
Citation: Shobayo, O.; Saatchi, R.;

Ramlakhan, S. Infrared Thermal

Imaging and Artificial Neural

Networks to Screen for Wrist

Fractures in Pediatrics. Technologies

2022, 10, 119. https://doi.org/

10.3390/technologies10060119

Academic Editor: Yudong Zhang

Received: 27 October 2022

Accepted: 18 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Infrared Thermal Imaging and Artificial Neural Networks to
Screen for Wrist Fractures in Pediatrics
Olamilekan Shobayo 1 , Reza Saatchi 1,* and Shammi Ramlakhan 2

1 Department of Engineering and Mathematics, Sheffield Hallam University, City Campus, Howard Street,
Sheffield S1 1WB, UK

2 Emergency Department, Sheffield Children’s NHS Foundation Trust, Sheffield, Clarkson Street, Broomhall,
Sheffield S10 2TH, UK

* Correspondence: r.saatchi@shu.ac.uk

Abstract: Paediatric wrist fractures are commonly seen injuries at emergency departments. Around
50% of the X-rays taken to identify these injuries indicate no fracture. The aim of this study was
to develop a model using infrared thermal imaging (IRTI) data and multilayer perceptron (MLP)
neural networks as a screening tool to assist clinicians in deciding which patients require X-ray
imaging to diagnose a fracture. Forty participants with wrist injury (19 with a fracture, 21 without,
X-ray confirmed), mean age 10.50 years, were included. IRTI of both wrists was performed with the
contralateral as reference. The injured wrist region of interest (ROI) was segmented and represented
by the means of cells of 10 × 10 pixels. The fifty largest means were selected, the mean temperature of
the contralateral ROI was subtracted, and they were expressed by their standard deviation, kurtosis,
and interquartile range for MLP processing. Training and test files were created, consisting of
randomly split 2/3 and 1/3 of the participants, respectively. To avoid bias of participant inclusion in
the two files, the experiments were repeated 100 times, and the MLP outputs were averaged. The
model’s sensitivity and specificity were 84.2% and 71.4%, respectively. Further work involves a larger
sample size, adults, and other bone fractures.

Keywords: bone fracture screening; paediatrics; artificial intelligence medical diagnosis; medical
infrared imaging; infrared image processing; infrared imaging feature extraction

1. Introduction

The wrist is made up of eight irregularly shaped carpal bones interposed between
the forearm bones (radius and ulna) and five metacarpal bones. The carpal bones are ar-
ranged in two rows and consist of scaphoid, lunate, triquetrum, pisiform, hamate, capitate,
trapezoid, and trapezium [1]. Wrist fractures are amongst the most common fractures
in children [2] with distal radius accounting for up to 25% of fractures [3–5]. X-ray ra-
diography is the main imaging modality for diagnosing wrist fractures [6]. A fracture is
caused by the bone’s structural failure due to effects such as tension, rotation, and shear [7].
Multiple factors can influence the location and type of wrist fracture. For example, distal
radial fractures are typically caused by falling on an outstretched hand and can be broadly
categorized as buckle, greenstick, complete, and physeal fractures [8]. After distal radius,
scaphoid fractures are the second most common wrist fracture type and can be difficult to
detect and treat [9], as X-ray radiographs are sometimes unremarkable. There are some less
common wrist fractures, e.g., ulnar or radial styloid.

Following a fracture, direct bony union or primary fracture healing occurs with
stability between the fracture surfaces while secondary fracture healing occurs with rel-
ative stability, e.g., fractures treated by a plaster cast or an external fixation [10]. Sec-
ondary fracture healing is the more common type and occurs in four overlapping phases,
i.e., hematoma, inflammation, repair, and remodelling [10].
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A significant proportion of X-ray radiographs for wrist fracture diagnosis fail to
demonstrate a fracture. A study of 1223 children with wrist trauma reported that 51% had
a wrist fracture and the rest had normal radiographs [11]. A tool which allows for rapid,
non-irradiating and easy to use screening to assist clinicians in deciding which patients
require X-ray radiography could be beneficial in reducing the number of unnecessary
X-rays, time spent in the emergency department (ED) and associated costs.

Infrared (IR) thermal imaging (IRTI) is a well-established technology for condition
monitoring in the industry; however, its applications for medical diagnosis and monitoring
are currently evolving [12]. IR is part of the electromagnetic spectrum, radiated from objects
with a temperature above absolute zero, i.e., −273.15 ◦C (0 Kelvin). Its harmless nature
and ability to indicate temperatures very accurately in a non-contact manner have made
it a technology of growing interest for medical diagnosis and monitoring [13]. There is
evidence of an increase in temperature of the surrounding tissues at the site of the bone
fracture due to increases in metabolism and blood flow [14]. This temperature increase can
be quantified, analysed, and interpreted through IR thermal image processing.

To the best of our knowledge, this the first study developing IRTI and artificial neural
networks to screen for wrist fractures in paediatrics. Its contributions include:

• A new method of IRTI feature extraction to suitably represent the fracture site.
• Demonstration of a statistically significant temperature difference between wrist

fracture and wrist sprain (no fracture).
• Development of a multilayer perceptron (MLP) neural network model to discriminate

between wrist fracture and wrist sprain.
• Effective utilization of available patient data through random selection of participants

for inclusion in the training and test files for MLP processing and averaging the results
over 100 trials to obtain sensitivity and specificity.

In the following sections, an overview of earlier studies related to applications of IRTI
to detect or monitor bone fracture is provided, a brief description of the statistics used to
determine the efficacy of the method is included, the methodology is explained, and results
are discussed.

2. IR Thermal Imaging for Bone Fracture Detection and Monitoring

In a study involving 25 patients (mean age 65.9 ± 10.4 years), the mean temperature dif-
ference between a healthy and fractured distal forearm was compared [14]. They reported a
mean temperature difference of 1.20 ± 0.48 ◦C one week after fracture, 1.42 ± 0.54 ◦C three
weeks after fracture, 1.04 ± 0.53◦ five weeks after fracture, 0.50 ± 0.30 ◦C eleven weeks
after fracture and 0.22 ± 0.25 ◦C twenty-three weeks after fracture. Based on these findings,
a fracture causes a temperature increase around the injury site that persists for several days
after the injury.

IRTI was used to compare temperature difference between forearm fractures and
contralateral (uninjured) side in 19 children aged 4 to 14 years [15]. The mean temperature
difference across the children after 1 day was 0.13 ◦C, after 1 week was 1.17 ◦C, after
2 weeks was 0.83 ◦C, after 3 weeks was 0.23 ◦C and after 1 month was 0.14 ◦C. The
highest temperature difference occurred after 1 week. These temperature increases could be
associated with the periosteal reaction at the site of fracture and the temperature decreases
as the local periosteal reaction decreases and fibrous callus forms [15].

An evaluation of IRTI to detect vertebral fracture in 11 children, aged 5–18 years, with
osteogenesis imperfecta (a condition causing the bones to be more fragile) was carried
out [16]. The modalities to confirm vertebral fracture were dual-energy X-ray absorp-
tiometry (DXA) and X-ray radiography. The skin temperatures above the vertebrae were
compared to an area of the skin adjacent to them, acting as temperature reference. Fractured
thoracic vertebrae had a significantly higher temperature compared with the reference skin
temperature, while for healthy thoracic vertebrae, the temperature differences were not
statistically significant.
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In an earlier study, a statistical analysis of IRTI of injured wrists (fracture and sprain)
was carried out to establish whether their temperatures were significantly different to
the contralateral (uninjured) wrists [17]. Forty children, mean age 10.5 years (standard
deviation 2.63 years), 19 with wrist fracture and 21 with wrist sprain, were recruited.
Injury type (fracture or non-fracture) was determined by X-ray radiography. The mean
temperature of the fractured wrists was 1.52% higher than the uninjured wrist. Although
the temperature of sprained wrists was 0.97% higher than their uninjured control, the
increase was not statistically significant. Similarly, IRTI analysis of 113 children aged
1 to 14 years, diagnosed with traumatic injury, indicated that the method has potential in
ruling out fractures [18].

3. Materials and Methods

In this section, the details of evaluation statistics, recruitment, IR thermal image
recordings, image processing, feature extraction, MLP pattern recognition and statistical
analysis are provided.

3.1. Evaluation Statistics

This section briefly outlines the statistical measures used to analyse effectiveness of
the IRTI method in differentiating between wrist fracture and sprain. These measures are
illustrated in Figure 1, and further related information can be found in [19,20]. In the analysis,
X-ray radiography was used as the gold standard, as this is what is used in clinical practice.
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Figure 1. Statistical measures used to analyse effectiveness of MLP and IRTI to differentiate wrist
fracture and wrist sprain.

The measures were:

• True positives, TP, (a): number of participants with wrist fracture (confirmed by x-ray)
correctly identified as fracture by IRTI.

• False positives, FP, (b): number of participants with wrist sprain (not-fracture, con-
firmed by x-ray) misidentified as fracture by IRTI.

• False negatives, FN, (c): number of participants with wrist fracture misidentified as
sprain by IRTI.

• True negatives, TN, (d): number of participants with wrist sprain correctly identified
as sprain by IRTI.

• Sensitivity: the percentage of true positives (fractures) correctly identified by IRTI, i.e.,

Sensitivity =

(
a

a + c

)
× 100 (1)
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Specificity: the percentage of the true negatives (sprains) correctly identified by IRTI, i.e.,

Speci f icity =

(
d

b + d

)
× 100 (2)

• Positive predictive value: IRTI-identified percentage of participants with positive
result (identified as fracture) who have fracture, i.e.,

Positive predictive value =
(

a
a + b

)
× 100 (3)

• Negative predictive value: IRTI-identified percentage of participants with a negative
result (identified as sprain) who do not have fracture, i.e.,

Negative predictive value =
(

d
c + d

)
× 100 (4)

• Accuracy: IRTI-identified proportion of true results, either true positive or true negative, in
a population. It measures the degree of veracity of IRTI as the fracture screening scheme.

Accuracy =

(
TP + TN

TP + TN + FP + FN

)
× 100 (5)

3.2. Recruitment

In total, 40 participants, 19 with wrist fracture and 21 with wrist sprain, were included
in the study. This was a planned further analysis of 40 participants whose data were
presented in an earlier study [17]. Participants’ recruitment details are briefly provided in
this section, but further information is included in [17]. The study had ethical approval from
a National Health Service Research Ethics Committee (Sheffield, UK, identification number:
253,940). Participants were provided with the study’s information sheet and provided
signed consent. There were 24 males and 16 females, mean age 10.50 years (standard
deviation 2.63 years), and 30 participants had medication (mainly paracetamol, Ibuprofen,
to reduce the injury pain). Their mean body temperature was 36.3 ◦C (standard deviation
0.43 ◦C). The average time between the fracture occurrence and hospital attendance was
23.70 h (standard deviation 35.51) and for sprain 37.15 h (standard deviation 58.71 h). The
following patients were excluded:

• Non-native English speakers (the study did not utilize interpreters).
• Patients sustaining multiple injuries (including injury to both wrists).
• Patients triaged above category D due to severe pain or deformity.
• Patients who declined consent.

Some patients had used ice on the injury site (to reduce pain and swelling), or their
sleeves covered their wrists when attending the hospital. They have not been included in
this study, as these activities would alter IR data due to non-injury mechanisms; however,
in future studies, we will explore their inclusion and analysis to establish whether they still
could be correctly identified.

3.3. Recording

A FLIR T630sc handheld IR thermal camera [21] was used for the recordings. Its speci-
fications are: noise equivalent temperature difference (a measure indicating the minimum
temperature difference resolvable by the IR camera) less than 30 mK, image resolution
640 × 480 pixels, spectral range 7.5 to 13 µm, dynamic range 14 bits, and operating temper-
ature −40 to 650 ◦C (−40 ◦F to 1202 ◦F). The camera was connected to a laptop computer
to facilitate initial storage of the recorded data (the recorded data were transferred to a
more secure storage afterwards). Image capture rate was set to 30 frames per second
(i.e., maximum rate for 640 × 480 pixels resolution) and emissivity to 0.97. The selected
emissivity is suitable for recording from human skin [22]. A 10-second video of both wrists
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was taken with the camera positioned above the wrists at about a meter. A video was
recorded instead of a single image to allow for averaging across the resulting 300 images to
reduce thermal noise. The IR thermal image recordings took place in a tertiary paediatric
emergency department. Draught and external heat sources in the recording room were
minimized as much as practically possible. The room temperature at the time of the data
recording was measured using an accurate digital thermometer. The recording room tem-
perature was within the recommended 18 to 25 ◦C range [23]. Participants remained in
the recording room for 10 min prior to the recording to allow for acclimatization to room
temperature. For the recordings, the participant sat comfortably on a chair with hands
pronated on a thermoneutral mat placed on a table. The mat insulated their hands from
possible temperature effect of the table. Matlab© version 2022 [24] (signal processing, image
processing and statistical toolboxes) was used to process the recorded videos, carry out the
statistical analysis and perform MLP pattern recognition.

3.4. Image Processing and Feature Extraction

In this section, the procedures to select the injury region of interest (ROI), track it, and
represent it by distinguishing features are explained.

3.4.1. Selection of Region of Interest and Tracking

The procedure for selecting the ROI conformed to an earlier study that provides a
more detailed explanation [17]. Matlab© package was used to display the first image of
the recorded video. Using its cropping function, a region that included the carpal bones
and a section of the distal radius and ulna was selected. This region is indicated by dotted
lines in Figures 2 and 3 for fractured and sprained left wrists, respectively. In Figure 2, the
left wrist region appears brighter (indicating increased temperature) as compared to the
contralateral (uninjured) right wrist.
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Any hand movements during the recording misaligned the ROI selected from the first
image and the corresponding region in the following 299 images. A template matching
tracking method was applied to realign the ROI across all images. Template matching
measures the similarity between two images based on their normalized cross correlation [25]
and has been reported to be more accurate than methods such as the sum of absolute
difference and sum of squared difference [26].

Once the ROIs from all images in a recording were extracted and aligned, they were
averaged to produce a single ROI image. This process was repeated for both the injured
and uninjured wrists. Figure 4 shows a typical averaged ROI. Averaging of the images
enhanced them by reducing the effect of thermal noise.
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3.4.2. ROI Feature Extraction

The averaged ROI needed expressing by representative features for analysis by the
MLP neural network. For the contralateral (uninjured wrist acting as reference temperature),
initially, the background section of the ROI (shown black in Figure 4) was excluded through
thresholding. The background region had zero values, and the threshold level was set
accordingly. The remaining pixel values representing the wrist temperature were averaged
to determine an overall reference temperature.

For the injured wrist (fractured and sprained), initially, the averaged ROI was con-
verted to a grid, consisting of cells of 10 × 10 pixels. The dimension of the cells was a
compromise between coarseness, representing a larger region by each cell and finer resolu-
tion allowing for a greater spatial characterization. Each cell was then represented by its
mean temperature. Figure 5 shows an ROI in grid form.
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The cells with greater relative temperatures were more likely to be associated with the
injury location within the segmented wrist ROI. The mean temperature values for the cells
were sorted in descending order of magnitude. Experiments were carried out by selecting
different numbers of largest temperature values and observing the MLP discrimination
results. This led to the selection of the 50 largest values (the total number of cells within
an ROI varied depending on the participant as the wrist sizes varied). Selection of more
than 50 values meant broadening the area within the ROI for input to the MLP, resulting in
inclusion of possible areas not associated with the injury site. A smaller number of values
could have caused the injury site being inadequately represented. The mean temperature
representing the contralateral wrist was subtracted from the selected 50 values. This
was carried out to deal with the skin temperature variations across the participants. The
statistics of the resulting 50 values were obtained by considering their maximum, minimum,
mean, standard deviation, median, mode, skewness, kurtosis, and interquartile range (IQR).
The above operations were repeated for the 40 participants.

The justification for converting the injured wrist ROI into a grid form was that an
injured wrist ROI had multiple areas with distinctly higher temperatures from its remaining
parts. Initially, attempts were made to locate the injury site through clustering of the ROI;
however, the approach was not effective, as multiple clusters formed, and it was unclear
which cluster represented the injury site. The grid structure and selection and 50 highest
temperature values ensured that the injury site was included in the analysis while the
relatively cooler areas (not associated with the injury) were excluded. The approach of
averaging the pixel values across the whole ROI for the injured wrist was also considered
and proven not as effective, as it diminished the effect of temperature increase at the injury
site by including pixels not in the vicinity of the injury site.

3.5. Discrimination Using Multilayer Perceptron Neural Network

MLP is a well-established artificial neural network capable of pattern recognition [27–29].
It does not assume its input data to be from a particular type of distribution or to be linearly
separable. It consists of interconnected processing elements (also known as neurons) arranged as
input, hidden and output layers. An MLP (shown in Figure 6) with a single hidden layer was
used to differentiate between fracture and sprain based on the features extracted from the IRTI.
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Figure 6. The multilayer perceptron used to differentiate wrist fracture and wrist sprain.

The MLP connections have associated weights that are initially set to random values
during training. The weight for the connection to the processing element j from the
processing element i is expressed as wji in Figure 6. Similarly, the weight for the connection
to the processing element k from the processing element j is expressed as wkj. An MLP learns
through multiple iterations using its training file, and then, its performance is evaluated
using a test file that contains examples not included in the training file. The operation of
an MLP is explained in articles such as [30], but it is very briefly explained here. For each
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processing element, its associated inputs are multiplied with the corresponding connection
weights, and the products are summed. The output of a processing element is obtained by
feeding the summed value into a transfer (activation) function. The are several possible
transfer functions; however, sigmoid [31] is commonly used for this purpose. During MLP
training, the output of the processing element at the output layer is compared with the
provided desired output (fracture = 1, sprain = 0), and the difference is used as the error.
The backpropagated learning algorithm [32] is then used to reduce the error iteratively
by adjusting the weights associated with the connections. A brief introduction to error
backpropagation is included in Appendix A.

The MLP used in this study had three inputs (thus three processing elements at its
input layer) representing standard deviation from the mean temperature, kurtosis, and
interquartile range (IQR) of the 50 selected temperature values (adjusted by subtracting
the mean temperature of contralateral ROI). Kurtosis quantifies how heavily the tails
of a distribution differ from the tails of a normal distribution. The IQR describes the
middle 50% of measures, ordered from lowest to highest. It is the difference between the
upper quartile and the lower quartile in an ordered set of measures. The results section
provides justification for selecting these three statistical measures. The MLP had four
processing elements for its hidden layer. There is not a specific formula to calculate the
optimum number of processing elements for this layer, and thus, the decision was based on
experimenting with varied number of processing elements. An excessive number of hidden
layer processing elements causes poor generalization (i.e., inadequate performance in
correctly identifying participants not included in the training file). Not sufficient processing
elements for the hidden layer cause inadequate training. The processing element at the
MLP output layer had a range of 0 to 1 (0 representing sprain and 1 as fracture). The
receiver operating characteristic (ROC) [33] was used to determine the boundary threshold
in this range to differentiate between sprain and fracture. This is further discussed in the
results. The MLP training parameters were:

• Error backpropagation learning function to update the weights: gradient descent
with momentum. This learning function is commonly used with MLP. The function
incorporated two parameters: learning rate and momentum. Learning rate controls
its adaptation (learning or training) speed. The momentum term helps the function
to move out of local minima to a global minimum when determining error [34]. For
both parameters, values between 0.01 and 1 were explored, and 0.05 was selected, as
it provided the best differentiation.

• Training termination: Training stopped the duration of each trial when the error
became insignificant (0.01) or when the number of iterations reached 20,000. The
second criteria ensured training to be terminated when the error could not reach its
specified target value.

• Transfer (activation function): the sigmoid transfer function was used for all processing
elements. It provides an output between 0 and 1 and is commonly used for MLP [31].

The range (minimum to maximum values) for each measure used as input to the MLP
varied. To ensure that the differences in the range of measures did not adversely influence
their relative contributions to the MLP output, each measure was individually mapped so
that its minimum value corresponded to zero, and its maximum value corresponded to
one. Other values were scaled accordingly. The formula used for this purpose was

xs =
x − Minimum value

Maximum value − Minimum value
(6)

where xs and x represent scaled values and original values used as inputs to the MLP. This
scaling also ensured that the inputs to MLP conformed to the range of the sigmoid transfer
function (i.e., 0 to 1).

Given the available sample size, a strategy had to be devised to maximize the scope
of the MLP training and accuracy of its performance during evaluation. A limited sample
size can often occur in medical machine learning scenarios [35,36], and thus, strategies to
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make effective use of the available data were reported [37]. In a study, multiple runs of
a single instance of a neural network were trained, each run having variations in some
training settings, and collective statistics were generated [38]. The issue of small sample
size to diagnose glaucoma was dealt with by applying a few-shot learning approach [39].
Oversampling was applied to balance the number of available examples when applying
machine learning for chronic kidney disease risk predication [40]. Another approach is
data augmentation, where the amount of data are artificially increased by fine adjustments
(e.g., flipping, rotation, cropping, zooming, noise addition, colour transformations) of the
available data or creating synthetic data [41]. The approach has been applied for deep
learning of images [42–45]. Deep learning has a feature learning capability; however, for
the MLP used in this study, a process of feature preparation was undertaken. MLP has a
lower data processing capability than deep learning, but it is much less computationally
intensive. Therefore, as compared to deep learning, MLP can be applied more quickly
and can utilize hardware platforms with lower processing capabilities. The extent an
augmentation process may help improving the effectiveness of the MLP in this study (given
the complexities of the IR images) is not certain and could be an area of future exploration.
This study approached the limited sample size by adapting two investigations.

Investigation A: This involved creation of a training file consisting of 27 randomly se-
lected participants (i.e., 2/3 of the 40 participants) and placing the remaining 13 participants
(1/3 of the participants) in a test (evaluation) file. The MLP was trained on the participants
in the training file and evaluated on the participants in the test file. The training and test
files were again regenerated in a similar manner, and the MLP training and evaluation
were repeated. This operation was performed 100 times, and overall, MLP outputs for the
test files were averaged. This procedure ensured that there was no bias in selecting specific
participants for each of the two files, as the repetitions (trials) resulted in all participants
having an opportunity to be included in both the training and tests files.

Investigation B: This was like investigation A, except the number of participants
included in the training file was increased to 35, and the number of participants included
in the test file was reduced to 5. The purpose of this investigation was to explore the effect
of increasing the number of participants in the training file on the discrimination accuracy
of the MLP. In some circumstances, an increase in the training file size may have a positive
effect on MLP training, as more participants are examined during each trial. However, its
downside is that the MLP evaluation would be on a reduced number of participants.

4. Results

In this section, the features representing the wrist ROI are analysed, and the MLP
performance in discriminating between wrist fracture and sprain is presented.

4.1. Feature Analysis

Average differences between the injured and contralateral uninjured wrists for the
statistical measures are provided in Table 1. These are also shown as boxplots in Figure 7.

Table 1. Average differences between the injured and contralateral uninjured (reference) wrists for
the statistical measures, the percentage difference and number of participants differentiated by the
statistical measures (fracture (f), sprain (s)).

Maximum
(◦C)

Minimum
(◦C)

Mean
(◦C)

Std Dev.
(◦C)

Median
(◦C)

Mode
(◦C) Skewness Kurtosis IQR

(◦C)

Fracture 1.396 0.696 0.962 0.187 0.938 0.696 0.408 2.478 0.272
Sprain 1.048 0.530 0.711 0.136 0.690 0.530 0.595 2.804 0.202

%Difference 24.942 23.873 26.076 27.322 26.439 23.873 −45.931 13.157 25.752
Number of participants

differentiated 13 (f > s) 10 (f > s) 12 (f > s) 14 (f > s) 12 (f > s) 8
(f > s)

13
(f < s) 16 (f < s) 14

(f > s)
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Figure 7. Boxplots of average differences between the injured and uninjured contralateral wrists for
the statistical measures. Note: the label for vertical axis is not shown, as the variables do not have the
same unit. The unit for minimum, maximum, mean, standard deviation (std) and interquartile range
(IQR) is ◦C. Skewness and kurtosis have no units.

To select the statistical measures that provided greater differentiation between fracture
and sprain, the following operations were performed. The mean values of the statistical
measures for the sprained wrists were obtained. These values were compared with the val-
ues of the associated statistical measure for the fractured wrists. The following observations
were made:

• 13 (68.4%) participants with fracture had maximum temperatures greater than sprain
participants maximum temperature.

• 10 (52.6%) participants with fracture had minimum temperatures greater than sprain
participants minimum temperature.

• 12 (63.2%) participants with fracture had mean temperatures greater than sprain
participants mean temperature.

• 14 (73.7%) participants with fracture had standard deviations (from the mean) greater
than sprain participants standard deviation.

• 12 (63.2%) participants with fracture had median temperatures greater than sprain
participants median temperature.

• 8 (42.1%) participants with fracture had mode temperatures greater than the sprain
participants mode temperature.

• 13 (68.4%) participants with fracture had skewness values lower than sprain partici-
pants skewness.

• 16 (82.2%) participants with fracture had kurtosis values lower than sprain participants kurtosis.
• 14 (73.7%) participants with fracture had IQR values greater than sprain participants IQR.

The above analysis indicated that the measures’ effectiveness to differentiate between
the two types of injuries in descending order were:

• Kurtosis;
• Standard deviation from the mean and IQR;
• Skewness and maximum temperature;
• Mean and median;
• Minimum;
• Mode.

For the measures that were indicative of temperature magnitude (i.e., maximum,
minimum, mean, standard deviation, median, mode, IQR), most participants with a fracture
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had values greater than respective measures for sprain. However, for the measures that
were indicative of distribution (i.e., kurtosis and skewness), the opposite was the case.

The above analysis led to the selection of kurtosis, standard deviation from the mean,
and IQR for input to the MLP. Inclusion of other measures did not improve the MLP
differentiation results, and thus, they were omitted.

4.2. Multilayer Perceptron Discrimination Results for Investigation A

A statistical summary of investigation A, indicating the averaged (over 100 trials)
MLP outputs for the participants in the test file, is provided in Table 2. The averaged MLP
outputs for fracture and sprain were 0.589 and 0.349, respectively.

Table 2. Investigation A—averaged multilayer perceptron outputs for participants in the test file
(averaged over 100 trials). The values have no units.

Injury Types Average Standard Deviation

Fracture 0.589 0.264
Sprain 0.349 0.247

To explore the MLP differentiation effectiveness, the percentage difference (PD) and
percentage absolute difference (PAD) were obtained. The formulae used for these were

PD =
F − S

F
× 100 (7)

PAD =

∣∣∣∣ F − S
0.5(F − S)

∣∣∣∣× 100 (8)

where
F = MLP output averaged over 100 trials for participants with fracture included in the

test file;
S = MLP output averaged over 100 trials for participants with sprain included in the

test file.
The PD and PAD values were 40.75% and 45.02%, respectively.
To determine the classification boundary between fracture and sprain, the receiver

operating characteristic curve (ROC) was obtained for the averaged MLP outputs (over
100 trials) for the participants in the test file. The resulting plot is shown in Figure 8.
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The area under ROC was 0.727, and the ROC optimum point for discrimination for
the two types of injuries corresponded to a false positive rate = 0.289 and true positive
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rate = 0.842 resulting in the threshold value differentiating fracture and sprain to be 0.380.
Using this threshold, the averaged MLP output for participants in the test file was analysed,
resulting in:

• Number of true positives = 16;
• Number of true negatives = 15;
• Number of false negatives = 3;
• Number of false positives = 6.

These measures resulted in discrimination sensitivity of 0.842 (84.2%) and specificity of
0.714 (71.4%). The positive and negative predictive values were 0.723 and 0.833, respectively.
The overall discrimination accuracy was 77.5%.

The plot of averaged MLP outputs for participants in the test file are shown in Figure 9.
The threshold level is shown as the horizontal dashed line at 0.380.
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test file in investigation A. The stars and circles represent participants with fracture and sprain,
respectively. The dashed line is the threshold.

Figure 9 shows three participants with fracture appearing under the threshold line
with sprain participants and six participants with sprain appearing above the threshold
line with fracture participants.

4.3. Multilayer Perceptron Discrimination Results for Investigation B

A statistical summary of investigation B indicating the averaged (over 100 trials) MLP
outputs for the participants in the test file is provided in Table 3. The average MLP outputs
for fracture and sprain were 0.617 and 0.345, respectively.

Table 3. Averaged multilayer perceptron outputs (over 100 trials) for participants in the test file,
investigation B. The values have no units.

Injury Types Average Standard Deviation

Fracture 0.617 0.280
Sprain 0.345 0.252

The PD and PAD values for this investigation were 44.084% and 56.549%, respectively.
To determine the classification boundary between fracture and sprain, the receiver

operating characteristic curve (ROC) was obtained for the averaged MLP values (over
100 trials) for the participants in the test file. The resulting plot is shown in Figure 10.
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The area under ROC was 0.742, and the ROC optimum point was associated with a
false positive rate = 0.286 and true positive rate = 0.842. These corresponded to a differenti-
ation threshold value of 0.353. Using this threshold, the MLP outputs for participants in
the test file were analysed, providing:

• Number of true positives = 16;
• Number of true negatives = 15;
• Number of false negatives = 3;
• Number of false positives = 6.

These values resulted in differentiation sensitivity of 0.842 (84.2%) and specificity of
0.714 (71.4%). The positive and negative predictive values were 0.727 and 0.833, respectively.
The overall discrimination accuracy was 77.5%.

The averaged MLP outputs for participants in the test file are shown in Figure 11. The
threshold level is shown as the horizontal dashed line at 0.353.

Technologies 2022, 10, x FOR PEER REVIEW 14 of 18 
 

 

The area under ROC was 0.742, and the ROC optimum point was associated with a 
false positive rate = 0.286 and true positive rate = 0.842. These corresponded to a differen-
tiation threshold value of 0.353. Using this threshold, the MLP outputs for participants in 
the test file were analysed, providing: 
• Number of true positives = 16; 
• Number of true negatives = 15; 
• Number of false negatives = 3; 
• Number of false positives = 6. 

These values resulted in differentiation sensitivity of 0.842 (84.2%) and specificity of 
0.714 (71.4%). The positive and negative predictive values were 0.727 and 0.833, respec-
tively. The overall discrimination accuracy was 77.5%. 

The averaged MLP outputs for participants in the test file are shown in Figure 11. 
The threshold level is shown as the horizontal dashed line at 0.353. 

 
Figure 11. Plot of averaged multilayer perceptron outputs for participants in the test file for inves-
tigation B. The stars and circles represent participants with fracture and sprain, respectively. The 
dashed line is the threshold. 

5. Discussion 
A fracture causes a temperature increase at the site of injury that is significantly 

higher than that produced by a sprain [17]. This study investigated the effectiveness of 
MLP neural networks in using this effect to screen for wrist fractures. The ability of an 
MLP in differentiation tasks is affected by the manner of data pre-processing and feature 
extraction. The grid representation of the ROI for injured wrists allowed pixels spatially 
close to each other with similar temperature values to be expressed by their mean values. 
This then allowed the 50 largest mean temperature values from the injured wrist ROI to 
be selected for characterization by statistical measures. To deal with skin temperature var-
iability across the participants, the mean temperature of the contralateral (uninjured) ROI 
was subtracted from the selected values. Each cell within the grid was represented by 10 
× 10 pixels, i.e., total 100 pixels. The cell size was determined by experimenting with dif-
ferent dimensions and observing the MLP differentiation outcomes. In future studies, a 
more in-depth analysis could be carried out in determining the cell size. The statistical 
measures used to analyse the 50 selected values, quantified the magnitude of the temper-
ature (i.e., maximum, minimum, mean, mode and median), temperature deviation from 
their mean value, interquartile range and distribution (i.e., skewness and kurtosis). Stand-
ard deviation from the mean, kurtosis, and interquartile range (IQR) proved more effec-
tive for differentiating between the two types of injuries and thus were used as input to 
the MLP. The selection of these three measures should be considered in the context of the 
limited number of participants included in this study, and thus, with a larger number of 
participants, the effectiveness of these three measures needs further evaluation. 

Figure 11. Plot of averaged multilayer perceptron outputs for participants in the test file for inves-
tigation B. The stars and circles represent participants with fracture and sprain, respectively. The
dashed line is the threshold.

5. Discussion

A fracture causes a temperature increase at the site of injury that is significantly
higher than that produced by a sprain [17]. This study investigated the effectiveness of
MLP neural networks in using this effect to screen for wrist fractures. The ability of an
MLP in differentiation tasks is affected by the manner of data pre-processing and feature
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extraction. The grid representation of the ROI for injured wrists allowed pixels spatially
close to each other with similar temperature values to be expressed by their mean values.
This then allowed the 50 largest mean temperature values from the injured wrist ROI to
be selected for characterization by statistical measures. To deal with skin temperature
variability across the participants, the mean temperature of the contralateral (uninjured)
ROI was subtracted from the selected values. Each cell within the grid was represented
by 10 × 10 pixels, i.e., total 100 pixels. The cell size was determined by experimenting
with different dimensions and observing the MLP differentiation outcomes. In future
studies, a more in-depth analysis could be carried out in determining the cell size. The
statistical measures used to analyse the 50 selected values, quantified the magnitude of the
temperature (i.e., maximum, minimum, mean, mode and median), temperature deviation
from their mean value, interquartile range and distribution (i.e., skewness and kurtosis).
Standard deviation from the mean, kurtosis, and interquartile range (IQR) proved more
effective for differentiating between the two types of injuries and thus were used as input
to the MLP. The selection of these three measures should be considered in the context of
the limited number of participants included in this study, and thus, with a larger number
of participants, the effectiveness of these three measures needs further evaluation.

The manner of randomly selecting participants for MLP training and test files and
averaging the MLP outputs over 100 trials was to mitigate the bias that can occur when
selecting patients for each file. This bias may alter the results when the sample size is not
large. MLP can differentiate between nonlinearly separable data and is not sensitive to
the type of data distribution. These can make MLP a more robust classifier than statistical
methods such as linear discriminant analysis.

The discrimination sensitivity (84.2%) and specificity (71.4%) values indicated that the
method was more effective in correctly identifying the participants with fracture (16 participants
from 19) than correctly identifying participants with sprain (15 participants from 21). Com-
parison of the results from investigations A and B indicated that changes in the number of
participants in the training and test files had not affected the sensitivity and specificity.

The severity of injury types (fracture and sprain) varied across the participants. It is
possible that a severe sprain may cause a greater temperature increase at the site of the
injury than a small fracture. Furthermore, this study did not consider the time between
the occurrence of the injury and the IRTI recordings. This may have negatively affected
the MLP performance and thus requires exploration in a follow-up study. False negatives
(fracture classified as sprain) have a more serious impact on treating patients than false
positives (sprain classified as fracture). There were three false negatives and six false
positive cases. The method being developed is for screening patients for requesting X-ray
radiography. Therefore, false positive cases should be picked up by the follow-up X-ray
radiographs. The tool is not to replace X-ray radiography as the gold standard fracture
diagnostic but to assist clinicians at the triage stage to identify patients more effectively.
The study focused on paediatric wrist fractures, and follow-up work should also include
other fractures and expand to include adults.

The main limitation of the study was the small number of participants that would have
adversely affected the sensitivity and specificity values. The study excluded participants
who had applied ice to the injury site prior to hospital attendance and those who had their
wrists covered with sleeves. Follow-up studies should examine whether those patients
could be accurately screened using the method outlined.

6. Conclusions

The study explored the effectiveness of multilayer perceptron (MLP) and IR thermal
imaging (IRTI) to screen for paediatric wrist fractures. A grid structure-based method
of representing injured wrists for feature extraction was devised and characterized by
statistical measures for input to the MLP. Two investigations were carried out involving
different numbers of participants in the training and test files. The sensitivity and specificity
obtained by both methods were consistent (84.2% and 71.4%, respectively). The overall
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accuracy in both methods was 77.5%. The main limitation of the study was the sample size
(i.e., 19 with wrist fracture and 21 with wrist sprain). A larger database is likely to improve
the differentiation of specificity and specificity. The study indicated that application of
MLP to suitably selected IRTI features could have potential for screening for wrist fractures
in paediatrics. The method could be explored further for other fractures and in adults.
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Appendix A Error Backpropagation Algorithm

Error backpropagation is a well-known learning algorithm for multilayer perceptron
(MLP) artificial neural networks, and its theory is explained in several articles, e.g., [32,46].
The knowledge of its derivation is not essential in understanding the work reported in the
article, but for completeness, it is very briefly introduced. Referring to Figure 6:

• The subscripts i, j and k represent the input, hidden and output layers of the MLP, respectively.
• The weights from the hidden layer to the output layer: wkj;
• The weights from the input layer to the hidden layer: wji;
• The input to a processing element: net;
• The output of a processing element (i.e., the transfer function output): y;
• The target (desired) value provided during training: t;
• Number of input examples used during training: k;
• The convergence control parameter (learning rate): ε;
• Proportionality: ∝.

The study utilized gradient descent for the backpropagation learning algorithm. The
sum-squared error (E) is

E = 0.5 ∑
k
(tk − yk)

2 (A1)

The algorithm reduces the overall error E during training by iteratively updating the
network’s weights. The amount of change ∆W is proportional to the rate of change of E
with respect to the weights (negative sign is needed to reduce E), i.e.,

∆W ∝ − ∂E
∂W

(A2)

The amount of change for the weights from the hidden layer to the output layer is
determined by

∆wkj ∝ − ∂E
∂∆wkj

= −ε
∂E
∂yk

∂yk
∂netk

∂netk
∂wkj

(A3)
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However,

∂E
∂yk

=
∂
(

0.5(tk − yk )
2
)

∂yk
= −(tk − yk) (A4)

For the sigmoid transfer function used in this study,

∂yk
∂netk

=
∂
(
1 + e−netk

)−1

∂netk
=

e−netk

(1 + e−netk )2 = yk(1 − yk) (A5)

∂netk
∂wkj

=
∂
(

wkj yj

)
∂wkj

= yj (A6)

∆wkj = ε(tk − yk)yk(1 − yk)yj = εδkyj (A7)

where
δk = (tk − yk)yk(1 − yk) (A8)

The amount of change for the weights from the input layer to the hidden layer is
determined by

∆wji ∝ −
[

∂E
∂yk

∂yk
∂netk

∂netk
∂yj

]
∂yj

∂netj

∂netj

∂wji
(A9)

∆wji = ε

[
∑
k

δkwkj

]
yj
(
1 − yj

)
yi = εδjyi (A10)

where

δj =

[
∑
k

δkwkj

]
yj
(
1 − yj

)
(A11)
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