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Abstract: The warehousing industry is faced with increasing customer demands and growing global
competition. A major factor in the efficient operation of warehouses is the strategic storage location
assignment of arriving goods, termed the dynamic storage location assignment problem (DSLAP).
This paper presents a real-world use case of the DSLAP, in which deep reinforcement learning (DRL)
is used to derive a suitable storage location assignment strategy to decrease transportation costs
within the warehouse. The DRL agent is trained on historic data of storage and retrieval operations
gathered over one year of operation. The evaluation of the agent on new data of two months shows
a 6.3% decrease in incurring costs compared to the currently utilized storage location assignment
strategy which is based on manual ABC-classifications. Hence, DRL proves to be a competitive
solution alternative for the DSLAP and related problems in the warehousing industry.

Keywords: warehouse management; logistics; dynamic storage location assignment; reinforcement
learning; deep learning; artificial intelligence

1. Introduction

The increasing market share of e-commerce and shorter delivery time promises re-
quire more flexible and optimized warehouses so that goods are stored and retrieved
efficiently. One of the main objectives of operating warehouses lies in the reduction of trans-
port times of pallets from one location to another within the warehouse [1]. The problem
of determining where to optimally store goods in a warehouse upon entry or reentry into
the system is commonly defined as the Dynamic Storage Location Assignment Problem
(DSLAP). The combinatorial nature of the problem as well as uncertainties about the timing
of future demands for different goods renders the problem inherently challenging to solve.
In other words, whenever a single storage location assignment is needed, the effect of
the decision depends on future decisions and required storage operations that may only
be predicted to a certain extent a priori. In practice, the storage location assignment task
is often handled manually and relies on the expertise of human workers. This expertise
predominantly lies in knowledge about the frequency, seasonality, and timing of storage
and retrieval operations of goods in warehouses. In the current state of research, more
advanced approaches for tackling DSLAP problems exist. They are typically based on
a statistical analysis of historical data and warehouse simulations for the derivation of
heuristic, metaheuristic, and storage policy-based solution methods [2].

In recent years, machine learning algorithms have increasingly been utilized for the
derivation of powerful statistical models in many application domains. For planning prob-
lems, deep reinforcement learning (DRL) has emerged as a promising alternative solution
approach. It is a machine learning paradigm in which a reinforcement learning agent (RL
agent) autonomously derives solution strategies from trial-and-error experiences by updat-
ing neural network parameters based on a feedback signal (reward) [3]. DRL is applicable
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to sequential decision problems that can be formulated as Markov Decision Processes,
i.e., processes in which any next decision can be inferred from the cur-rent situation alone
and is independent of previous states of the process [3]. A formal introduction to DRL
is presented in Section 4.1. Most famously, DRL has been applied to board and video
games, where it resulted in superhuman performance without the supervision and input of
experts [4,5]. Driven by these successes, the adaption to use cases in industrial planning
problems, such as scheduling problems, has also recently been carried out [6–11]. Since
the DSLAP can be formulated as a Markov Decision Process, DRL is theoretically also
applicable to the DSLAP and related problems.

In this paper we report a practical case study on a new problem setting in the young
field of DRL-based DSLAP solutions. The case study is based on a real-world warehouse
from which operational data was stored over the course of 14 months. A DRL agent is
trained in simulated re-runs to dynamically assign storage locations with the data of the
first twelve months and then evaluated in simulations with data of the last two months.
The main contributions of this paper are:

• The empirical proof-of-concept that a real-world DSLAP may be solved end-to-end
using DRL.

• Practical design choices for solving the presented DSLAP using DRL.

The remainder of this paper is structured as follows: in Section 2, we discuss related
work addressing the DSLAP with machine learning methods. The real-world use case
defining the object of study is described in Section 3. Our DRL solution approach is detailed
in Section 4. Section 5 covers the experimental setup and used benchmarks. The results
are presented in Section 6, followed by a critical discussion of the results in Section 7 and
conclusive remarks in Section 8.

2. Related Work

The DSLAP has attracted research interest for a long time and many algorithmic
solution methods have been proposed. Most recent methods are metaheuristic algo-
rithms [12,13], but tailored solutions based on statistical analysis and manually defined
rules [14] or integer linear programming models [15] also continue to be developed. For a
survey of solution methods for the DSLAP, we refer the interested reader to Ref. [2].

The capability of machine learning models to derive useful information from ware-
house operation data has been investigated in several research works. For example,
Li et al. [16] trained a deep learning model to predict the duration-of-stay (DoS),
i.e., the time a pallet is going to stay at the assigned location within the warehouse. This
prediction is then leveraged in a constraint optimization algorithm to reach the final alloca-
tion decision. To obtain a more direct strategy using machine learning, Rimélé et al. [17]
proposed a deep learning model to predict the probabilities with which a Monte-Carlo-Tree-
Search (MCTS) algorithm would have assigned a particular storage location. To generate a
suitably labeled dataset, extensive MCTS runs are required before training. Berns et al. [18],
used decision trees to predict zones A, B, or C for pallets entering a simulated warehouse,
where each class represents a zone in the warehouse to which the pallet is then transported.
All approaches mentioned above have shown performance increases compared to previous
methods used in each respective scenario. However, they rely on time-consuming manual
labeling by experts or expert systems of historic operations because they are supervised
learning methods. In contrast, the method we propose in this case study is based on DRL
and therefore does not rely on manual labels.

The general feasibility of DRL for variations of the DSLAP has also been explored
recent years. Kim et al. [19] addressed a DSLAP in a ship block stockyard to minimize the
rearrangement of ship blocks. In the described setting, ship blocks are assigned a storage
location and often must be rearranged due to new unforeseen circumstances. The authors
trained two DRL agents, one that assigns the primary location and one that performs all
relocations. Another DSLAP variation was studied by Rimélé et al. [20]. Here, a DRL agent
was trained to assign pallets to one of six different zones upon new arrival at the warehouse.
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The pallet was then transported to the chosen zone by a robot, which picks up a retrieval
order on the way back to the entrance. Both publications report substantial improvements
of the DRL-based methods over the existing method.

In this paper, we describe a real-world use case of the DLSAP and a methodology to
tackle it effectively using DRL. Similarly to the works in Refs. [19,20], we exclusively use
DRL for the solution generation, but we address a generally different warehouse logic and
layout. In addition, compared to prior publications, no information about future demand
is available as a basis for each new storage location assignment. Therefore, the DRL agent,
similarly to experts in the warehouse, must learn when and how often certain products are
moved solely from historic data and then act accordingly.

3. Use Case

In the following we describe the outline, logic and simulation of the studied warehouse,
the used data and the implementation details of the reinforcement learning approach.

3.1. Warehouse Outline, Logic and Simulation

The object of study is a real-world semi-automatic high-bay warehouse. It has a single
point of entry for all arriving and departing goods, where the distribution onto a part of
the first rack is carried out manually. The warehouse further consists of twelve lines of
high-bay racks which are handled by two automatic storage and retrieval systems (ASTS)
which can move freely along guide rails on corridors between racks (see Figure 1). In
addition, goods can be moved via conveyor belts between rack 2 and 3, facilitating storage
and retrieval from and on racks 3 and 4.
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Figure 1. Schematic layout of the warehouse.

Operations in the warehouse follow a strict logic: When new goods arrive at the entry
point, they are first assigned a storage location in the warehouse. All goods arrive on pallets
containing varying amounts of multiple good types. The pallet is manually moved to the
first rack and, depending on the assigned storage location, picked up by an ASTS that
carries the pallet to the assigned destination. In the afternoon, pallets are often stored in
a two-step process: they are first brought to a temporary location close to the entry and
then moved to their final location during nighttime. Small conveyor belts installed in racks
1–3 can move pallets between two racks. Usually, one of the ASTS remains in the corridor
between racks 3 and 4, because entering this corridor takes a particularly long time. In
addition to newly arriving pallets, pallets may be brought to the entry point to retrieve some
or all goods on them. If goods remain, a new storage location is determined. Otherwise, the
pallet leaves the warehouse. The transport time between storage location assignment and
arrival is roughly proportional to the cost of the storage process and therefore constitutes
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the objective to be globally minimized. In practice, the storage location assignment takes
the form of a manual classification into class A, B or C for each pallet and is based on the
experience of the worker. The three classes correspond to zones within the warehouse, for
which the transportation time and cost are roughly the same. The zones are distributed as
depicted in Figure 1.

The simulation that we used for conducting the experiments represents the described
warehouse structure. It stores the current capacity utilization of the racks and keeps track
of all transportation costs which arise from conducted storage and retrieval operations.
The cost is represented by a unitless metric which corresponds to the mean relative trans-
portation times measured in reality. Correspondingly, transportation operations to zone
A take one cost unit, to zone B two cost units and to zone C ten cost units. The capacities
of each zone are 9%, 25% and 66% of 9000 total storage locations for zone A, B and C,
respectively. As a simplification, we did not consider the two-stage storing process which
occurs in the afternoon but treat all pallets as if they were moved to their final location
directly. We implemented the simulation logic in Python and follow the OpenAI Gym
API guidelines [21], which present a common API for simulations used in reinforcement
learning research and practice.

3.2. Real-World Data

The used data basis for training and testing of the DRL agent comprises of
12,100 items of historical information on storage and retrieval operations. The data contain
all such operations of 500 different goods types collected between January 2021 and April
2022. The information for each operation consists of:

• A timestamp [YYYY-MM-DD hh-mm-ss] when the location assignment took place.
• The loaded good type identification number.
• The number of articles on the pallet.
• The date on which the pallet was first packed and entered the warehouse system.
• The type of storage location assignment (first entry or re-entry after partial retrieval

of articles).
• The class (A, B or C), assigned to the pallet based on subjective experience by

human workers.

4. Reinforcement Learning Approach

In this section, an introduction to DRL and the design choices of the proposed approach
are presented regarding the action design of the agent, the observation space, the reward
formulation, and the learning algorithm along with its hyperparameters. Unless stated
otherwise, they were obtained through preliminary experiments.

4.1. Introduction to Deep Reinforcement Learning

Reinforcement learning (RL) can roughly be categorized into value-based and policy-
based methods. Value-based methods update Q-values representing the expected dis-
counted cumulative reward given the current state s for all available actions a:

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkR(st|at)|s0 = s, a0 = a

]
(1)

The policy of the RL agent during inference is obtained by choosing the action with
the maximal corresponding Q-value for each state. Since the number of different states in
scheduling problems is very large, the function representing the Q-values is approximated
with a deep neural network and updated using the gathered data during training [3].
A popular representative of value-based methods is DQN [22]. Policy-based methods
optimize the policy π more directly by learning a function mapping a state s to an action.
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This function, in DRL, is also approximated using a deep neural network parameterized
with parameters θ. The updates to the policy function follow the gradient

∇θ J(θ|s) = Eπθ
[Qπ(s, a)·∇θ log πθ(s, a)] (2)

which was first proposed in Ref. [23]. A popular modern representative is Proximal Policy
Optimization (PPO) [24].

4.2. Action Space and Interaction with the Simulation

A storage location assignment is required whenever a pallet is in the front of the
warehouse (entry) and not empty. The actions the DRL agent may take mirrors the timing
and possible choices of the decision-making process that is currently conducted by human
workers in the warehouse: the DRL agent may assign a pallet to zone A, B or C. Hence, the
action space of the DRL agent is discrete and of size three. The simulation automatically
interprets the action and executes the process: changing the location status of the zone and
adding the transport cost to the total cost. In the hypothetical situation in which a zone is
full, the agent may not choose that zone. This exception is handled by the DRL algorithm
and explained in Section 4.5.

4.3. Observation Space

In each step, the action should be based on the state of the warehouse, the character-
istics of goods on the pallet for which the storage location must be assigned, the storage
location assignment and the date. The necessary information on the state of the warehouse
is the current capacity utilization in each of the zones. Therefore, the capacity CAP of the
warehouse is represented as a three-dimensional vector

CAP =

[
items in A

total capacity o f A
,

items in B
total capacity o f B

,
items in C

total capacity o f C

]
. (3)

The goods information is represented by a vector containing the multi-hot encoded
goods type (vector of zeros with length 500). The type of storage location assignment is
binary: a 0 indicates that the pallet is entering the warehouse for the first time, whereas
a 1 indicates a re-entry. The date is encoded as a single value representing the day of the
year. It is scaled through division by 365. From these three features, the agent is supposed
to learn, when and how often particular good types are moved in the warehouse. The
aggregated resulting observation vector is of length 505.

4.4. Reward Design

The chosen reward is directly proportional to the resulting cost of each operation and
was scaled such that a stable learning was reached in preliminary experiments. Accordingly,
the assignment to zone A is rewarded (or rather punished) with −0.01, the assignment to
zone B with −0.02 and to zone C with −0.1 (confer Equation (2)). Note that the sum of all
rewards over an observed period will be proportional to the total transportation cost in that
time. The agent is supposed to learn to accept temporarily larger punishments for the sake
of maintaining enough capacity in less expensive zones for more frequently moved pallets.

reward =


−0.01 i f action = Zone A
−0.02 i f action = Zone B
−0.1 i f action = Zone C

(4)

4.5. Learning Algorithm and Hyperparameters

The chosen DRL-algorithm is PPO [24]. PPO is a popular DRL-algorithm for its stable
learning behavior, and it is applicable to the chosen discrete action space design. We
compared the performance of PPO with that of DQN [22] in preliminary experiments
and observed far superior performance and learning behavior by PPO. Specifically, we
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deployed the action-masked version of PPO from the StableBaselines3 implementation [25].
Action masking ensures that no invalid actions, such as assigning a pallet to a full zone,
may be taken by the agent during both training and deployment. Although the DRL
agent could theoretically learn not to suggest invalid actions through the reward signal,
our experiments showed much better learning behavior for the masked version. Suitable
hyperparameters were obtained through trial and error. The ones that differ from the
defaults of Ref. [25] are listed in Table 1.

Table 1. Used hyperparameters for PPO.

Hyperparameter Value

alpha 0.0001
steps 19500

gamma 0.99
ent_coef 0.00

gae_lambda 1
vf_coef 0.5

n_epochs 10
batch_size 256

policy_kwargs: net_arch [256, 256, 256]

All Code was implemented in Python and executed on an AMD Ryzen 7 4700U (8 MB
Cache, 2 GHz) hardware. This relatively limited hardware configuration led to real-world
applicable training times of about four hours and inference times for a single storage
location allocation decision of 0.7 ms.

5. Experimental Setup
5.1. Train-Test Split

The division of all historic data into a training dataset and testing dataset is non-trivial,
since more training data generally lead to a better generalization to unseen data but more
testing data leads to more meaningful evaluations. In this study, the training data includes
all data from February 2021 to January 2022. Accordingly, the testing data includes data
from February 2022 and March 2022. This way, a seasonality in the frequency of storage
and retrieval operations of certain goods, could be learned by the DRL agent from the
training data and could be evaluated on the test data.

The training was performed with five different random seeds used for the random
initialization of the neural network parameters.

5.2. Benchmarks

To evaluate the performance of the DRL agent, four rule-based benchmark storage
location assignment methods were implemented:

1. RANDOM: The easiest benchmark method samples actions (A, B or C) randomly from
a uniform distribution.

2. Just-in-Order: This method follows the intuition that the cheapest zones should be
used to the limit. Therefore, as long as the capacity utilization of zone A is not 100%,
pallets are assigned to zone A. When it is full, pallets are assigned to zone B and so on.

3. ABC: This method represents the currently running system in the warehouse. For
this benchmark, we use those classes that were assigned by experts and executed
in reality.

4. DoS-Quantiles: This method is engineered from historic data and serves as the
strongest baseline, which can be created only in retrospective. It is based on the
duration of stay (DoS) of a certain good type. Two quantiles q1 and q2 of the DoS are
defined. When the historic average DoS of a good type on a pallet is smaller than or
equal to q1, the pallet is assigned to zone A. If it is between q1 and q2, it is assigned to
zone B. The rest is assigned to zone C. In a preliminary grid-search of quantile values
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q1 ∈ [0.35, 0.40, 0.45 . . . 0.95] and q2 ∈ [0.40, 0.45, 0.50 . . . 1.00], q1 = 0.70 and q2 = 0.90
achieved the best results on the whole dataset.

In contrast to all rule-based benchmarks, the DRL agent incorporates knowledge
about the current zone capacity utilization, which gives it a theoretical advantage. If one of
the benchmark methods assigns a pallet to a full zone, the action is overwritten with the
next cheapest zone for an assignment to zones B and C, and with B in case of an invalid
assignment to A.

6. Results

The learning curve of the DRL agent over training steps on the x-axis is depicted
in Figure 2. The solid black line indicates the cumulative reward of the DRL agent after
each training episode, i.e., after all storage location assignment decisions of one year. It is
averaged across the five random seeds. Minimum and maximum values across the random
seeds are indicated by the gray shaded area. The horizontal lines depict the cumulative
rewards of the benchmarks on the same training data: DoS-Quantile (orange), ABC (green),
RANDOM (red) and Just-in-Order (blue) from top to bottom in that order. After around
2.5 Mio. executed actions (steps), the DRL agent already performs better than Just-in-Order
on the training dataset. After 5 Mio. training steps, it consistently beats RANDOM and
ABC. Around 20 Mio. steps into training it converges towards a value between ABC and
DoS-Quantile. Note that, as previously mentioned, DoS-Quantile is an artificial benchmark
created posteriori that represents an upper limit. It is noteworthy that all five DRL agents
train very consistently and differ only marginally in their performance across training.
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Figure 2. Learning curve of the DRL agent displaying the average and standard deviation of the
cumulative reward on each training episode over training progress in million steps.

The results on the testing data are summarized in Table 2. The Total Cost column lists
the unitless cost achieved by the DRL agent (PPO) and all five benchmarks. Thus, lower
values represent better performances. The results are qualitatively similarly to the results
on the training data: the DRL agent outperforms all realistic benchmark methods, including
the reality-based ABC method, which it outperforms with 6.3% lower transportation costs.
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Table 2. Results on the test data. DRL results are boldfaced.

Agent Total Cost
Number of Assignments per Zone Mean DoS per Zone

Total A B C A B C

PPO (Ours) 37.78 1088 214 647 227 2.16 4.12 9.12
DoS-Quantile 35.99 1088 257 621 210 2.58 3.83 16.12

ABC 40.34 1088 262 561 265 2.25 4.45 7.54
RANDOM 45.43 1088 369 377 342 4.41 4.95 4.29

Just-in-Order 45.70 1088 110 665 313 4.87 3.87 6.08

The Number of Assignments per Zone and Mean DoS per Zone columns give insights into
the strategy learned by the DRL agent. Since DoS-Quantile is the best solution found on
the data and Just-in-Order the worst, it is helpful to compare the results of PPO to those
two. PPO assigns fewer pallets to zone A than DoS-Quantile, but more than Just-in-Order.
One explanation is that PPO is pushed towards the Just-in-Order strategy at the beginning
of training, because assigning most pallets to zone A gives the largest immediate reward.
Over the course of training, the agent learns to move away from that short-sighted strategy
for the sake of optimizing the cumulative reward across the whole learning episode. Yet,
the number of assignments to zone A falls below the optimal number, indicating a potential
remaining bias towards zone A.

The mean DoS per zone indicates that the DRL agent has successfully learned to
classify goods into shorter and longer mean DoS in an assigned location. Pallets in zone A
have the smallest mean DoS when assigned by the DRL agent compared to all benchmarks.
However, the best strategy (DoS-Quantile) successfully lowers the mean DoS in zone B,
which seems to be a better strategy, and realizes a very large DoS for zone C. This could
be an artifact of changing DoS times throughout over time, which can lead to a difference
between the training and test data.

7. Discussion and Future Work

A reliable reduction of 6.3% in transportation cost is a significant improvement. At
the scale of modern warehouses, this brings a substantial competitive advantage. It is
worth noting that the presented reinforcement learning approach is easily transferable to
warehouses of other industries by modifying only use-case specific details (e.g., goods
types and reward signals).

Moreover, we believe that further improvements of the results may be possible but
exceed the scope of this case study. In the future we plan to analyze whether the potential
bias towards zone A mentioned above can be addressed by means of different reward
functions. Furthermore, as we have shown in Section 6, the solution strategy found by
PPO does not lead to perfect mean DoS for zone C. We expect that the gap between mean
DoS times per zone between DoS-Quantile and PPO would become narrower with more
available training data. This data is constantly gathered in the warehouse and will be
used in future studies. Lastly, the results could possibly be further improved through an
extended hyperparameter optimization.

Despite the success, there are limitations to the provided methodology, currently still
hindering its deployment. The first is a certain difference between the logic implemented
in the simulation and reality. In reality, some pallets are preliminarily stored in zone A
throughout the day and transported to the other zones at night (compare description of the
two-stage storage process in Section 3.1). The slightly different logic may cause overflows
in zone A or corrupt the learned strategy of the DRL agent. The second open challenge is
posed by arrivals of new goods types, as the observation space of the DRL agent is fixed
and depends on the total number of goods types. Therefore, the introduction of a new type
of goods makes a re-training necessary. A direction of future research will be the effective
handling and re-training for new types of goods.
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8. Conclusions

This paper presented a successful application of deep reinforcement learning (DRL)
to the dynamic storage location assignment problem (DSLAP) using real-world data for
training and testing. The trained DRL agent effectively reduces the transportation cost in
the warehouse presented in this study by 6.3% compared to the currently used method.
The presented approach may easily be transferred to other warehouse layouts and logics.
It can therefore be concluded that DRL is a promising approach for DSLAP that should
be considered as an assistance system or even automated system when looking for more
efficient warehouse operation.
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