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Abstract: NASA’s Gateway to Astronaut Photography of Earth contains over 30,000 photos of
~2500 cataloged urban lightscapes (anthropogenic night light) taken from the International Space
Station. A subset of over 100 of these multispectral DSLR photos are of sufficient spatial resolu-
tion, sharpness and exposure to be potentially useful for broadband spectral characterization of
urban lightscapes. Spectral characterization of multiple urban lightscapes can provide a basis for
quantifying intra and interurban variability in night light brightness, color and extent, as well as
the potential for change analyses. A comparative analysis of simulated atmospheric transmissivity
from the MODTRAN radiative transfer model indicates that the spectral slopes of transmissivity
spectra are relatively insensitive model atmospheres, with variations in atmospheric path length and
aerosol optical depth primarily affecting the bias of the spectrum rather than the slope. A mosaic of
18 intercalibrated, transmissivity-compensated RGB photos renders a spectral feature space bounded
by four clearly defined spectral endmembers corresponding to white, yellow and red light sources,
with brightness modulated by a dark background endmember. These four spectral endmembers
form the basis of a linear spectral mixture model which can be inverted to provide estimates of the
areal fraction of each endmember present within every pixel field of view. The resulting spectral
feature spaces consistently show two distinct mixing trends extending from the dark endmember to
flat spectrum (white–yellow) and warm spectrum (orange) sources. The distribution of illuminated
pixels is strongly skewed toward a lower luminance background of warm spectrum street lighting
with brighter lights, generally corresponding to point sources and major thoroughfares.

Keywords: urban; night light; ISS; astronaut photograph; spectral mixture analysis

1. Introduction

The widespread and increasing use of satellite observations of anthropogenic night
light for a variety of applications, ranging from socioeconomic to ecologic, is a testament
to the unique information content of these data. Whereas the DMSP-OLS series of meteo-
rological satellites was the only source of satellite night light data for many years, there
have been more than 10 satellites with nocturnal imaging capability launched since 2000 [1].
However, none of the non-commercial night light sensors provide both sub-hectometer
spatial resolution and multispectral visible bands. Sub-hectometer spatial resolution is
necessary to resolve the urban light field at the decameter characteristic scale of the ur-
ban mosaic, while multispectral (or preferably hyperspectral) imaging is necessary to
distinguish the diversity of light sources used to illuminate the built environment. The
importance of the color spectrum of lighting sources has been recognized for its potential
impact on ecosystems [2–6], astronomical light pollution [7,8], melatonin suppression [9]
and as an epidemiological correlate to multiple types of cancer [10,11].

While future night light sensors will likely incorporate multispectral low light imaging
capability, there has been only one option for sub-hectometer multispectral night light
imaging with extensive geographic coverage over the past two decades: astronaut photos
taken from the International Space Station (ISS). At the time of writing, NASA’s Gateway to
Astronaut Photography of Earth (https://eol.jsc.nasa.gov accessed on 9 July 2022) contains
over 30,000 photos of ~2500 cataloged urban lightscapes taken from the ISS. There is
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considerable redundancy, as many of these photos are multi-shot sequences from slightly
differing view geometries because the camera’s field of view changes slightly due to
spacecraft motion. In addition, many are panoramic photos of large regions containing
multiple cities with insufficient resolution for many scientific applications.

Despite these limitations, a subset of the collection of astronaut photos of urban
lightscapes are of sufficient spatial resolution, sharpness and exposure to be potentially
useful for spectral characterization of urban lightscapes—particularly, as no other geo-
graphically extensive source of comparable imagery is available for the past two decades.
Variations in location, date, view geometry, resolution and exposure impose limitations
on comparative analyses, but with cross calibration it is possible to obtain a spectral char-
acterization of the diversity of light sources contributing to urban lightscapes over the
past decade. Spectral characterization of multiple urban lightscapes can provide a basis
for quantifying intra and interurban variability in night light brightness and extent. How-
ever, the disparity between the centimeter scale of most light sources and the decameter
spatial resolution of even the most detailed of astronaut photos implies the potential for
subpixel spectral mixing to occur in the sensor’s Instantaneous Field of View (IFOV) of
individual pixels.

The objective of this study was to characterize the spectral properties of a diverse
collection of urban lightscapes—specifically, to quantify the luminance and color distribu-
tion of the spectral feature space of multispectral night light. In order to accommodate the
spectral mixing of multiple light sources within individual image pixels, a spectral mixture
analysis was conducted on a mosaic of intercalibrated color images to identify spectral
endmembers bounding the spectral feature space. The spectral endmembers form the
basis of a linear spectral mixture model that can be inverted to yield endmember fraction
estimates for each RGB image pixel. The trivariate distributions of endmember fractions
quantify the spectral diversity of individual urban lightscapes, as well as the aggregate of
the full mosaic.

2. Data

All color images were obtained as Nikon raw files (.nef) from NASA’s Gateway to
Astronaut Photography of Earth (https://eol.jsc.nasa.gov accessed on 9 July 2022). The
.nef raw files were converted to digital negative (.dng) format using Online Converter
(https://www.onlineconverter.com/nef accessed on 9 July 2022), imported to Adobe
Camera Raw v4.0, standardized to common brightness temperatures (2200 K & 5500 K;
0 tint) and saved as 32 bit RGB uncompressed TIFF (.tif) images. Linear tone curves were
retained with default settings for brightness (+50) and contrast (+25). Default settings were
also retained for sharpening (+25) and noise reduction (luminance: 0; color: +25). All of the
subsequent analysis was performed using ENVI and IDL software.

A total of 122 high quality photographs were considered for the analysis. All were
shot with Nikon D3S, D4 or D5 cameras. The majority were shot with either a Nikkor
400 mm f/2.8D IF-ED lens (67 photos) or a Nikkor 180 mm f/2.8 AF-D lens (26 photos). A
comparison of the effects of view geometry and lens focal length (hence, image dimensions
and ground sample distance) is shown in Figure 1. The primary photo selection criteria
were high spatial resolution and minimal blur. Blur can result from either camera move-
ment during exposure or atmospheric water vapor scattering, as illustrated in Figure 2. The
tradeoff between the image sharpness and background noise level of the photos is deter-
mined by both exposure time and ISO setting, as well as noise reduction and sharpening
settings used in raw conversion. Almost all the photos were acquired at maximum aperture
(f/2.8 for both lenses). As shown in Figure 3, most photos were acquired with exposures in
the 1/4 to 1/60 s range with ISO settings near 10,000. From this set of 122 candidate photos,
18 were chosen on the basis of image quality, spatial resolution and geographic diversity.
City names (as provided by NASA), dates and image IDs are given in Table 1.

https://eol.jsc.nasa.gov
https://www.onlineconverter.com/nef
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Figure 1. Urban lightscape comparison of Beijing photographed at different dates, local times, view 
geometries, focal lengths, exposures and white balance settings. The 2010 and 2011 shots (top) were 
taken with the same camera (Nikon D3S) less than 4 months apart and differ primarily in lens focal 
length (hence, spatial resolution) and white balance temperature. The 2016 and 2020 shots (bottom) 
were taken with different cameras (Nikon D4 & D5) using the same lens, exposure and ISO and 
similar white balance temperature, but different local times and view geometries. The greater num-
ber and brightness of white lights within the four inner ring roads in the 2020 shot may be a com-
bined result of the earlier local time and more oblique view geometry imaging, as well as more 
illuminated facades and commercial lighting not seen in the near-nadir view shot taken after mid-
night, local time. Arrows in UL corners show ~north. 

Figure 1. Urban lightscape comparison of Beijing photographed at different dates, local times, view
geometries, focal lengths, exposures and white balance settings. The 2010 and 2011 shots (top) were
taken with the same camera (Nikon D3S) less than 4 months apart and differ primarily in lens focal
length (hence, spatial resolution) and white balance temperature. The 2016 and 2020 shots (bottom)
were taken with different cameras (Nikon D4 & D5) using the same lens, exposure and ISO and
similar white balance temperature, but different local times and view geometries. The greater number
and brightness of white lights within the four inner ring roads in the 2020 shot may be a combined
result of the earlier local time and more oblique view geometry imaging, as well as more illuminated
facades and commercial lighting not seen in the near-nadir view shot taken after midnight, local time.
Arrows in UL corners show north.Technologies 2022, 10, x FOR PEER REVIEW 4 of 19 

 

 

 
Figure 2. Spatially variable atmospheric scattering effects for Las Vegas (top) and Beijing (bottom). 
Translucent clouds over Las Vegas are more conspicuous because of overglow effects extending 
beyond the periphery of the light sources, as well as the longer exposure of the 2012 image. Spatially 
varying sharpness within the lighted area of Beijing is more subtle but, nonetheless, distorts both 
the brightness and spatial extent of individual light sources. Compare the sharpness of these Beijing 
images with the 2016 and 2020 shots shown in Figure 1. All 4 Beijing images were taken with the 
same 400 mm lens. 

 

Figure 2. Spatially variable atmospheric scattering effects for Las Vegas (top) and Beijing (bottom).
Translucent clouds over Las Vegas are more conspicuous because of overglow effects extending
beyond the periphery of the light sources, as well as the longer exposure of the 2012 image. Spatially
varying sharpness within the lighted area of Beijing is more subtle but, nonetheless, distorts both
the brightness and spatial extent of individual light sources. Compare the sharpness of these Beijing
images with the 2016 and 2020 shots shown in Figure 1. All 4 Beijing images were taken with the
same 400 mm lens.
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Figure 3. Exposure, ISO and white balance settings for 122 high-quality urban lightscape photos
taken between 2003 and 2020. Most photos were taken with high ISO and relatively low shutter
speed for the telephoto focal lengths of the lenses used (distribution at top). The distribution of white
balance settings is skewed toward low temperatures consistent with the widespread use of high- and
low-pressure Sodium light sources.

The effects of atmospheric absorption and scattering were analyzed using the MOD-
TRAN radiative transfer model [12] to simulate atmospheric transmittance for different
model atmospheres. Modeled transmittance profiles were convolved with spectral re-
sponse functions for the Nikon D3S [13] to yield weighted transmittance estimates for
the R, G and B image channels. Spectral responses are very similar for the D3S, D4 and
D5 sensors [14], with the exception of somewhat broader band red channel sensitivity for
the D5. Only London and Las Vegas were acquired with the D5. As shown in Figure 4,
molecular absorptions are more pronounced for the Tropical than for the Mid-Latitude
Winter model atmosphere, but the overall amplitude and curvature of the transmittance
profiles are nearly identical. Amplitude is far more sensitive to the visibility (Aerosol
Optical Depth; AOD) than model atmosphere, as indicated in Figure 4. In principle, it
should be possible to obtain location-specific visibility estimates from the Aerosol Robotic
Network (AERONET) database (https://aeronet.gsfc.nasa.gov accessed on 9 July 2022).
Unfortunately, time and location-coincident estimates were not available for any of the
18 sites chosen for this analysis, so a common visibility of 23 km (MODTRAN default) was
used for all corrections. Channel-specific correction terms are obtained from the comple-
ment of the response-integrated transmittance and added to the unit-normalized DN value
of each image pixel.

https://aeronet.gsfc.nasa.gov
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Table 1. ISS photo metadata.

Name ISS ID Date:Time Tilt Alt:km F:mm

Antwerp iss035e017345 7 April 2013
00:12:44 07◦ E 396 400

Bangkok iss046e000169 12 December 2015
17:05:11 45◦ W 404 400

Beijing iss026e009640 11 December 2010
16:29:23 99◦ SW 343 180

Berlin iss035e017202 6 April 2013
22:37:22 28◦ NE 398 400

Calgary iss045e155033 28 November 2015
07:07:47 –/– 394 400

Chicago iss047e043884 5 April 2016
06:17:11 –/– 398 400

Ho Chi Minh iss046e000196 12 December 2015
17:06:12 –/– 404 400

Istanbul iss032e017547 9 August 2012
23:38:20 45◦ SW 396 400

Kuwait iss032e017635 9 August 2012
23:43:31 41◦ SW 398 400

Las Vegas iss062e061134 27 February 2020
11:06:14 26◦ NW 415 400

London iss061e052957 20 November 2019
20:41:38 53◦ NE 413 400

Los Angeles iss026e006228 30 November 2010
12:04:22 45◦ SW 350 180

Naples iss032e014256 5 August 2020
20:40:36 42◦ SW 396 400

New York iss026e008537 8 December 2
06:08:04 99◦ W 346 400

Mecca iss034e51161 17 February 2013
20:52:14 32◦ W 413 400

Paris iss043e093480 8 April 2015
23:18:37 17◦ NE 394 400

Phoenix iss035e005438 16 March 2013
11:56:50 14◦ SE 396 400

Singapore iss041e004915 13 September 2014
18:48:49 36◦ W 417 800
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Figure 4. Atmospheric transmittance correction estimation. Nikon D3S spectral responses (bottom) 
are convolved with MODTRAN-derived atmospheric transmittance (top) for different visibilities 
and atmosphere models to produce response-weighted channel-specific estimates (circles) for trans-
mittance loss corrections (CBGR). 
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Originally developed for the spectroscopic analysis of lunar and Martian substrates, 

the linear spectral mixture model assumes that spectrally distinct materials within the 
sensor Instantaneous Field of View (IFOV) contribute to an aggregate mixed reflectance 
(or radiance) spectrum in proportion to their relative areal fraction of the IFOV [15–18]. 
Given N spectrally distinct endmember spectra and a D (>N) channel multispectral image, 
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Figure 4. Atmospheric transmittance correction estimation. Nikon D3S spectral responses (bottom)
are convolved with MODTRAN-derived atmospheric transmittance (top) for different visibilities and
atmosphere models to produce response-weighted channel-specific estimates (circles) for transmit-
tance loss corrections (CBGR).

3. Methods

Originally developed for the spectroscopic analysis of lunar and Martian substrates,
the linear spectral mixture model assumes that spectrally distinct materials within the
sensor Instantaneous Field of View (IFOV) contribute to an aggregate mixed reflectance
(or radiance) spectrum in proportion to their relative areal fraction of the IFOV [15–18].
Given N spectrally distinct endmember spectra and a D (>N) channel multispectral image,
a linear spectral mixture model can be given as a system of D channel-specific linear
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mixing equations, each containing N terms to represent the areal fraction of each spectral
endmember in the observed spectrum. In matrix notation: CF = O, where C is the NxD
matrix of endmember reflectances, F is the vector of endmember fractions to be estimated
and O is the observed spectrally mixed pixel vector. If D > N, the system is overdetermined,
allowing for the possibility of a unique, or at least optimal, solution. Inversion of the
linear model yields an estimate of the fraction of each endmember possibly present in the
observed mixed spectrum.

The spectral endmembers on which the linear mixture model is based may be chosen a
priori from field or laboratory spectra, or from a spectral mixture analysis of all the observed
spectra to be modeled [19,20]. While there exist a multitude of ways to select spectral
endmembers, all require either assumptions about how many and which endmembers may
be present, or a characterization of the observed spectra to identify endmembers relative
to all the spectra available. In the latter case, some form of dimensionality reduction is
generally applied to the D dimensional feature space of observed spectra. If the topology
of the lower dimensional projection of the spectral feature space suggests linear mixing,
a convex hull can be circumscribed bounding all or most of the observed spectra in the
projection. In the projection, the endmembers reside at the apexes of the space, with binary
mixtures occurring along the line segments between each adjacent pair of endmembers and
N endmember mixtures occurring within the bounding hull [21–23].

With multispectral land surface reflectance, large spectrally diverse collections of spec-
tra can provide an approximation of the full global feature space [24]. The identification of
spectral endmembers bounding the composite feature space provides a basis for a general
mixture model for land cover reflectance. Sensor-specific standardized endmembers identi-
fied from such compilations indicate that feature spaces for Landsat [25,26], MODIS [27]
and Sentinel 2 [28] all have similar mixing space topology bounded by common spectral
endmembers representing rock and soil substrates, green vegetation and water (for ice-free
landscapes). This allows for the identification of sensor-specific standardized spectral
endmembers upon which standardized spectral mixture models may be based. Inversion
of the linear spectral mixture model using standardized spectral endmembers is effectively
a change of basis from reflectance to land cover fraction. This change of basis from higher
dimensional reflectance to lower dimensional land cover fraction renders continuous vari-
ations in the landscape that are interpretable in the context of the most distinct physical
properties impacting its form and function.

Because anthropogenic light sources (e.g., bulbs, tubes and LEDs) have scales on
the order of centimeters, and the IFOV of the camera pixels have scales on the order of
decameters (at ISS altitudes), we can treat the radiance incident on the camera sensor as a
spectral mixture of multiple light sources coming from a combination of direct and reflected
light within the pixel IFOV. While some pixels may be dominated by a single light source,
the most general case can include multiple light sources with both direct illumination and
upward reflected light. Thus, the strategy is to characterize the spectral distribution of
night light color imaged from a variety of urban lightscapes to derive standardized spectral
endmembers for visible night light. Following the approach described by [24], a spectrally
diverse mosaic of 18 urban lightscapes is constructed from MODTRAN-calibrated photos.
For comparison, mosaics are constructed for two different white balance calibrations. A
2200 K calibration corresponds to the color temperature of high-pressure Sodium lamps
widely used for urban street lighting, while a 5500 K calibration corresponds to the color
temperature of sunlight. Both mosaics are shown for comparison in Figure 5. The daylight-
relative 5500 K calibration illustrates the preponderance of warm spectrum lighting used
in large areas of all 18 lightscapes, while the warm spectrum calibration of 2200 K shows
greater contrast within and among lightscapes. All subsequent analyses are performed on
the 5500 K calibrated mosaic for consistency with the more broad-spectrum daylight source.
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Figure 5. Color temperature-calibrated mosaics of 18 cities. The 2200 K mosaic corresponds to the
color temperature of a high-pressure Sodium lamp while the 5500 K mosaic corresponds to natural
daylight, showing the preponderance of warm spectrum light sources.
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The spectral feature space of the lightscape mosaic allows for identification of the num-
ber and identity of spectral endmembers, the linearity of spectral mixing, and the trivariate
distribution of the entire set of illuminated pixels. A principal component transform is
applied to identify the apexes corresponding to spectral endmembers and to characterize
the linearity of spectral mixing. Figure 6 clearly shows four apexes bounded by binary
linear mixing lines. Since the principal component transform maximizes variance, the first
PC is analogous to the overall luminance, while the second and third PCs reveal a planar
triangular mixing space bounded by the three brightest spectral endmembers representing
white, yellow and red sources (lower right). Note that very few pixels are fully red, with
the majority clustering in the interior of the red apex and having a spectrum closer to
orange than red. The 3D spectral feature space can be considered a tetrahedral pyramid,
with the brightest white, yellow and red sources forming a triangular base with a gray axis
extending to the dark apex.
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Figure 6. Three-dimensional spectral feature space and spectral fraction space for the 18-city com-
posite (5500 K). Density-shaded orthogonal projections of the principal component distributions
(left) show luminance corresponding to PC 1 with white, yellow and red endmembers bounding a
triangular plane of maximum luminance perpendicular to the gray axis extending to the dark (K)
endmember. Since very few pixels are pure red, the distribution trends toward orange mixtures
near the red endmember. Projections of the WYRK fraction space (right) are largely bounded by
linear mixtures with a small number of blue pixels with slightly negative yellow or red fractions. The
WYRK endmembers represent an optimized, more nearly orthogonal basis for the urban lightscape,
as imaged by multispectral RGB sensors.

The white, yellow, red and dark endmembers span the feature space and therefore form
the basis of the WYRK linear mixture model. However, the number of RGB color channels
(3) is less than the number of endmembers (4), rendering the problem underdetermined.
This can be resolved by adding a unit sum constraint equation (F1 + F2 + F3 + F4 = 1) to the
system. In this analysis the linear mixture model is inverted using the familiar least squares
solution: (CTC)−1CT [29] to invert the four-endmember linear mixture model for each RGB
vector in the lightscape mosaic. The resulting distribution of fraction estimates is generally
well-bounded [0, 1] for each endmember, with a small number (912/5,000,000~0.018%) of
blue light sources having slightly negative values for the yellow endmember fraction. The
distribution of dark fraction estimates has 95% of pixel spectra with dark fractions > 0.78.
As expected for such a strongly linear mixing space, the RMS misfit to the four-endmember
linear model is less than 10−7 DN for all pixel spectra.
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4. Results

As the dark endmember fraction simply modulates brightness as the complement to
the white, yellow and red endmember fractions, the essential information content of the
WYRK model can be conveyed with an RGB composite of the WYR fractions. When [R,
G, B] = [R, Y, W], the resulting composite maintains a comparable color composition to
the 2200 K calibrated RGB mosaic. Compare Figure 7 (top) to Figure 5 (top). The WYR
composite shows a somewhat more uniform brightness distribution as the transformation
to endmember fraction offsets the greater brightness of whiter light sources in most of the
lightscapes. This is most apparent in the greater spectral diversity of the London and Las
Vegas lightscapes in the WYR composite compared to the 5500 K RGB composite. Another
benefit of the WYR model is that pixels saturated in a specific endmember appear either
red, green, blue, cyan magenta or yellow to indicate which endmembers are saturated.

One consequence of the equalizing effect of the endmember fraction basis is to skew
the distribution of fractions heavily on the white fraction axis corresponding to overall
brightness. This is apparent in the slightly darker cast of the WYR composite in Figure 7
compared to the 5500 K RGB composite in Figure 5. The extent of the dimmer, more
diffuse light sources can be emphasized by displaying Log10 of WYR fractions, as shown in
Figure 7. The primary spectral effect of this brightening is to emphasize the large areas of
diffuse warm spectrum light.

Bivariate fraction distributions from orthogonal projections of the WYRK feature space
are shown for eight contrasting urban lightscapes in Figure 8. While each individual
lightscape feature space has topology consistent with the composite space, some differences
are apparent, primarily in the relative abundance of saturated pixels on the binary mixing
line spanning the white and yellow endmembers. This is most apparent for London, Berlin
and Las Vegas. There is also some orange saturation near the red endmember on the binary
mixing line spanning red and yellow. This is most apparent for Mecca and Los Angeles. In
addition, there are a few examples of cool spectrum light sources with negative fractions
of the yellow endmember. This is most apparent in London, Berlin and Las Vegas. The
considerable variation in the skewness of the fraction spaces, most apparent in the white–
yellow projection, is a result of differences in actual brightness distributions, atmospheric
opacity and image exposure.
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Figure 7. Spectral endmember fraction mosaics of 18 cities. The 5500 K mosaic is unmixed with a
4-endmember linear mixture model with white, yellow, red and dark endmembers. As the dark
endmember fraction modulates luminance, an RGB composite of the R, Y and W fractions (top)
resembles the 5500 K RGB composite in Figure 5. The RGB composite of Log10 (R, Y, W) (bottom)
partially offsets this dark fraction modulation to enhance the lower luminance mixed spectra. Both
mosaics displayed with a 1% linear stretch applied.
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Figure 8. WYR fraction spaces for 8 contrasting lightscapes. The white–yellow projections show
varying degrees of saturation on the binary mixing line related to varying exposures of different pho-
tographs. Regardless of exposure, all distributions are strongly skewed toward dimmer lights (near
the origin), with distinct continua extending to a warm spectrum orange near the red endmember on
the yellow–red projection.

5. Discussion

Implicit in this analysis is the assumption that the varying exposures of the individual
photos will partially compensate for differences in atmospheric path length and aerosol
optical depth among photos, making a comparison of the relative RGB differences mean-
ingful. The intercalibration and transmittance correction to the relative RGB values used
here is far simpler than the absolute calibration procedure proposed by [30]. However,
absolute radiances are not required for the spectral mixture analysis described here. The
comparison of modeled MODTRAN transmittances clearly indicates that the primary effect
of both path length and AOD is to shift the bias of the transmittance without significantly
affecting the slope, suggesting that the wavelength-dependent Rayleigh scattering is the
primary influence on relative RGB values. If this is indeed the case, then intercalibration to
a common color temperature and compensation for relative transmission losses among R,
G and B channels should allow for intercomparison of the RGB spectral feature spaces. The
consistency of the overall topology of the most spectrally distinct feature spaces shown in
Figure 8 suggests that this is the case. This consistency suggests that the relative transmis-
sion compensation proposed here could be complementary to the more rigorous calibration
proposed by [30] for studies not requiring absolute calibration.
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This intercomparison of 18 urban lightscapes highlights both the consistencies and
variations in their spectral feature spaces. As emphasized by the comparison in Figure 1, a
retroactive analysis of archival photographs cannot compensate for unavoidable variations
in view geometry and time of acquisition. Some in situ studies of urban lightscapes have
investigated the effects of view geometry [31–33] and time of observation [34] and found
both to be significant. Future satellite missions could potentially minimize these variations,
but with astronaut photos they can only be acknowledged and factored into interpretation.

The unavoidable aliasing of narrowband lamp spectra by broadband RGB sensors will
render many different light sources indistinguishable in photos. The comparison of G/R
and B/G ratios given by [14] for 50 common street lamp spectra forms a continuum ranging
from warm spectrum low pressure Sodium and LED to nearly flat spectrum ceramic metal
halide, fluorescent and LED. Only green fluorescent and LED deviate from this continuum.
Even in a luminously diverse environment such as the Las Vegas Strip, a spectral mixture
analysis of 360 channel SpecTIR hyperspectral night light imagery by [35] found the spectral
feature space of the brightest lights to be effectively four-dimensional, spanned by high
pressure Sodium, incandescent, and two distinct metal halide spectra. In addition, [13,36]
also identified red and blue neon spectra from the same hyperspectral data. In contrast,
the photograph of Las Vegas used in this analysis shows two distinct continua extending
from the dark endmember to a warm spectrum orange source (presumably low-pressure
Sodium) and a saturated nearly white source that may conflate a variety of bright sources
that were overexposed in the ISS photograph.

Despite the saturation resulting from varying exposures of different photos, the feature
spaces of the eight individual lightscape examples in Figure 8 are self-consistent relative to
the feature space of the full mosaic of 18 lightscapes. Despite varying degrees of exposure
evident in the white–yellow projection of the space, all have similar continua extending to
an orange source near the red endmember in the yellow–red projection. This very likely
reflects the widespread use of high- and low-pressure Sodium lamps for street lighting. This
is apparent in the Log10 transformed mosaic, where these warm spectrum sources are seen
to be widespread throughout all 18 cities—including those with significant areas of cooler
spectrum lighting (e.g., Calgary, Kuwait, Las Vegas and London). While cooler spectrum
LED streetlights are replacing warm spectrum Sodium lamps in many urban areas, there
is apparently some controversy related to both the color cast of warm spectrum Sodium
lamps (e.g., [37]), as well as the brightness of LED lamps [38] in some cities. Despite the
aforementioned aliasing of lamp spectra by broadband RGB sensors, the photos used in this
analysis clearly distinguish warm and cool spectrum mixing trends within the individual
lightscape feature spaces.

A full resolution comparison of the WYR and Log10WYR composites for Paris illus-
trates several general features apparent in the 18 lightscapes analyzed here, and many of
the other 122 with sufficient resolution and sharpness to resolve decameter-scale features.
As can be seen in Figure 9, the brightest lights tend to be point sources, and sometimes large
thoroughfares such as the Avenue de Champs-Élysées and the Boulevard Périphérique.
These point sources are often high luminance white, or saturated on the yellow–white
mixing line. However, the Paris image shows a variety of colors for isolated point sources.
In contrast, the lower luminance pixels that form the bulk of the distribution are warm
spectrum street lighting on the dark–orange continuum. As most street lights are designed
to project light downward, the lower luminance warm spectrum distribution is expected
to be primarily upward scattering from street light reflected from ground surfaces and
building sides, while the brighter point sources may include upward directed lighting on
building facades that would be more apparent in oblique orientation photos. Comparisons
with calibrated VIIRS Day Night Band imagery indicates that this reflected background
luminance is 1 to 2 orders of magnitude dimmer than the brightest point sources that are
able to dominate even a hectometer-scale IFOV, such as VIIRS DNB (~700 m) [39].
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Figure 9. WYR and Log10WYR fraction composites for Paris illustrate the diversity of high luminance
colored point sources superimposed on the pervasive low luminance warm spectrum street lighting.

In summary, the NASA archive of astronaut photos of urban lightscapes currently
contains more than 100 decameter resolution RGB images of sufficient quality to allow for a
spectral mixture analysis of the areal distribution of different color light sources from almost
100 cities around the world. While intercomparisons of absolute radiance are complicated
by variations in view geometry, atmospheric path length, exposure and aerosol optical
depth, a relatively simple standardization of color temperature and correction for the
relative transmissivity of red, green and blue image channels can allow for a comparative
spectral mixture analysis of the relative luminance distributions and spectral feature spaces
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of these urban lightscapes and, possibly, for multitemporal change analyses on longer
time scales.
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