used in the filter.
The second subsystem utilizes as input the sets of vertical velocities Vvm = {vv1 , · · · , vvs}

and horizontal velocities Vhm = {vh1 , · · · , vhs} of the s segments that constitute the expected
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velocity profile for the rest of the mission, and ẽp. This subsystem is formed by a set of M2
fuzzy rules of the form:

If [vvi vhi
ep] is Ai, Then yi = a1ivv + a2ivh + a3iep + bi (16)

The output of this subsystem, given by Equation (2), corresponds to the required power
to fly at the velocities defined in the different stages of the mission P̂m = {P̂m1 , · · · , P̂ms}.

Finally, the estimation of the energy required to complete a mission is given by

ÊR =
s

∑
i=1

P̂mi Ti (17)

where Ti corresponds to the period during the multirotor UAV moves at velocities vvi and vhi
.

3.2.2. Computation of the Parameters of the Power-Estimation System

The performance of the proposed subsystems for power estimation depends on the
quality of the training set, the number of clusters, and the chosen fuzzy exponent (m).
There is also a trade-off between the number of clusters and the accuracy of the power
estimation, since a larger number of clusters can lead to more accurate results, but, in a
resource-constrained application, such as in embedded systems, it is necessary to employ
algorithms with low computational cost that can be executed in a short period of time.
In order to find a balance between power-estimation accuracy and speed of execution, we
propose the use of the PSO method presented in Section 3.1.3.

In this sense, the structure of the particles to be used during the optimization process
is defined as follows:

pi =
[
M′i mi

]
(18)

where M′i is an auxiliary variable that allows one to define the number of clusters, and mi
is the weighting exponent associated with the particle. In order to carry out the PSO
algorithm, the following cost function is proposed:

J = w1
1
N

N

∑
i=1
|ep|+ w2bM′ie (19)

where N is the number of samples in the validation set, and w1 and w2 are constants that
represent the trade-off between system accuracy and execution speed. The function b·e
indicates the value rounded to the nearest integer. Although the above function does not
explicitly include the mi parameter of the particle, it is reflected through ep.

For the first subsystem, the training data set will be composed of the vertical velocities
Vv = {vv1 , · · · , vvN}, horizontal velocities Vh = {vh1 , · · · , vhN}, and measured power
P = {P1, · · · , PN}. To apply the PSO method to the subsystem, the clustering process [25] is
performed with x = [vvi vhi

] and y = Pi. The number of clusters is given by M1 = bM′ie
and the weighting exponent m1 = mi.

Using the obtained cluster centers vi, the membership values are calculated with
Equation (5) for the training set, obtaining a set Ui = {ui1, · · · , uiN} for each cluster.
The obtained values are used in the least-squares method presented in Section 3.1.2 with
X = [Vv Vh] and Y = P, to obtain the parameters of the consequent of the rule shown
in Equation (13). Once the parameters of the M1 rules have been determined, using
Equation (2), the values of P̂ = {P̂1, · · · , P̂i} are calculated for the validation set. Finally,
the function (19) is calculated with the values of ep, as given in (14) between the validation
set measurements and the power estimations.

The process described above is conducted for each particle until the defined maximum
number of iterations is reached. The values of M1 y m1 will correspond to the last value
obtained for pbg .
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For the training of the second subsystem, we calculate the set Ẽp = {ẽp1 , · · · , ẽpN}
using Equation (15) for the values of ep obtained from the power-estimation process of the
training data set used in the first subsystem.

The training of the second subsystem is performed using the training data set of the
first subsystem, extended with Ep, x = [vvi vhi

epi ] and y = Pi. The training process is
performed using the procedure indicated for subsystem one to obtain M2 and m2, and the
parameters in the consequent of each rule (16).

3.3. Estimation of the Battery’s State of Charge

This section presents the mathematical model of the equivalent circuit used for batter-
ies using a single time constant, proposing the use of fuzzy modeling for the relationship
between the battery’s open-circuit voltage and the state of charge. After that, the estimation
of the state of charge using an extended Kalman filter is addressed.

3.3.1. Equivalent Circuit Model for Batteries

An electric battery is an element that stores energy in chemical form, which can be
released in a controlled way. A model that has been widely used to determine its behavior
is the equivalent circuit model [31]. Figure 4 presents the model of a single time constant,
which allows studying its behavior with a suitable degree of accuracy when the objective is
the estimation of the state of charge (SoC) for practical applications [32].

LO
AD

Text

Figure 4. Equivalent circuit model with a single time constant for batteries.

On the left-hand side, a capacitor CT models the battery charge capacity, and a current
source whose flow is equal to that flowing through the load at the battery terminals Ib.
The capacitance of CT is given by:

CT = 3600QBη (20)

where QB is the capacity of the battery expressed in Ah and η is a factor that will depend
on the temperature and health of the battery. The voltage at CT , whose value is between
zero and one, represents the SoC of the battery and is calculated by:

SoC(t) = SoC(t0)−
1

CT

∫ t

t0

Ib(τ)dτ (21)

On the right-hand side, a voltage source models the open-circuit voltage Voc as a
function of the SoC. Ri is the internal resistance, and the pair RdCd represents the transient
behavior of the battery. The dynamics of the voltage V̇d on RdCd, and the battery terminal
voltage Vb, are given by:

V̇d =
Ib
Cd
− Vd

RdCd
(22)

Vb = Voc(SoC)− IbRi −Vd (23)
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The function between the Voc and the SoC has been approximated from a set of
linear functions or polynomial functions [33,34]. In the present work, it is proposed to
approximate such a function with a Takagi–Sugeno fuzzy model with rules of the form
given in Equation (1), as shown in Figure 5. It can be observed that the function is segmented
using trapezoidal fuzzy sets. This approximation allows having the simplicity given by a
set of linear functions while maintaining the smoothness of the transitions between regions
of the curve, as can be observed in polynomial approximations.
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Figure 5. Modeling the relationship between the Voc and SoC using a set of trapezoidal fuzzy sets.

Each membership function of the set of rules defining the functions Voc(SoC) or
SoC(Voc) is given by four points as seen in Figure 2, whose membership value will be given
by Equation (3), and the output of the model is given by Equation (2).

3.3.2. Estimation of the SoC

A widely used methodology for the estimation of the SoC of the battery is the use of
the Kalman filter, which, unlike the Coulomb count, allows compensating the differences
between the estimated initial SoC and the real one; moreover, it presents lower vulnerability
to noise in the current measurements [35].

To implement the extended Kalman filter (EKF) [36], Equations (21) and (22) are
discretized using Euler’s method and grouped as follows:[

SoC[k]
Vd[k]

]
︸ ︷︷ ︸

x[k]

=

[
1 0
0
(

1− ∆t
RdCd

)]
︸ ︷︷ ︸

A

[
SoC[k− 1]
Vd[k− 1]

]
︸ ︷︷ ︸

x[k−1]

+

[
− ∆t

CT
∆t
Cd

]
︸ ︷︷ ︸

B

Ib[k− 1]︸ ︷︷ ︸
u[k−1]

(24)

where ∆t is the sampling time interval. In Equation (24), the terms of the battery state-space
model x, u, A, and B are obtained. In addition, from the linearization of Equation (23),
we obtain:

Vb[k]︸ ︷︷ ︸
y[k]

=
[

∂Voc
∂SoC [k] −1

]
︸ ︷︷ ︸

C[k]

[
SoC[k]
Vd[k]

]
︸ ︷︷ ︸

x[k]

+Voc(SoC[k])− ∂Voc

∂SoC
[k]SoC[k]− Ri︸︷︷︸

D

Ib[k]︸︷︷︸
u[k]

(25)

Using the terms obtained in (24) and (25), the SoC of the battery is calculated by
employing the EKF given in Algorithm 1, where P is the covariance error matrix, K is
the estimator gain, Q is the process noise covariance, and R is the measurement noise
covariance. The value of ∂Voc

∂SoC can be obtained from the fuzzy model for the function
Voc(SoC) using the partial derivative of its consequent.

3.4. Estimation of Flight Time Margin

This section presents an analysis of the relationship between the battery charge and the
thrust control signal, from which a methodology is developed to determine the minimum
charge level at which it is possible to operate the multirotor UAV and the time for which it
can operate after the end of its mission with the remaining energy.
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Algorithm 1 Estimation of the SoC.

Require: P[k− 1] = P0 , x̂[k− 1] = x0, Q, R
1: loop
2: Perform measurement of u[k] = Ib[k− 1] and y = Vb[k]
3: Obtain the value of ∂Voc

∂SoC
4: Predict the estimated state

x̂−[k] = Ax̂[k− 1] + Bu[k− 1] (26)

5: Prediction of the covariance error

P̂−[k] = AP[k− 1]AT + BQBT (27)

6: Calculate the Kalman gain

K = P̂−[k]CT(CP̂−[k]C[k]T + DRDT)−1 (28)

7: Update the estimated state estimate with the measurement of y[k]

x̂[k] = x̂−[k− 1] + K(y[k]− y(x̂−[k], u[k− 1])) (29)

8: Update covariance error

P[k + 1] = (I − K[k]C)P−[k] (30)

9: end loop

3.4.1. Relationship between Control Signals and the SoC

In the controller field of multirotor UAVs, a widely used architecture is the one that
uses a set of cascaded controllers, as shown in Figure 6 [37,38]. This architecture begins
with a position controller for a reference ξd, from which an attitude reference ηd is obtained,
along with a thrust control signal δT . From the previous reference, an attitude controller
generates an angular velocity reference ωd. The angular velocity reference is sent to an
angular velocity controller that will generate a set of control signals for the angular velocity
δp, δq, and δr. The four control signals obtained are used by a control allocation system,
also known as mixer, which will generate a set of control signals U for each of the rotors of
the multicopter.

Angular
rate

controller Control
allocator

Attitude
controllerPosition

controller

Figure 6. Control architecture employed in widely used autopilots such as PX4 or Arducopter.

For the operation of a multirotor UAV at a constant altitude, the thrust control signal is
of a magnitude to provide the force required to compensate for the weight of the multirotor
UAV, for which there is a control signal for each of the rotors. The angular velocity control
signals will generate variations in the control signals of each rotor around the point required
to generate the thrust force. The force generated by each rotor fr is calculated as:

fr = k f (kωVm)
2 (31)
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where k f is the propeller force constant, kω is the motor angular velocity constant, and Vm
is the average voltage applied to the motor.

As can be seen in Equation (31), for a given rotor, the force generated will depend
on the average voltage applied. In turn, the average voltage applied to the rotor will be
proportional to the duty cycle of the applied signal and is computed as [39]:

Vm = Vbud (32)

where ud is the duty cycle with 0 ≤ ud ≤ 1.
As can be seen in Equation (32), there is a linear relationship between the duty cycle

and the battery voltage. Therefore, for a given flight condition, the duty cycle will increase
as the battery voltage decreases. For a normalized thrust control signal (δT) we have the
behavior shown in Figure 7, where it is observed that the δT control signal increases linearly
as the voltage (Vb) decreases.

1

Figure 7. Relationship between battery voltage and thrust control signal. For a constant flight
condition, a linear relationship will be maintained between both values.

The δT value is minimal when the battery presents its maximum voltage, and should
not exceed a maximum level, which allows one to maintain a safe operating margin for
variations due to angular velocity controls.

Since the applied voltage will depend on the SoC of the battery, as seen in Figure 8,
the minimum allowable battery voltage will determine the minimum SoC at which it is
safe to operate.

1

1

Figure 8. Relationship between SoC and thrust control signal. For a constant flight condition,
the required δT increases depending on the battery discharge curve.

3.4.2. Estimation of the Flight Time Margin

The remaining flight time is approximated from the average power consumed Pm and
the usable energy in the battery. To determine the usable energy in the battery, the minimum
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charge level at which it is safe to operate is determined based on the expected performance
of the thrust control signal.

Using a recursive least squares (RLS) [40] process, the following relationship is determined:

Vbδ
= α1δT + α2 (33)

where Vbδ
is the expected battery voltage for a given δT , and α1 and α2 are parameters

obtained from the RSL process.
Then, using the maximum admissible value of the thrust control signal δTmax , the mini-

mum admissible voltage at the battery terminals Vbmin
is calculated as:

Vbmin
= max{Vbs , Vbδ

(δTmax )} (34)

where Vbs is the minimum voltage at which the battery can be safely operated.
Based on the equivalent circuit model (Figure 4), it can be seen that in the worst-case

scenario, the open-circuit voltage when the terminal voltage is Vbmin
, for a value of Pm, is

given by:

Vocmin = Vbmin
+

Pm

Vbmin

(Ri + Rd) (35)

Therefore, the minimum charge level at which it is possible to operate the multirotor
UAV under the constraints of δTmax is given by:

ˆSoCmin = max{SoCs, SoC(Vocmin)} (36)

where SoCs ≥ 0 is the minimum charge at which it is desired to operate the battery.
For a defined mission whose required energy is given by ÊR when the battery has a

charge SoC0, the estimated charge at the end of the mission ˆSoC f is calculated as:

ˆSoC f = SoC0 −
ÊR
ET

(37)

where ET is the energy stored in the battery when the battery is fully charged and is
calculated by:

ET = QBVbnom (38)

where Vbnom is the nominal voltage of the battery.
A mission may be considered as an achievable mission if ˆSoC f ≥ SoCmin. If the

mission is achievable, then the flight time margin t̂m is estimated as:

t̂m =
( ˆSoC f − SoCmin)ET

Pm
(39)

In the case of a manually controlled flight, this method may be used to estimate the
remaining flight time using ÊR = 0.

4. Physical Experiments and Results

In order to evaluate the performance of the proposed methods, a series of physical
experiments were carried out using a hexarotor UAV as the case of study. The experiments
consisted of (i) performing discharge tests of the battery used on the hexarotor UAV in order
to obtain the parameters of its equivalent circuit and the relationship between the open-
circuit voltage and the state of charge; (ii) executing a series of flights to obtain information
for the training process of the power-estimation system, including the optimization of its
parameters; and finally, (iii) evaluating the performance of the proposed methods through
a validation flight.

The hexarotor used to conduct the experiments, shown in Figure 9, has the specifica-
tions given in Table 1.



Technologies 2023, 11, 12 15 of 25

Figure 9. Hexarotor UAV used as the case study for the estimation of the required energy.

Table 1. Hexarotor specifications.

Parameter Values

Flight controller Pixhawk 2.1 Cube Black
Motor T-motor Air 2213 920KV
ESC T-motor Air 20A

Propeller T-motor 9.45 × 4.5 in
Power module Mauch HS-050-LV

Battery Turnigy graphene 4Ah 3S 45C
Weight 1.8 kg

Dimensions 55 cm × 55 cm × 23 cm

The power module uses an Allegro ACS758LCB-050U Hall-effect linear current sensor
with a maximum capacity of 50A that is able to provide current measurements with an
accuracy of 2%. The development of the aforementioned experiments is detailed below.

4.1. Experiment 1: Battery Characterization

The battery used in this experiment was characterized at room temperature using the
electronic load model KP-184 shown in Figure 10. The characterization process consisted of
performing a series of discharges at constant current. After each discharge, a relaxation
period of 15 min was maintained since, after this time, each cell was meant to be within
3 mV of the Voc [41]. This process was performed until an amount of energy equivalent
to the nominal capacity of the battery was reached. The discharge process performed to
characterize the battery is shown in Figure 11.

Figure 10. KP-184 programmable electronic load used to characterize the battery employed in the
experimental platform.
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Figure 11. Voltage and current graphs obtained from the battery characterization process.

The information obtained from the battery discharge test was analyzed with the
process presented in [42], which performed an optimization process using nonlinear least
squares to determine the values of the equivalent circuit elements shown in Table 2.

Table 2. Equivalent circuit parameters of the used battery.

Parameter Value

Ri 41.6 mΩ
Rd 9.6 mΩ
Cd 1016 F
CT 14,400 F

Based on the obtained open-circuit voltage values, two T-S fuzzy models with five
rules were generated using trapezoidal membership functions. The first model represents
the function Voc(SoC) using the parameters shown in Table 3. The second model represents
the inverse function SoC(Voc) using the parameters shown in Table 4.

Table 3. Parameters of the membership functions and consequents of the rules used for the model
that determines the Voc for a given SoC. The points correspond to trapezoidal membership functions,
as shown in Figure 2.

Membership Function Points
Rule a b c d Consequent

1 −0.2073 −0.1045 −0.2485 0.1568 Voc = 14.14SoC + 10.76
2 0.0033 0.0887 0.2246 0.4007 Voc = 2.565SoC + 10.71
3 0.1731 0.3055 0.5641 0.6686 Voc = 1.325SoC + 10.83
4 0.5565 0.6668 0.7931 1 Voc = 1.827SoC + 10.57
5 0.7793 0.8354 1.077 1.18 Voc = 1.912SoC + 10.69
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Table 4. Parameters of the membership functions and consequents of the rules used for the model
that determines the SoC for a given Voc. The points correspond to trapezoidal membership functions,
as shown in Figure 2.

Membership Function Points
Regla a b c d Consecuente

1 9.948 10.17 10.53 10.77 SoC = 0.1089Voc − 1.155
2 10.46 10.75 10.92 11.32 SoC = 0.1716Voc − 1.1852
3 11.05 11.07 11.59 11.78 SoC = 0.8967Voc − 9.82
4 11.57 11.83 12.21 12.43 SoC = 0.4059Voc − 4.109
5 12.23 12.43 12.77 12.99 SoC = 0.3735Voc − 3.706

4.2. Experiment 2: Training of the Energy Estimation System

To conduct the training of the energy estimation system, we used data from a series
of flights, performing various patterns of horizontal and vertical movements outdoors.
The flights were performed at an altitude of 2245 m in diverse weather conditions, including
winds between 3 and 8 km/h, with gusts of up to 22 km/h. The goal of this experiment
was that the energy estimation system would provide an energy estimate as an average of
the energy requirements of the different conditions in which it can operate.

The optimization process for obtaining the parameters was performed as indicated
in Section 3.2.2, involving a series of 100 iterations for each subsystem. According to the
results presented in [29], a set of 30 particles was used for each subsystem. Considering
that the values of the exponent m must be greater than one, and its upper limit for practical
applications is given in [43], the search space is defined by 1.01 ≤ mi ≤ 3.5. Similarly,
the search space for the number of clusters was defined to be 2 ≤ M′i ≤ 20 based on the
criterion for the maximum number of clusters Mmax ≤ 2 ln N presented in [44].

Figure 12 presents the value of the cost function (19) evaluated at the value of pbg for
each of the subsystems. Table 5 presents the parameters obtained for the implementation
of the first subsystem, and Table 6 shows the parameters obtained for the implementation
of the second subsystem.

0 10 20 30 40 50 60 70 80 90 100
Iteration number

24

26

28

J(
p bg

)

Subsystem 2
0 10 20 30 40 50 60 70 80 90 100

22

22.5

23

23.5

J(
p bg

)

Subsystem 1

Figure 12. Value of the cost function used in the optimization of the power-estimation system,
evaluated according to the value of the particle with the best cost of each subsystem.
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Table 5. Parameters of the first power-estimation subsystem.

Number of Clusters M1 Weighting Exponent m1

2 1.4628

Cluster Centers Consequent Parameters
Cluster vv vh a1i a2i bi

1 0.0069 4.0424 −19.011 −3.5064 262.2819
2 −0.0022 1.2231 −17.4258 −1.5127 258.4393

Table 6. Parameters of the second power-estimation subsystem.

Number of Clusters M2 Weighting Exponent m2

2 1.0338

Cluster Centers Consequent Parameters
Cluster vv vh ep a1i a2i a3i bi

1 −0.0014 2.0883 −12.6536 −15.6601 −3.4644 0.9661 260.9404
2 −0.0072 1.4581 50.9937 −16.694 −3.3685 0.684 277.0185

4.3. Experiment 3: System Evaluation

To validate the performance of the energy estimation system, we conducted a valida-
tion flight. The mission profile consisted of a series of climb and descent maneuvers while
performing increments in translation speed, as shown in Figure 13. The flight was executed
by using the PX4 system for the vehicle control and navigation.

Figure 13. Mission profile conducted by the hexarotor UAV to validate the performance of the devel-
oped energy estimation system. The blue dots represent the waypoints that defined the multirotor
UAV mission during the flight. The dotted orange line is the trajectory linking 42 waypoints, and the
solid blue line corresponds to the multirotor UAV trajectory.

The energy required to complete the mission was estimated from each of the waypoints
that defined the trajectory. Figure 14 shows the comparison between the required energy
prediction ÊR and the ones measured by the Mauch HS-05-LV sensor ER. Calculating the
required energy estimation error eER = ER− ÊR, and dividing this by the average measured
power value Pm, produces the graph shown in Figure 15, which is interpreted in terms of
flight time.
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Figure 14. Comparison between the measurement of the energy required to complete the mission
from a waypoint and the estimation obtained with the developed system.

Figure 15. Number of occurrences for the values obtained from dividing the energy estimation error
by the average required power in the mission. This value can be interpreted in terms of flight time.

From the comparison between the required power estimation and the power use
measured by the system, the maximum estimation error was found to correspond to the
power required to fly for 7 s at the average power.

As part of the flight time margin estimation process, the RLS method was applied
to obtain the relationship given in Equation (33) to determine the expected voltage at the
maximum allowable δT . In Figure 16, the comparison between the recorded δT and the
function δT(Vb) derived from Equation (33) can be observed. As can be seen, the function
obtained by the RLS process averages the behavior of δT , so it is possible to obtain the Vb
for a given average δT .

Figure 17 shows the obtained values related to the horizontal and vertical velocities,
the attitude, and the estimations of the ˆSoC, ˆSoCmin, and t̂m from the validation flight
considering a Vbs = 9.6v, SoCs = 10% and δTmax = 0.78. It is possible to see four intervals
where the estimation of the ˆSoCmin exceeds the established SoCs. These intervals correspond
to the instants after changes in the vehicle attitude in the roll, pitch, and yaw angles
simultaneously, which increase the control signal δT , and consequently, it is estimated
that the δTmax will be reached at a higher Vb, so the ˆSoCmin is higher. The value of t̂m was
computed by considering an ÊR = 0, in which it is possible to observe intervals where the
flight time estimation decreases due to the increase in ˆSoCmin.
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Figure 16. Comparison between the control signal δT recorded during the validation flight and the
one obtained from the inverse function of Equation (33).

Figure 17. Parameters obtained from the validation flight. From top to bottom, horizontal velocity
(vv), vertical velocity (vh); roll (φ), pitch (θ), yaw (ψ) angles; estimated state of charge, ˆSoC; minimum
admissible state of charge, ˆSoCmin; and flight time margin, t̂m.
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5. Conclusions and Future Work

In this research work, a new configuration for the estimation of the energy required to
perform a multirotor UAV mission using fuzzy c-means was presented. This estimator was
able to make predictions of the required energy with a maximum error equivalent to the
energy required to fly for 7 s.

The optimization process of the clustering parameters using PSO allowed us to de-
termine the optimal value for the weighting exponent m and the number of clusters for
each subsystem. Although the proposed methodology only considers the multirotor UAV’s
velocities, for which the use of two clusters per sub-system was determined, this architec-
ture can be extended to include other parameters that affect the energy consumption of the
vehicle without modifying the overall system structure, and we employed the proposed
PSO-based methodology to determine the optimal system parameters.

The relationship between the state of charge of the battery and the thrust control signal
was analyzed, and a methodology was presented to determine the minimum admissible
charge level to operate the multirotor UAV safely. This method can be especially useful
when the vehicle is operated outside the design conditions, as in the case of a failure during
a mission or in environments different from those considered in its design.

With respect to the way to determine the state of charge, although the EKF-based
methodology has been widely used, its use was proposed in conjunction with T-S fuzzy
models for the relationship between Voc and the SoC, which allows combining the simplicity
of linear functions with the smoothness of transitions between function segments.

Since energy estimation is a complex multiparameter-dependent problem, it is required
to extend the number of input parameters to include factors such as the payload weight,
operating altitude, wind speed, and relative wind direction. To generate the training set,
a combination of experimental flight data and high-precision simulations were proposed
so that the system could determine the energy required in situations where the vehicle has
not been exposed.

It is proposed to evaluate new meta-heuristic algorithms for the optimization of the
parameters of the energy estimation system, which can offer more effective alternatives in
terms of execution time, which is essential if a greater number of parameters for energy
estimation are to be added.

Regarding the battery parameters, it is proposed to incorporate the effect of battery
health and temperature into the model to increase the accuracy of the SoC estimation, and
consequently, of the flight time margin.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronyms Description
EKF Extended Kalman Filter.
MAF Moving Average Filter.
PSO Particle Swarm Optimization.
RLS Recursive Least Squares.
SoC State of Charge.
T-S Takagi–Sugeno.
UAV Unmanned Aerial Vehicle.
Fuzzy system variables Description
x, xk Input to the fuzzy system.
Ai Fuzzy set.
yi Output of the fuzzy rule.
ai, bi Design parameters of the consequent fuzzy rule.
M Number of rules of the fuzzy system.
ui Membership degree of the input x to the rule.
a, b, c, d Trapezoidal membership function characteristic points.
N Number of elements of the data set.
Jm Cost function of the fuzzy C-means algorithm.
v Center vector of the cluster.
m Weighting exponent for fuzzy C-means.
X Set of training input data.
Ui Set of membership values of the i-th rule for the set of

training data set.
Xe, X′ Auxiliary matrices for calculating of T-S consequent.

parameters.
θ Vector of parameters of the T-S rules.
PSO algorithm variables Description
J Function to minimize by the PSO algorithm.
pi Position of the i-th particle.
pbi

Best local of the i-th particle.
pbg Best global among all particles.
vi Velocity of the i-th particle.
χ Velocity constrain factor of the particle.
c1 Weighting factor of the cognitive component.
c2 Weighting factor of the social component.
φ Auxiliary variable for the calculation of χ.
Energy estimation system Description
variables
Pi Measured power consumption at current state.
P̂ Estimated required power at current state.
eP Estimated required power error.
vv Vertical velocity.
vh Horizontal velocity.
Vvm Set of vertical velocities of the mission profile.
Vhm Set of horizontal velocities of the mission profile.
Ti Period during the UAV moves at a given velocity.
M′i Auxiliary variable to determine the number of clusters.
ẽp Output of the MAF with input ep.
Battery equivalent circuit Description
variables
CT Capacitance to model the battery capacity.
Cd Capacitance to model battery transient.
Ri Internal battery resistance.
Rd Resistance to model battery transient.
QB Energy stored in the battery.
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η Efficiency factor of the battery.
Ib Current through battery terminals.
Vb Voltage on battery terminals.
Vd Battery transient voltage.
Voc Open circuit battery voltage.
Flight time margin variables Description
ξd Position reference.
ωd Angular velocity reference.
δT Thrust control signal.
δTmax Maximum admissible value of δT .
δp, δq, δr Control signals for angular velocity .
k f Force constant of the rotor.
kω Angular velocity constant of the rotor.
ud Duty cycle of the control signal.
Vm Average voltage applied to the motor.
Vbnom Nominal voltage of the battery.
Vbδ

Battery voltage for a given δt.
Vocmin Open circuit voltage at minimum admissible SoC.

Vbs Minimum admissible voltage at the battery terminals
defined by the operator.

Vbmin
Minimum voltage at the battery terminals at which
it is possible to operate the UAV.

Pm Average required power.
SoCs Minimum charge of the battery defined by the operator.

ˆSoCmin Minimum battery charge at which it is possible
to operate the UAV.

ˆSoC0 Estimated SoC at the time of flight time evaluation.
ˆSoC f Expected SoC at the end of the mission.

ÊR Estimated required energy to mission accomplishment.
ET Energy stored in the battery when fully charged.
eER Required energy estimation error.
t̂m Estimated flight time margin.
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