
Citation: Hadi, M.U.; Suhaimi,

N.H.N.; Basit, A. Efficient Supervised

Machine Learning Network for

Non-Intrusive Load Monitoring.

Technologies 2022, 10, 85. https://

doi.org/10.3390/technologies10040085

Academic Editors: Manoj Gupta,

Eugene Wong and Gwanggil Jeon

Received: 19 April 2022

Accepted: 14 July 2022

Published: 16 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Efficient Supervised Machine Learning Network for
Non-Intrusive Load Monitoring
Muhammad Usman Hadi 1,* , Nik Hazmi Nik Suhaimi 1 and Abdul Basit 2

1 School of Engineering, Ulster University, Newtownabbey BT37 0QB, UK; nik_suhaimi-nh@ulster.ac.uk
2 Department of Computer Engineering, Khawaja Farid University of Engineering and Information

Technologies (KFUEIT), Rahim Yar Khan 64200, Pakistan; abdulbasit@kfueit.edu.pk
* Correspondence: usmanhadi@ieee.org

Abstract: From a single meter that measures the entire home’s electrical demand, energy disaggre-
gation calculates appliance-by-appliance electricity consumption. Non-intrusive load monitoring
(NILM), also known as energy disaggregation, tries to decompose aggregated energy consumption
data and estimate each appliance’s contribution. Recently, methodologies based on Artificial Intelli-
gence (AI) have been proposed commonly used in these models, which can be expensive to run on a
server or prohibitive when the target device has limited capabilities. AI-based models are typically
computationally expensive and require a lot of storage. It is not easy to reduce the computing cost
and size of a neural network without sacrificing performance. This study proposed an efficient
non-parametric supervised machine learning network (ENSML) architecture with a smaller size, and
a quick inference time without sacrificing performance. The proposed architecture can maximise
energy disaggregation performance and predict new observations based on past ones. The results
showed that employing the ENSML model considerably increased the accuracy of energy prediction
in 99 percent of cases.

Keywords: NILM; energy disaggregation; ENSML model

1. Introduction

Artificial Intelligence (AI) has grown fast in recent decades, and it is no longer confined
to science fiction literature and films. By 2030, AI is quite likely to exceed humans in the
majority of cognitive skills. According to the World Economic Forum’s latest study on the
future of jobs, AI will create 58 million new jobs by 2022. Home automation is now used
largely to provide a quick and efficient manner of integrating and connecting household
equipment. AI may be used in a variety of ways, such as monitoring our daily utilisation
of current or voltage in each device in a building. As an example, in a recent article,
AI-generated simulations were demonstrated using MATLAB/SIMULINK.

AI is the greatest option for handling big data flows and storage in Internet of Things
(IoT) networks [1]. Energy Efficiencies (EE) can provide a slew of benefits to energy
customers and providers as a result of IoT demand. In 2011, homes utilised 21.54 percent
of total energy consumption in the United States [2]. This solution is meant to minimise
energy usage by utilising powerful optimisation algorithms to establish a better resource
management system and flatten consumption peaks for each home.

Energy management systems to regulate peak energy demand [3] are examples of new
technologies that have been developed to enhance EE. With a population of 67.22 million
(2020), increasing the overall efficiency of the electricity grid by boosting EE in residential
areas may be crucial [3]. Furthermore, giving precise information on the energy use of
consumer appliances will enhance the EE. When considering the disaggregation of load
consumption and the increased energy awareness of particular equipment, users can change
their consumption behaviour, replace equipment, or install energy management systems to
save energy or money [3,4].
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The development of new buildings in cities throughout the world has transformed
dwelling arrangements and boosted the demand for end-use appliances with energy
conservation and control [5]. Furthermore, the move was accompanied by Smart Meter
(SM), which enabled the computation of individual appliance power usage based on
the building’s aggregate measurements. The placement of current and voltage sensors
at the SM is used to monitor energy usage and identify loads in a load disaggregation
system [6]. This framework is far more proficient than the old intensive monitoring systems
because it can reduce installation costs. By analysing the energy usage of each major
appliance, inefficiencies in energy consumption of large appliances may be identified and
eliminated [7]. These apps will provide useful information on the appliances that are being
utilised. Figure 1 shows a categorical hierarchy of load disaggregation classes.
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Load disaggregation is divided into two categories: hardware techniques and software
approaches. Hardware-based techniques are simple to create, but they are limited by a
number of factors, including implementation cost, reliability, and scalability. As a result,
because it uses non-intrusive load monitoring, the software-based solution is preferred.
Using a single primary metering point to aggregate load usage and dissect it into individ-
ual appliance use has grown common in recent years [8]. The benefits of adopting SM
include (i) accurate billing; (ii) detecting defective appliances; and (iii) receiving detailed
information on current appliance consumption.

Housing arrangements across the world have changed as a result of increased urbani-
sation, necessitating the development of high-rise buildings. Changes in dwelling patterns
have also resulted in a system for breaking down the building’s aggregate energy use at
the appliance level. It is now feasible to estimate an appliance’s energy use based on a
building’s overall energy data using smart meters [5].

Hart established a system in the 1950s that disaggregated electrical measurements
such that the power consumption of each device could be discovered sequentially by
reviewing load data gathered over time [9]. The suggested approach was deemed non-
intrusive because no equipment had to be put on the customer’s premises. The aggregated
energy usage statistics may be gathered from the building or residence’s main electrical
panel. The separation of the total home construction data into its key energy components
is a broad objective of this approach. Appliance monitoring may be conducted in two
ways: intrusive appliance monitoring (ILM) or non-intrusive appliance monitoring (NIAM).
NIAM, also known as Non-Intrusive Load Monitoring (NILM), is a technique for calculating
energy disaggregation that may calculate device-specific energy disaggregation based on
aggregate measurements gathered at a single site [5]. ILM necessitates the installation of
hardware on each appliance, such as sensors and processors, in order to monitor each
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item independently. Meanwhile, NILM works on software algorithms that examine the
resident’s interior appliance functioning state using power data from the service panel.

Non-intrusive load monitoring is a technique for identifying and estimating the energy
usage of each electrical item in a facility. It allows a homeowner to break down their home’s
energy use into specific appliances, allowing them to be recognised and conserved [10].
The operation of NILM is depicted in Figure 2.
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Measurement kinds, sample rates, and sensing types are all key aspects to consider
while designing NILM algorithm steps. The power on the line(s) of interest is measured
first by NILM algorithms. While it is critical to keep an eye on the load on a home’s main
bus, it is also crucial to determine whether an incident has happened. Finding an event
is difficult since a home’s main bus is made up of several sorts of equipment. The NILM
algorithm gathers data from several power signal monitoring systems to evaluate whether
an incident has happened. When the proper characteristics are retrieved and matched to
the labelled data, the classification process will be able to accurately identify appliances
that have generated events.

Because SM is so commonly utilised, the NILM algorithm will be more beneficial to
the customer. NILM is a device that analyses variations in the voltage and current entering
a home. This approach may be used to detect appliances that are not performing well.
The purpose of NILM is to minimise energy use by increasing user awareness. When one
sensor is installed in an SM, it reads all of the appliances’ energy use and sends it to the
cloud. This installation differs from Intrusive Load Monitoring (ILM), in which each device
requires its own sensor. The difference in installation between ILM and NILM is seen in
Figure 3.

Technologies 2022, 10, 85 3 of 18 
 

 

for calculating energy disaggregation that may calculate device-specific energy 
disaggregation based on aggregate measurements gathered at a single site [5]. ILM 
necessitates the installation of hardware on each appliance, such as sensors and 
processors, in order to monitor each item independently. Meanwhile, NILM works on 
software algorithms that examine the resident’s interior appliance functioning state using 
power data from the service panel. 

Non-intrusive load monitoring is a technique for identifying and estimating the 
energy usage of each electrical item in a facility. It allows a homeowner to break down 
their home’s energy use into specific appliances, allowing them to be recognised and 
conserved [10]. The operation of NILM is depicted in Figure 2. 

 
Figure 2. How NILM works. 

Measurement kinds, sample rates, and sensing types are all key aspects to consider 
while designing NILM algorithm steps. The power on the line(s) of interest is measured 
first by NILM algorithms. While it is critical to keep an eye on the load on a home’s main 
bus, it is also crucial to determine whether an incident has happened. Finding an event is 
difficult since a home’s main bus is made up of several sorts of equipment. The NILM 
algorithm gathers data from several power signal monitoring systems to evaluate whether 
an incident has happened. When the proper characteristics are retrieved and matched to 
the labelled data, the classification process will be able to accurately identify appliances 
that have generated events. 

Because SM is so commonly utilised, the NILM algorithm will be more beneficial to 
the customer. NILM is a device that analyses variations in the voltage and current entering 
a home. This approach may be used to detect appliances that are not performing well. The 
purpose of NILM is to minimise energy use by increasing user awareness. When one 
sensor is installed in an SM, it reads all of the appliances’ energy use and sends it to the 
cloud. This installation differs from Intrusive Load Monitoring (ILM), in which each 
device requires its own sensor. The difference in installation between ILM and NILM is 
seen in Figure 3. 

 
Figure 3. Installation of sensor(s) between ILM and NILM.



Technologies 2022, 10, 85 4 of 18

This article primarily focused on the appliance event detection and appliance usage
prediction. The following list summarises the most important contributions:

1. An efficient non-parametric supervised machine learning network (ENSML) was
proposed with fast inference speed and low storage requirements. The proposed
method was used to create a realistic and adaptable NILM formulation model, with
the parameter values following a supervised learning strategy.

2. The proposed ENSML has a lowered learning parameter; therefore, it takes up less
space while performing as well as other state-of-the-art NILM systems.

3. The suggested ENSML methodology with the NILM system could recognise newly
installed appliances, filling a critical research need.

4. A public dataset was used to validate the provided model and approach. All of
the hypothesised potentials have been shown to be genuine, in addition to the high
precision of load disaggregation.

The remainder of the paper is divided into the following sections. Section 2 presents the
literature review while Section 3 highlights the visualisation of dataset and its preparation.
Section 4 presents the ENSML model methodology while Section 5 presents the simulation
method followed by results in Section 6. Finally, article is concluded in Section 7.

2. Literature Review

Table 1 in this section contains all of the data from prior NILM research. This will
help us to have a better understanding of the algorithm. Machine learning (ML) is a
forward-thinking method for predicting customer behaviour based on appliance usage.

Table 1. Visualisation of the Reference Energy Disaggregation Data (REDD) dataset.

No House Number Channels Appliances

1 House 1 20 4 kitchen outlets, 3 lightings, 3 washer dryer, 2 mains, 2 ovens, 1 refrigerator,
1 dishwasher, 1 microwave, 1 electric heat, 1 stove, 1-bathroom.

2 House 2 11 2 mains, 2 kitchen outlets, 1 lighting, 1 stove, 1 microwave, 1 washer dryer,
1 refrigerator, 1 dishwasher, 1 disposal.

3 House 3 22
5 lightings, 3 unknown outlets, 2 mains, 2 washer dryer, 2 kitchen outlets, 1 electronic,

1 refrigerator, 1 dishwasher, 1 disposal, 1 microwave, 1 furnace, 1 smoke alarm,
1-bathroom.

4 House 4 20 4 lightings, 3 air-conditioner, 2 mains, 2-bathroom, 2 kitchen outlets, 1 unknown outlet,
1 washer dryer, 1 stove, 1 smoke alarm, 1 dishwasher, 1 miscellaneous, 1 furnace.

5 House 5 26
5 lightings, 4 unknown outlets, 2 mains, 2 washer dryers, 2 subpanel, 2 electric heat,

2 kitchen outlets, 1 microwave, 1 furnace, 1-bathroom, 1 dishwasher, 1 disposal,
1 electronics, 1 refrigerator.

6 House 6 17
3 air-conditioner, 2 mains, 2 kitchen outlets, 2 unknown outlets, 1 washer dryer,
1 stove, 1 electronics, 1 electrical heat, 1-bathroom, 1 refrigerator, 1 dishwasher,

1 lighting.

Deep learning in non-intrusive appliance monitoring learning techniques is now
classified into three categories: supervised, unsupervised, and semi-supervised learning.
Supervised algorithms can either learn from training data or build a model and then guess a
new instance based on it. It offers the advantages of being simple to use, quick to calculate,
compact to store, and yielding accurate analytical findings. There are, however, some
issues. The performance of logistic regression is bad when the geographical features are
considerable, for example. There are certain drawbacks, such as under- or over-fitting, and
a lack of self-learning capacity.

The unsupervised algorithm is a data-processing approach that classifies samples
without using category information by analysing data from multiple samples of the study
item. It has a great ability to self-learn, and fresh data may be immediately added to the
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data set without retraining, but it also has the drawback of low analytical result accuracy.
Semi-supervised learning is the most promising learning algorithm branch because it
employs a huge quantity of unlabelled data while also using labelled data for pattern
recognition. However, there is a scarcity of research on semi-supervised regression issues.

To identify variations in the electrical consumption signal owing to appliance on/off
events, early NILM approaches analysed the electricity mains measurement and applied
statistical techniques. The active and reactive power signatures were then matched to the
right appliance using a best likelihood method, and similar “steady-state” elements of
the power signal were grouped together. Certain two-state (on/off) appliances have been
identified with good accuracy using such clustering approaches [10,11]. These methods, on
the other hand, have major trouble detecting more complicated appliances with numerous
states (e.g., washing machines) and have a tendency to fail in situations when multiple
appliances are operating and switching at the same time [12]. Clustering approaches have
also been used to uncover household features and trends in electricity use data [13,14].

Graph signal processing is another contemporary technique to NILM in the literature.
Refs. [15,16] present a low-complexity unsupervised NILM technique based on entropy
index limitations competitive agglomeration, a fuzzy clustering algorithm. This approach
yielded encouraging results for NILM implementation in practice.

Ref. [17] described a spectrum-smoothing-based load disaggregation strategy for
dealing well with many appliances turning on and off at the same time. There have also
been proposals for NILM algorithms based on integer programming [18] and mixed-integer
linear programming [19].

Since it may provide a considerably less intrusive and lower-cost solution than sub-
metering, NILM has been included in a substantial number of mass-market home energy
management products and services. Sense [20] employs NILM to discover trends in
home energy usage in order to provide users advice on how to make their homes more
energy efficient. Smappee [21] focuses on how to use NILM to provide precise feedback
and advice on reducing energy and carbon footprints. A NILM device for commercial
buildings has been developed by SmartB [22]. A variety of mass-market NILM gadgets
are used to identify possible safety hazards when home appliances, such as the oven or
iron, are left switched on and/or unattended [23]. Several commercial vendors claim to
incorporate machine learning or artificial intelligence in their algorithms in their goods and
services [24,25]. Bidgely et al. [24] has a number of patents in the field of machine learning-
based NILM methods. Verv et al. [25] is a home energy management solution that uses
high-resolution mains electricity measurements and artificial intelligence methodologies to
perform NILM, with the output from the NILM classifier being used to offer advice and
suggestions to consumers.

The use of deep learning techniques from other domains, such as image processing, to
solve the NILM problem was presented in ref. [12], where preliminary findings revealed
that deep learning approaches outperformed other approaches in the literature on unseen
residential smart meter data sets. In several fields, such as image classification, automated
speech recognition, and machine language translation, deep learning is currently the
standard technique [26–31]. Deep learning approaches are expected to increase NILM
performance, as one of the main challenges in NILM is selecting the most discriminative
features to extract from a given household data set. Deep learning approaches can learn
which characteristics to extract from a data set automatically and generalise to new and
unknown data sets. This enables the creation of an unsupervised solution to the NILM
issue, with the least amount of user involvement necessary to set up and train the system.
Table 2 highlights the most important previous studies in the area.

Early NILM methods relied on statistical approaches to detect variations in the energy
usage caused by both on/off appliances and electrical main readings. Based on identical
steady-state components of the data, an algorithm matches the real and reactive power
signatures of the data with the suitable appliance. The use of such ensemble methods for
identifying certain two-state appliances has been found to be extremely accurate [32,33].
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However, the technique has significant problems detecting devices with more intricate
state-dependent behavior and in scenarios when many appliances are operating at the
same time [34].

Table 2. Previous studies on NILM.

No Author Method Advantage Disadvantage

1 Kelly, Jack, Knottenbelt,
Willian [27] LSTM Work best for two

state appliances

Does not perform well when it
comes to multi-state appliances
such as washing machine and

dish washer

2 Somchai, Boonyang [28] ANN
With incomplete

information, the data may
still produce output.

Provides a probing solution, but
it does not specify the why

or how.

3 Barsim, Karim Said; Bin
Yang [29] SSL

It estimates the structure of
the unlabelled data from its

own predictions rather
than relying on additional
clustering components for

this purpose.

Error propagation occurs when
misclassified observations are

chosen for an iteration, causing
the prediction function to be

increasingly skewed in
subsequent iterations

4
Faustine, Anthony; Pereira,
Lucas; Bousbiat, Hafsa and

Kulkarni, Shridhar [30]
DNN

To be able to estimate the
prediction’s uncertainty by
combining appliance states

and power
consumption values.

Single target regression, which
ignores any correlations between
targets, yielding a single model

for each.

5

Jiang, Jie; Kong, Qiuqiang;
Plumbley, Mark D; Gilbert,
Nigel; Hoogendoorn, Mark

and Roijers, Diederik
M [31]

WaveNet

A reduction in filter sizes is
achieved by reducing the

size of the convolution
filters as compared to
conventional CNN(s).

Must minimise the loss with an
optimizer with a learning rate

of 0.001

Graph signal processing, which was described in ref. [35], is another new technique
to NILM. The NILM method [36] presents a flexible and low-complexity entropy index
constraint competitive agglomeration technique. The findings of this technique seemed
promising for NILM application in the real world. A Cepstrum-based strategy for disaggre-
gation load is described in ref. [37] to manage simultaneous on or off of several appliances.
NILM has also been proposed using mixed-integer linear programming [38] and integer
programming algorithms [39].

Hidden Markov Models (HMMs) are used to solve energy disaggregation problems [40,41].
Markovian models have hidden and visible states, with the hidden state being the appliance
state. However, such approaches may be suitable for applications involving relatively
continuous durations of time between states, such as speech recognition. As a result,
energy disaggregation is impeded by the notion that run times might differ dramatically
from one run to the next (and hence state durations). In addition, the HMM should include
any appliances in the house that are either undesired or practical.

The implementation of machine learning by NILM to forecast what the SM will do
based on data acquired from it is discussed in this section. Figure 4 depicts the entire
operation of the system. The primary power distribution board has an acquisition circuit
that gathers continuous data on current and voltage at the board (number one). The
obtained data demonstrates a change in power at stage (2), when the appliance is turned on.
The current and voltage behavior at the main distribution board can be used to determine
this shift.

Aggregate data is collected whenever an appliance electrical signature is selected.
Electrical signatures are the most important component of a NILM system at stage 3.
Because the first form of signature requires a high sampling frequency, most home NILM
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systems use the steady-state type. The initial step in determining steady states is to
recognise stable value sequences in the signal. This paper describes an approach for
detecting Steady-State signatures using rectangular regions formed by successive data.
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This approach enables the identification of a complete steady state from start to finish.
The smart energy monitor can identify all monitored equipment using data from the NILM.
A time-stamped active aggregate load is provided into the disaggregation process as well as
the efficient non-parametric supervised machine learning network model for the household.
During the disaggregation time, this method generates a comprehensive report for each
appliance or event. This project can anticipate additional houses using only the same data
set as the NILM data.

Stage (4) is where all of the data are kept. This is where the appliances from the energy
disaggregation are labelled. This will also provide historical data logging, allowing the
user to review the appliance’s history when it is turned on or off. When the user is gone at
stage (5), this is critical. This is where the appliance utilisation is monitored and managed.
While the user is away from home, the user may keep an eye on what is going on at home.
This is where the Internet of Things comes into play in the last stage (6). This is where all of
the IoT-enabled appliances are installed. The gadgets can be used even while the user is
not at home.

3. Visualisation of Dataset

REDD is acronym that stands for Reference Energy Disaggregation Data, created and
managed by Massachusetts Institute of Technology (MIT). This aggregated data collec-
tion [5] contains extensive information on energy usage from a number of homes. REDD
was used to monitor around 40 residences in Massachusetts and California. Monitoring
devices were put in 30 residences around the state in 18 months. Each circuit breaker in
each residence was obtained for two to four weeks. Having access to historical data helps
to examine how the energy in a home has changed over time. Devices may be identified
using the whole-home signal, which is made up of machine-readable waveforms, while
devices with specialised data can offer information on behavior inside the house. These
data were collected in six family households in the United States during a short period of
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time. This dataset is commonly used to assess NILM algorithms [5]. The process of creating
REDD dataset for the project is shown in Figure 5.
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4. Efficient Non-Parametric Supervised Machine Learning (ENSML) Network as a
Predictive Agent

One of the most widely used branches of networks comes from supervised learning.
This paper proposed an efficient non-parametric supervised machine learning network
(ENSML) having decision tree algorithm as the basic block that can be used to tackle both
regression and classification problems. ENSML predictive models are created by combining
a set of binary rules to calculate an objective value. Figure 6 shows the diagram of ENSML
network while Table 3 summarises the explanation.
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Table 3. The explanation of terminology used in ENSML model.

No Terminology Explanation

1 Root Node This is a sample of an entire population that is divided into two or more
homogeneous groups.

2 Splitting A process in which a node is divided into two or more sub-nodes

3 Decision Node In a decision network, each subnode splits into further subnodes

4 Leaf/Terminal Node Nodes that do not split are known as Leaf or Terminal nodes.

5 Prunning Pruning is opposite to splitting. It is removing sub-nodes of a decision node

6 Branch/Sub-Tree An individual branch or sub-tree is a part of an entire tree.

7 Parent and Child Node Usually, the parent node of subnodes is referred to as the parent node, whereas
subnodes are its children.

The hierarchical classifier has three types of nodes. The Root Node is the graph’s
initial node, and it symbolises the whole sample. It can be subdivided further into nodes.
The inner nodes indicate the properties of a data collection, while the branches represent
the decision criteria. Finally, the Leaf Nodes indicate the outcome. This strategy is quite
useful for addressing challenges with decision-making.

The pseudocode and the process chart (Figure 7) explaining the ENSML Algorithm
procedure is given below (Algorithm 1).

Algorithm 1 ENSML Algorithm

ł
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Input of the Model 𝒇𝒐𝒓: prediction 𝒅𝒐 𝒇𝒐𝒓 House 1 𝑙𝑜𝑎𝑑 file low_freq in House 1 to Spyder 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 dataset from House 1 to data frame 𝒆𝒏𝒅 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑎𝑛𝑑 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎 for House 1. 𝒇𝒐𝒓 data frame House1 𝑡𝑟𝑎𝑖𝑛 data set to 11 days 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 data set to 5 days 𝑡𝑒𝑠𝑡 data set to 6 days 𝒆𝒏𝒅 𝑇𝑟𝑒𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 Model 𝒇𝒐𝒓 train, validation and testing 

x_axis as mains1, mains2 

y_axis appliances 𝑑𝑒𝑓𝑖𝑛𝑒 mse_loss and mae_loss 𝒆𝒏𝒅 𝒑𝒍𝒐𝒕 the diagram 𝒓𝒆𝒕𝒖𝒓𝒏 prediction 
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Advantages and Disadvantages

The ENSML methods are supervised learning algorithms that are mostly used for
classification problems (because they have a predefined target variable). These models are
used only in regression problems if and only if the target variable falls within the range of
values seen in train data. Table 4 shows the advantages and disadvantages of using the
ENSML method.

Table 4. Advantages and disadvantages of the ENSML method.

No Benefits Shortcomings

1 The model can be applied to both
classification and regression. Prone to overfitting.

2 Understanding, interpreting and visualising
are easy. No way to extrapolate.

3 There is no constraint on data type. Regression can be unstable.
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5. Setup Experiment

The power under 1 Hz for total signals and 0.2–0.3 Hz for individual appliances makes
up the REDD low-frequency dataset. Individual appliance data were augmented to 1 Hz to
ensure consistency. The REDD dataset utilising the NILM method deaggregated the lower
and higher frequencies in the lower and higher frequencies. To examine the proposed
study, with a reasonably basic appliance operation condition, the Dataset for House 1 was
used. House 1 contains 23 days. To make the prediction successful, House 1 should have
enough data. Figure 8a shows the power consumption (W) for House 1 while Figure 8b–e
represents different appliances usage recorded at the simulator. The considered day was
Monday, which is a working day.
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This shows that House 1 had enough data to train, validate, and test for this experiment
as it contains 23 days; therefore, House 1 had appropriate data for training, validation, and
testing. Continued with the setup, the input for training data, validation data, and test
data were 1–10 days, 11–16 days, and 17 days onwards respectively. This shows that it had
10 days for training, 6 days for validation, and 7 days for testing.

5.1. ENSML Regression Model for Prediction

From these 20 appliances in House 1, this experiment used some of the appliances
to make a prediction using the ENSML algorithm as explained in Section 4. Refrigerator,
microwave, and electric heat are the appliances that were used for this experiment. The
process flow diagram shown in Figure 9 summarises the process followed for the prediction
of the power usage utilised by each appliance respectively.
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5.2. Performance Metrics

The proposed system’s performance metrics are defined below. Here, precision, recall
rate, F1 score, and absolute errors were used as the evaluation indicators.

Precision =
TP

TP + FP
(1)

Recall Rate =
TP

TP + FN
(2)

Accuracy =
TP + TN

TN + FP + TP + FN
(3)

F1-score =
2 ∗ (Precision × Recall Rate)
2 ∗ (Precision + Recall Rate)

(4)

MAE =
1

T1 − T0

T1

∑
t=T0

∣∣∣∣(ỹt −
yt

yt

)∣∣∣∣ (5)

where TP means the number of True Positives; FP stands for the number of False Positives;
and FN means the number of False Negatives. TP represents the total number of sequence
points for which the electrical appliance is truly operating and for which the disaggregation
result is likewise working. The number of sequence points when the electrical appliance is
truly operating but the outcome is non-functional is represented by FP. The number FN
denotes the total number of sequence points, indicating that the electrical appliance is not
in use but that the model decomposition result is. At time t, yt reflects the real power of the
electrical equipment. MAE is the average absolute error of the power disaggregation in
the time period from T0 to T1. The disaggregated power yt at time t, and MAE represents
the average absolute error of the power disaggregation in the time period from T0 to T1.
The Precision, Recall Rate, Accuracy, F1-score, and MAE are the fundamental indications
of non-intrusive load disaggregation and can represent the model’s accuracy in evaluating
if the electrical appliance is in a functional state. The precision of the disaggregated power
value at each time period can be reflected by MAE. The better the precision of the power
decomposed value, the lower the value.

6. Results

In this section, results for refrigerator, microwave, and electrical heat showed some
promising values on six test days. However, others showed spikes for predicting values
caused by overfitting.

The performance characteristics for a refrigerator, microwave, and electrical heat are
shown in Table 5. With excellent accuracy, recall rate, precision, and F1-score, the true
category was predicted. The MAE prediction for the appliances was less than 1%. The
results shown in Figure 10a,b presents the day 1 and day 6 usage by the refrigerator. This
clarifies that the utilised ENSML model prediction and true value of the power usage by
the refrigerator is accurate. Looking at Figure 11, at epoch 125, the acquired training and
validation accuracy were 99.2 percent and 98.1 percent, respectively. Similarly, the training
and validation losses were 0.04 and 0.05, respectively.

Table 5. Performance of the architecture.

Class Accuracy
(%)

Recall Rate
(%)

Precision
(%)

F1-Score
(%)

MAE
(%)

Refrigerator 99.556 99.667 99.336 99.501 0.64
Microwave 98.752 99.54 99.145 99.46 0.98

Electrical Heat 99.454 99.14 99.556 99.75 0.35
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The results presented showed that prediction of the house is very near to the true
values of the aggregated powers. The reason for choosing refrigerator, microwave, and
electrical heat as the appliances is that the pattern of data and aggregated powers is different.
If we consider the refrigerator, the pattern was repetitive and was in the form of a square
wave. The prediction of the data was accurately detected. However, if we consider the
microwave, the usage was around 3500 W and is not repetitive; still, the prediction was
in good proportions. A little dip in the shape of the predicted value was seen due to
underfitting as these instances are quite fewer and data are scarce in this situation.

The performance of proposed method is compared with some recent methodologies
that have been proposed in the recent past. The Table 6 summarises the contributions with
respect to precision obtained by the proposed technique. The settings, appliance under test
and dataset are similar. Table 6 shows that the proposed method has the best performance
as compared to other methodologies.

Table 6. Comparison of the performance of other methodologies with proposed method.

Contribution Methods/Techniques Number of Appliances Precision [%]

[42] Factorial hidden
Markov models REDD 82

[43] Deep Learning Approach REDD 76

[44] Back propagation
neural network REDD 45

[45] K-means
clustering algorithm REDD 62

[46] Unsupervised Linear
Discrimination Method REDD 81

[47] CNN binary classifier private 97

[48] Deep CNN and a
KNN classifier private 93.8

Present Work
Efficient Non-parametric

Supervised Machine
Learning Network

REDD 99.55

Hardware cost is an important factor that needs to be taken into consideration. This
is a cost that is usually proportional to the data resolution, i.e., higher resolutions mean
higher costs [47,48]. In addition to the hardware expenditures, there are also training and
operating costs to consider. For the pretrained model, a generic modelling technique will
be adopted through training. The model for each appliance type utilised in all setups is an
important factor; if we can find a similar model that predicts for all appliances, it reduces
the complexities a lot. In any event, reliable models require data, patience, and, more
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often than not, many resources. We commonly refer to the cloud environment in terms
of functioning because most of these services are hosted on the cloud. The hardware and
software trainings and implementation with machine learning is an important factor that
will be thoroughly investigated in future work.

7. Conclusions

The development of new technology to better regulate energy use has become a
requirement in recent years. Using home smart meter data, this research proposed an
appliance recognition and prediction system utilising the NILM technique based on a
simple and low-complexity ENSML network, which can identify common household
electrical equipment from a typical household smart meter reading. In this research, we
offered an intelligent method to detect smart home loads without being obtrusive. The
research focused on the prediction of different appliances which have different amounts
and patterns of power usage. The evaluation results revealed that the proposed method
has 99.9% accuracy. While utilising the proposed method, it is expected that future work
will utilise other methodologies that can beat the performance as well as predict optimally
for other appliances as well, and, finally, create a prototype of the model that can store
the data in cloud. This data then can be stored in the internet operating system platform
to continue monitoring for future use. Further work will also investigate the benefits of
applying the NNs to convert smart meter data.
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