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Abstract: A digital elevation model (DEM) represents the topographic surface of the Earth and is an
indispensable source of data in many applications, such as flood modeling, infrastructure design and
land management. DEM data at high spatial resolution and high accuracy of elevation data are not
only costly and time-consuming to acquire but also often confidential. In this paper, we explore a
cost-effective approach to derive good quality DEM data by applying a multi-channel convolutional
neural network (CNN) to enhance free resources of available DEM data. Shuttle Radar Topography
Mission (SRTM) data, multi-spectral imaging Sentinel-2, as well as Google satellite imagery were
used as inputs to the CNN model. The CNN model was first trained using high-quality reference
DEM data in a dense urban city—Nice, France—then validated on another site in Nice and finally
tested in the Orchard Road area (Singapore), which is also an equally dense urban area in Singapore.
The CNN model not only shows an impressive reduction in the root mean square error (RMSE) of
50% at validation site in Nice and 30% at the test site in Singapore, but also results in much clearer
profiles of the land surface than input SRTM data. A comparison between CNN performance and
that of an earlier conducted study using artificial neural networks (ANN) was conducted as well.
The comparison within this limited study shows that CNN yields a more accurate DEM.

Keywords: DEM; deep machine learning; convolutional neural networks

1. Introduction

The digital elevation model (DEM) is actually a grid of topographic data. DEM
represents the elevations of various grid cells (pixels) in a given area [1], without further
definition about the surface. DEM is often used as a generic term for the digital surface
model (DSM) and digital terrain model (DTM). DTM represents the bare ground surface,
while DSM includes all objects on the ground.

DEM data can be obtained by ground surveying or by remote-sensing methods,
including stereo photogrammetry, interferometric synthetic aperture radar (InSAR) interfer-
ometry and light detection and ranging (LiDAR) [1]. DEM data are an important input for
many applications, such as: ecology and glaciology modeling [2,3], hydrologic and flood
simulations [4–14], and engineering infrastructure modeling [15].

In this paper, we define reference (surveyed) DEM data as the DEM data with high-
spatial resolution and high accuracy (i.e., low vertical errors). Reference DEM data are
the best sources of data for applications in several studies. However, acquiring reference
DEM (or high-quality DEM) is not only time consuming but also comes at an expensive
cost [16,17]. Challenges are even higher in developing countries with limited project
funding. Moreover, the access to such high-quality DEM data is often limited due to
confidentiality [18].

Recently, many space-borne sources of DEM data on an almost global scale became
publicly accessible, such as Shuttle Radar Topography Mission (SRTM) [19], Advanced
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Spaceborne Thermal Emission and Reflection (ASTER) radiometer [20], and the ALOS
Global Digital Surface Model (AW3D30) [21]. However, they usually come with high
root mean square error (RMSE) in comparison with reference DEM data and need to be
enhanced to better serve downstream purposes.

Where highly accurate DEM data are unavailable, or available but incomplete with
large missing data or gaps, or too costly to acquire, or confidential, the applications that
require DEM have to rely on free DEM products. Among these, SRTM is considered as one
of the most suitable sources of data for flood modeling [22–24]. SRTM is a source of free
global-scale DEM data, and it is publicly accessible [19]. However, the vertical accuracy
(which is the main criterion in the specification of the quality of elevation data [16]) is
limited. The vertical offset errors of SRTM DEM data at LE90 (the linear errors at 90%
confidence interval) were about 20 m [9,19]. It is also known that SRTM is inaccurate
over the areas covered by canopy because the 5.6 cm wavelength used by SRTM does not
penetrate well through vegetation [25–27]. Moreover, the random noise in a free global
DEM product such as SRTM is also well known and requires significant efforts to remove
without over-smoothing the data and removing sharp topographic features [9,28].

There are many studies on enhancing satellite DEMs using varied remote sensing
data and various methods to overcome the limitations. DEM enhancement approaches are
grouped into manual or systematic editing. Systematic editing uses filters or algorithms
to correct or reduce the known errors of satellite DEMs [28–35]. For example, Muhadi
et al. [35] derived a DEM by applying a data fusion technique. It exploited laser scanning
and aperture radar to create a new dataset for oil farm plantations. The performance
using two datasets showed less error than that obtained with one dataset. Annis et al. [14]
proposed unmanned aerial vehicle (UAV) technology at a cost of up to EUR 1500 per km2

to generate a high-resolution and accurate DEM for flood hazard mapping applications.
The UAV-DEM contributed to good quality flood modeling in small basins. However, the
approach was not cost-free and faced problems with large-scale uptake (e.g., UAV flight
regulations and restrictions).

With the help of many technological innovations nowadays, multiple sources of DEM
data have been made available with not only increasingly large volumes but also finer
spatial resolutions. Under these circumstances, machine learning techniques are in a good
position to contribute to further improvements in DEM data at a much lower cost. Machine
learning techniques help to uncover the complex relationships between large quantities
of input data [36,37]. There are many studies that use machine learning techniques for
DEM improvement. Wendi et al. [25] presented a DEM improvement scheme and showed
substantial improvement of SRTM DEM with a RMSE reduction of 52–68% over two
different forested areas in Singapore. The authors used an artificial neural network (ANN)
model with input from Landsat 8 multispectral imagery and 92 m resolution of SRTM to
eliminate the error caused by dense canopy levels in the original SRTM. Meadows et al. [9]
applied a fully convolutional neural network (FCNN) to improve SRTM using multispectral
imagery, night-time lights, and other freely available global datasets. The authors compared
the performance of different types of machine learning models and concluded that training
with spatial data (images) outperforms those trained with pixel data (or text data). The
results from the authors’ works also showed that an FCNN performs better than densely
connected neural networks. However, it should be noted that the areas considered by the
authors were mainly open spaces, not urban cities as examined in this paper.

Of direct relevance to the work presented in this paper, Kim et al. [5–8] implemented
the ANN model together with Sentinel-2 multispectral imagery for enhancing the SRTM
DEM (30 m resolution) in dense urban cities. The results showed that the RMSE of the
improved SRTM was reduced by about 25–35%, and the visibility of land shapes, buildings,
and roads was significantly improved over the original SRTM.

This paper is a continuation of the work undertaken by Kim et al. [5]. We used CNN
instead of standard ANN presented in Kim et al. [5]. While ANN is dominant where
datasets are limited and image inputs are not necessary, CNN is well known for image
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processing to detect the important features from input images [38–41]. We could take
advantage of CNN by implementing a special treatment for input data to create multi-
channels input images. In this work, we implemented the multi-channel CNN to improve
SRTM using Sentinel-2 multispectral imagery, Google satellite imagery and OpenStreetMap
Buildings. High-resolution surveyed DEMs in Nice (France) and Singapore were used to
train, validate and test the performance of the CNN model. The objective of this study
was to examine the added value of CNN in topography improvement over urban cities
(Nice and Singapore). Upon significant improvement in accuracy, this would be a valuable
contribution in generating much-improved DEM, from satellite DEM, at sites in various
countries where DEM data often are not available or confidential.

The paper is structured as follows. All available data are summarized in Section 2;
the methodology of the scheme for the CNN model, including data pre-processing, the
assessment method, and model configuration, is described in Section 3. Section 4 provides
an analysis of the performances of the CNN model. Section 5 lists the key findings from
this research work.

2. Data
2.1. SRTM Data

The Shuttle Radar Topography Mission (SRTM) is an international project headed
by the National Imagery and Mapping Agency (NIMA) of the United States Department
of Defense (DoD) and the National Aeronautics Space Administration (NASA). SRTM
is publicly accessible and generally considered the most suitable for flood modelling
applications [42]. SRTM at 30 m spatial resolution has been available since 2015, and the
absolute vertical error is less than 16m. However, there are known issues with SRTM, such
as vertical offset errors, random noise, and vegetation/building biases. Moreover, due to
coarse resolution, SRTM does not reflect precise surface characteristics, especially in dense
urban areas. A sample of SRTM DEM is shown in Figure 1c.
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Figure 1. Display of sample data in Nice, France: (a) Satellite image, (b) elevation map of reference
DEM and (c) SRTM DEM.

2.2. Ground Truth DEM

The ground truth DEM data (about 1 m spatial resolution and 40 cm vertical accuracy)
in Nice were provided by Nice Côte d’Azur Metropolis, and those for Singapore were
provided by Singapore’s Building and Construction Authority. The reference data are
measured from onboard light detection and ranging (LiDAR) equipment mounted on
aircraft, and the accuracy levels are by design. These data were used for training, validation
and testing the CNN. Both DEMs were collected in 2014. A sample of surveyed DEM data
in Nice is shown in Figure 1b.

The ground truth DEM data were used as target data to train the CNN model. They
were also used as observational data to evaluate the performance of the trained models.
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2.3. Google Satellite Imagery

Google satellite imagery has resolution ranges from 15 m to 15 cm and displays the
Earth’s surface from a far distance. Google satellite images can be downloaded through
SASPlanet (free application used to view and download satellite maps). The data consist of
three RGB (red, green, blue) bands. The data can be used as inputs to the CNN model as
well as for visual comparison. A sample of Google satellite imagery is shown in Figure 1a.
The combination of three RGB bands results in an image that resembles the way our eyes
see the world.

2.4. Sentinel-2 Multispectral Imagery

The Sentinel-2 data were developed by the ESA (European Space Agency) for moni-
toring variability in land surface conditions to support services such as forest monitoring,
detection of land cover changes, and natural disaster management. Sentinel-2 consists of
twin polar orbiting satellites under the same orbit, phased at 180 degrees to each other. The
Sentinel-2 multispectral instrument (MSI) obtains the reflective wavelengths of multispec-
tral observations with directional effects caused by the reflectance anisotropy of the surface.
The MSI aims to measure the Earth’s reflected radiance through the atmosphere using
13 spectral bands: from the visible and near-infrared (VNIR) through to the short-wave
infrared (SWIR) [43–45]. The multispectral imagery is useful for land use classification,
seasonal monitoring, and agricultural and environmental applications. Sentinel-2 data,
with a 5-day revisit frequency, are also publicly accessible. Kim et al. [5] analyzed the
reflectance of Sentinel-2 for varied land uses and found that the reflectance of short-wave
infrared (SWIR) bands (bands 6–8) in forest areas was higher than that over urban areas
and that the reflectance of near-infrared (NIR) bands (bands 2–5) in urban areas was higher
than that over forest cover. In this study, this multispectral imagery was used to classify
the different land covers, which had different error patterns.

Sentinel-2 contains an optical instrument payload that samples 13 spectral bands: four
bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution. For more
details, refer to Kim et al. [5].

Sentinel-2 data were downloaded for two areas, Nice (France) and Singapore. The
selection of Sentinel-2 imagery was based on low cloud cover, as more cloud presence
gives rise to inaccuracies in the ground reflectance. The cloud filtering process in this paper
involved screening of satellite imagery metadata and shortlisting only those with cloud
presence of less than 10%. From these shortlisted tiles, visual screening for the least cloud
presence over the study area was undertaken.

There were eight input features from Sentinel-2 used for the CNN model: bands 02–08
and band 8A. The selection was based on the high resolution (10–20 m) of spectral bands
and their highlight information for vegetation and urban structures.

2.5. Building Footprint

OpenStreetMap (OSM) is a collaborative volunteered geographic information (VGI)
project. It provides data that can be used in various ways, including the production
of a digitized map accessible to the public at no cost [46]. A building footprint can be
downloaded from OSM Buildings (http://osmbuildings.org) (accessed on 15 February
2021) in a vector data format that can be read in geographic information system (GIS)
software.

The building footprint data will be used as input to the CNN model to enhance its
performance over dense urban cities. The building footprint simply associates the grid cells
with values of 1 for building and 0 for non-building cells.

3. Methodology
3.1. Flowchart of the Methodology

The workflow of this study is summarized in Figure 2. Various remote sensing data
at different spatial resolutions were collected and pre-processed. The processed data

http://osmbuildings.org
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were then augmented (such as with rotation and reflection) to populate the input data.
Finally, the data were fed into the CNN model to train in Nice, validate in Nice, and test
in Singapore.

Technologies 2022, 10, x FOR PEER REVIEW 5 of 20 

 

 

2.5. Building Footprint 
OpenStreetMap (OSM) is a collaborative volunteered geographic information (VGI) 

project. It provides data that can be used in various ways, including the production of a 
digitized map accessible to the public at no cost [46]. A building footprint can be down-
loaded from OSM Buildings (http://osmbuildings.org) (accessed on 15 February 2021) in 
a vector data format that can be read in geographic information system (GIS) software. 

The building footprint data will be used as input to the CNN model to enhance its 
performance over dense urban cities. The building footprint simply associates the grid 
cells with values of 1 for building and 0 for non-building cells. 

3. Methodology 
3.1. Flowchart of the Methodology 

The workflow of this study is summarized in Figure 2. Various remote sensing data 
at different spatial resolutions were collected and pre-processed. The processed data were 
then augmented (such as with rotation and reflection) to populate the input data. Finally, 
the data were fed into the CNN model to train in Nice, validate in Nice, and test in Singa-
pore. 

 
Figure 2. Flowchart of the methodology. 

3.2. Data Processing 
With SRTM having a 30 m horizontal resolution, the reference DEM with 1 m, and 

Sentinel-2 with 10–60 m, all input and output layers were standardized to a 10 m resolu-
tion using the nearest neighbor approach [47]. Additionally, ground truth elevations were 
referenced in the Earth Gravitational Model 96 (EGM96) geoid heights [48], and therefore, 
all elevations were converted to geoid height. 

All input data were processed and divided into training, validation, and testing da-
tasets. The areas covered by these datasets are shown in Figure 3. The training dataset was 
over an area of 12 km2 in Nice (the box with blue comb pattern in Figure 3a); the validation 
dataset was over an area of 5.2 km2 (the box with red comb pattern in Figure 3a); and the 
testing dataset was an area of 2.6 × 4.8 km in the Orchard Road area of Singapore (shown 
in Figure 3b). The training and validation sites are mainly urbanized with buildings, and 
the elevation profiles vary from 0 m to 200 m. The average building height is 19.1 m (max-
imum 60.8 m), and buildings occupy 34% of the total area. Similarly, the test site in Or-
chard Road, Singapore is also a dense urban area with many high-rise buildings with ele-
vations ranging from 0 m to 150 m. The average building height is 24.5 m (maximum 130 
m), and buildings occupy 36% of the total area. 

Figure 2. Flowchart of the methodology.

3.2. Data Processing

With SRTM having a 30 m horizontal resolution, the reference DEM with 1 m, and
Sentinel-2 with 10–60 m, all input and output layers were standardized to a 10 m resolution
using the nearest neighbor approach [47]. Additionally, ground truth elevations were
referenced in the Earth Gravitational Model 96 (EGM96) geoid heights [48], and therefore,
all elevations were converted to geoid height.

All input data were processed and divided into training, validation, and testing
datasets. The areas covered by these datasets are shown in Figure 3. The training dataset
was over an area of 12 km2 in Nice (the box with blue comb pattern in Figure 3a); the
validation dataset was over an area of 5.2 km2 (the box with red comb pattern in Figure 3a);
and the testing dataset was an area of 2.6 × 4.8 km in the Orchard Road area of Singapore
(shown in Figure 3b). The training and validation sites are mainly urbanized with buildings,
and the elevation profiles vary from 0 m to 200 m. The average building height is 19.1 m
(maximum 60.8 m), and buildings occupy 34% of the total area. Similarly, the test site in
Orchard Road, Singapore is also a dense urban area with many high-rise buildings with
elevations ranging from 0 m to 150 m. The average building height is 24.5 m (maximum
130 m), and buildings occupy 36% of the total area.

 

Figure 3. The images of datasets that were used for: (a) training and validation sites, (b) testing site.
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3.3. CNN Configuration

The MATLAB Deep Learning Toolbox was applied in this study for DEM enhancement.
We used U-Net structure to design the CNN model. In U-Net structure, the initial series
of convolutional layers are interspersed with max pooling layers, successively decreasing
the resolution of the input image. These layers are followed by a series of convolutional
layers interspersed with up-sampling operators, successively increasing the resolution of
the input image. Combining these two series paths forms a U-shaped graph. The CNN
model was trained by multi-channel input data. Each input channel represented a feature
at 10 m spatial resolution. The datasets mentioned above were processed and divided into
training, validation, and testing sets.

CNNs are widely applied in deep learning. CNNs are capable of capturing the spatial
and temporal dependencies in an image via application of appropriate convolutional filters.
In other words, they learn not only from the input features available for a given pixel or
grid cell, but also from those of its neighbors, accounting for potential spatial relationships
in that neighborhood. The CNN was widely used in image classification and segmentation
tasks, but limited cases of its application are in topography data improvement.

We developed our CNN model based on U-Net architecture, which was fundamentally
applied for bio-medical imaging by O. Ronneberger et al. [38]. The architecture consisted
of an encoder and a decoder. The encoder was to deal with covenant layers and extract
the factors in an image. The decoder used transposed convolution to allow localization.
It should be noted that the CNN model developed in this research does not include fully
convolutional layers as commonly used in segmentation. Additional convolutional layers
were added to allow the model to generate intact images (rather than single values or
labels). The structure of the CNN model used in this paper is shown in Figure 4.
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There are 13 input features that are used for the CNN model presented in this paper.
The input features include: SRTM_DEM, 8 bands of Sentinel-2 multispectral imagery,
3 bands of RGB from Google satellite imagery, and building footprints from OpenStreetMap
Buildings. The target data were high-resolution reference DEM data (or ground truth DEM).
All the input features and target data were standardized to a 10 m resolution through the
nearest neighbor sampling method.

We used the MATLAB built-in function randomPatchExtractionDatastore to extract
randomly positioned patches in size 32 × 32 grid cells from 13 input features and target
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data. Moreover, to populate the training data, we also used MATLAB built-in function
imageDataAugmenter to apply random reflection in the left–right direction and 90 degree
rotation to the input features and target data.

The CNN model was trained, and hyper-parameter tuning (parameters are manually
defined when the model is initialized) was performed to ensure the convergence and good
performance of the model. The optimal hyper-parameters after tuning are shown in Table 1.

Table 1. Hyper-parameters used by CNN model.

Hyper-Parameters Values

U-Net encoder depth 4
Initial learn rate 0.0001

Optimizer Adam
Patch size 32 × 32

Mini batch size 64

With the choice of the optimal hyper-parameters, the CNN model used 13 input
features mentioned above and was trained against reference DEM data (target data). There
are two different approaches for the CNN model considered in this study: iConvDEM-1
and iConvDEM-2. The flowchart of data usage for iConvDEM-1 and iConvDEM-2 is shown
in Figure 5.
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In the first approach, iConvDEM-1, the CNN model was trained against target data
with no special treatments for building and non-building features; they were all in one input
dataset. The performance of the iConvDEM-1 model was promising, but the improvement
for SRTM DEM was not much different from that of Kim et al. [5] using the ANN.

The second approach, iConvDEM-2, was developed based on the analysis of SRTM
data versus reference DEM data. For the available data used in the scope of this work,
SRTM data underestimated over building grid cells and overestimated over non-building
grid cells. This implied that one CNN model may not perform well for both building
and non-building areas. This was a significant finding in the application of the machine
learning approach for improving SRTM data over dense urban areas. Kim et al. [5] reached
a similar finding as well. In order to address this issue, we proposed a new CNN model
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(referred to henceforth as iConvDEM-2 in this paper). The iConvDEM-2 model consisted
of two separate CNN training processes, one just with buildings (CNN_b) and the other
without buildings (CNN_nb). The performance of iConvDEM-2 over dense urban areas,
shown later in Section 4, is much better than that of iConvDEM-1.

3.4. Evaluation Methods

The DEM enhancement evaluation was undertaken through visual clarifying, scatter-
plots, and three statistical measures, the error (E), the absolute error (AE) and root mean
square error (RMSE) [5,25,49].

The error (or bias) and absolute error calculate the magnitude of errors between the
surveyed (yi) and simulated (Yi) elevations at all grid points (N) in the DEMs (Equation (1)).

Ei = (Yi − yi) and AEi = abs(Yi − yi) (1)

The mean absolute error is the average of all grid points in the study area, which is
calculated as in Equation (2).

MAE =
∑N

i=1 AEi

N
(2)

RMSE is the square root of the average of squared differences between surveyed (yi)
and simulated (Yi) elevations at all grid points (N) in the DEMs (Equation (3)). The RMSE
is the standard way to compute the degree of accuracy between a set of estimates and the
actual values [50].

RMSE =

√
∑N

i=1(Yi − yi)
2

N
=

√
∑N

i=1 Ei
2

N
(3)

In a set of estimates, both MAE and RMSE are applied to investigate the differences in
any errors. If the values are close to zero, then the performance of the estimation output is
considered good.

4. Results and Discussions
4.1. Preliminary Results

In this section, we evaluated the performance of different approaches for the valida-
tion site in Nice, France (within the box with blue comb pattern in Figure 3a). The two
approaches using CNN were iConvDEM-1 and iConvDEM-2 (presented in Section 3.3),
which were used to compare against the standard ANN presented in Kim et al. [5] (referred
to as ANN [1] in this study).

We first introduced the comparison between the original SRTM DEM and reference
DEM. The elevation maps of SRTM DEM and reference DEM data at the validation site
in Nice are shown in Figures 6a and 6b, respectively. Figure 6c shows the absolute error
between the reference DEM and SRTM DEM. The mean absolute error between reference
DEM and SRTM DEM was about 6.8 m, and most of the grid cells with high value abso-
lute error were located at the right side of the map where the area is mainly urbanized
with buildings.

We then analyzed the accuracy of DEM generated by the proposed schemes. Figure 7
shows the spatial distribution for absolute error versus reference DEM of SRTM DEM,
ANN [1], iConvDEM-1, and iConvDEM-2. Figure 7a shows the highest values of absolute
error (majority of grid cells are in dark yellow color, corresponding with absolute error
around 10–20 m). Figure 7b,c show more white and light-gray color grid cells (representing
absolute error below 10 m) in comparison with the display in Figure 7a. This means
that there was a significant improvement for SRTM data using the iConvDEM-1 and
ANN [1] model. However, iConvDEM-2 showed the best performance of all by presenting
a majority of white and light-gray color grid cells (representing absolute error below 10 m)
in its absolute error plot against reference DEM data (Figure 7d).
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The numerical values of absolute errors and root mean square error (the lower, the
better) for all approaches versus reference DEM are shown in Table 2. We can see that
iConvDEM-2 outperformed other models with the lowest values of error in all categories.
This indicates that the DEM generated by iConvDEM-2 was in best agreement with the
reference DEM data.

Table 2. Performance of all approaches versus reference DEM data.

(Versus Reference DEM) Maximum AE (m) Mean AE (m) RMSE (m)

SRTM_DEM 55.0 6.8 9.2
ANN [1] 59.1 4.2 6.9

iConvDEM-1 57.5 4.0 6.5
iConvDEM-2 38.3 2.8 4.8

Figure 8 shows the cumulative distribution of absolute error (AE) values of all ap-
proaches versus reference DEM data. The x-axis represents values (in m) of AE while the
y-axis shows accumulative distribution of AE values at all grid cells (from 0% to 100%). We
see that only about 70% of grid cells of SRTM_DEM (black curve) had AE values lower than
10 m. ANN [1] (blue curve) and iConvDEM-1 (pink curve) showed promising improvement
with around 90% of grid cells having AE values lower than 10 m and about 70% of grid
cells having AE values lower than 5 m. iConvDEM-2 showed the best performance with
95% of grid cells having AE values lower than 10 m and about 80% of grid cells having AE
values lower than 5 m.

As iConvDEM-2 outperforms other approaches, the remaining Sections 4.2 and 4.3
assess the performance of iConvDEM-2 when applied to a validation site in Nice and a test
site in Singapore.
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4.2. Validation of iConvDEM-2 in Nice, France

The comparisons of elevation maps among SRTM DEM, reference DEM and iConvDEM-
2 are shown in Figure A1 (in Appendix A). The elevation map generated by iConvDEM-2
showed much clearer land shapes of buildings and roads when compared with SRTM DEM.
Moreover, the RMSE (versus reference DEM) of iConvDEM-2 was reduced significantly, to
4.8 m from 9.2 m of SRTM DEM (a 48% reduction).

For better visualization, we selected a zoomed-in site (or sub-area) covering a
1.4 km × 1.4 km area at the center of the validation site in Nice, France. The sub-area
is seen bounded by the red box inside satellite imagery in Figure A1. The comparison of
elevation maps between SRTM DEM, reference DEM and iConvDEM-2 over the sub-area is
shown in Figure 9.
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Figure 9a is a satellite image of the validation area showing the land shapes; Figure 9b–d
are the elevation maps of SRTM DEM, reference DEM and iConvDEM-2, respectively. The
reference DEM is at the highest available quality and shows clear shapes of buildings and
roads. The iConvDEM-2 agrees well with the reference DEM and thus shows significant
improvements when compared with SRTM DEM.

We computed the bias against the reference DEM to evaluate the quality of SRTM
and iConvDEM. The bias maps in Figure 9e were constructed by simply calculating the
differences (errors) between reference DEM and SRTM DEM. Similarly, Figure 9f shows
the differences between reference DEM and iConvDEM-2. We could see that iConvDEM-2
showed far less bias (error) than SRTM DEM. In Figure 9f, the bias values are mostly within
−10 m to 10 m. The light blue color implies overestimation of elevation by iConvDEM-
2 over non-building land areas, and the light yellow color implies underestimation of
elevation by iConvDEM-2 over building areas. We also observed a similar behavior (overes-
timation over non-building land areas and underestimation over building areas) with SRTM
DEM. However, the light red color and dark blue color in Figure 9e demonstrate much
higher bias with SRTM DEM (within −30 m to 30 m). The elevation data improvement
with iConvDEM-2 over SRTM DEM is further demonstrated in Figure 10.

Figure 10a–c show statistical analysis for SRTM DEM versus reference DEM; while
Figure 10d–f show statistical analysis for iConvDEM-2 versus reference DEM. The scatter
plots of elevation values in Figure 10a,d show that iConvDEM-2 was improved significantly
and compared well with the reference DEM, especially at high elevation values (>50 m).
Figure 10b,e show the frequency error distribution of SRTM DEM and iConvDEM-2. In
Figure 10b, double peaks around −15 m and 15 m implied that the majority of data points
(pixels) of SRTM DEM had an error of 15 m in comparison with the reference DEM. In
Figure 10e, a single peak close to zero shows that iConvDEM-2 is very close to reference
DEM. Moreover, the large bias of SRTM DEM is demonstrated in Figure 10c, where the
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cumulative distribution function of absolute error between reference DEM and SRTM DEM
is shown. Only 20% of the data points in SRTM DEM had absolute error of less than 5 m,
while another 60% of data points had absolute error within the range 5–15 m. The rest of
the data points (20%) were at more than 15 m in absolute error. On the other hand, more
than 80% of the data points in iConvDEM-2 had absolute error of less than 5 m, which is
shown in Figure 10f.
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4.3. Testing of iConvDEM-2 in Orchard Road Area, Singapore

To test the performance of iConvDEM-2, which was trained and validated in Nice, we
selected a dense urban area as the test site. The selected test site was in a dense urban Or-
chard Road area in Singapore (Figure 3b). The quality of input SRTM DEM data and output
data generated by iConvDEM-2 was compared against that of a reference DEM provided
by the Singapore’s Building and Construction Authority (BCA). The satellite image of the
test site together with elevation maps of SRTM DEM, reference DEM and iConvDEM-2 are
shown in Figure A2 (in Appendix A). The elevation generated by iConvDEM-2 matched
the reference DEM more than the SRTM DEM. The RMSE (versus reference DEM) of
iConvDEM-2 was reduced significantly, to 12.8 m from 18.5 m of SRTM DEM (a 30.8%
reduction).

Similarly to the validation process, we selected a zoomed-in site (or sub-area) covering
a 1.4 × 1.4 km area within the test site in the Orchard Road area for better visualization.
The sub-area is seen bounded by the red box inside the satellite imagery in Figure A2a. The
comparison of elevation maps between SRTM DEM, reference DEM and iConvDEM-2 over
the sub-area is shown in Figure 11.

Figure 11a is a satellite image of the test area delineating the land shapes; Figure 11b–d
are the elevation maps of SRTM DEM, reference DEM and iConvDEM-2, respectively.
The iConvDEM-2 again shows clearer shapes of buildings and roads than does the origi-
nal SRTM DEM. In addition, building heights generated by iConvDEM-2 matched well
with the reference DEM and clearly showed better quality than SRTM DEM. Significant
improvement of iConvDEM-2 is also reflected in the analysis in Figure 12.
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Figure 12a–c show statistical analysis for SRTM DEM versus reference DEM, while
Figure 12d–f show statistical analysis for iConvDEM-2 versus reference DEM. Comparing
the scatter plots of elevation values in Figure 12a,d, iConvDEM-2 shows better agreement
with reference DEM, especially at high elevation values around 50 m. Figure 12b,e show
the frequency error distribution of SRTM DEM and iConvDEM-2. In Figure 12b, the peak
is around −15 m, implying that SRTM DEM shows overestimation, and the majority of the
data points (pixels) of SRTM DEM have an error of 15 m in comparison with those of the
reference DEM. In Figure 12e, a single peak close to zero shows that iConvDEM-2 agreed
quite well with reference DEM. Moreover, the large bias of SRTM DEM is demonstrated in
Figure 12c, where the cumulative distribution function of absolute error between reference
DEM and SRTM DEM is shown. Only 40% of the data points of SRTM DEM had an absolute
error of less than 10 m, while 20% of the data points had an absolute error higher than 20 m.
On the other hand, more than 80% of the data points of iConvDEM-2 had an absolute error
of less than 10 m, which is shown in Figure 12f. However, the fact that about 10% of the data
points had absolute error higher than 20 m implies some weakness in the application of
iConvDEM-2 for the test site in the Orchard Road area of Singapore. This can be attributed
to the complexity of building profiles in the Orchard Road area. There are many high
buildings in the Orchard Road area, and the maximum height of the buildings is more than
100 m (compared with the Nice area used to train iConvDEM-2, with less building density
and a maximum building height of 60.8 m).
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Figure 12. Statistical analysis of sub-area within the test site in Orchard Road, Singapore, versus
reference DEM, of: (a) elevations of SRTM DEM, (b) errors of SRTM DEM, (c) absolute errors of
SRTM DEM, (d) elevations of iConvDEM-2, (e) errors of iConvDEM-2 and (f) absolute errors of
iConvDEM-2.

4.4. Application of iConvDEM-2 in Other Areas with AW3D Input Data

In this section, we would like to show the applicability of the proposed CNN method
to an urban area in Jakarta, Indonesia. The input DEM was an AW3D at 2.5 m spatial
resolution. Other input channels (8 bands of Sentinel-2 multispectral imagery, 3 bands RGB
from Google satellite imagery and building footprint from OpenStreetMap Buildings) were
also prepared for the application site.

Figure 13a is a satellite image of the validation area showing the land shapes of the
dense urban area in Jakarta, Indonesia; Figure 13b,c are the elevation maps of SRTM
DEM and iConvDEM-2, respectively. Even though the reference DEM was not available
for further evaluation, we could see that the elevation map generated by iConvDEM-2
definitely showed much clearer land shapes of buildings and roads when compared with
the original AW3D.
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5. Conclusions

This paper presented the use of a CNN model to improve SRTM DEM in dense urban
cities with different treatments for built and non-built features. The CNN model used
a U-Net structure configuration with SRTM DEM, Sentinel 2 multispectral imagery and
Google imagery as input channels, while a high-resolution reference DEM was used as
target data. To better address the high percentage of buildings within urban cities, the
iConvDEM-2 model was introduced with two training processes, one with and one without
buildings. By doing so, iConvDEM-2 outperformed the single model that handled both
building and non-building features (iConvDEM-1). Moreover, the iConvDEM-2 model also
showed better performance when compared to the work using an ANN, shown in Kim
et al. [5].

The iConvDEM-2 model was trained in Nice, France and validated at a different site
in Nice. The performance of iConvDEM-2 showed significantly better results than that
of SRTM DEM. At the validation site in Nice, the RMSE reduction of iConvDEM-2 was
about 50% when compared with SRTM DEM, and the visibility (land shapes, buildings,
and roads) of iConvDEM-2 was much clearer than that of SRTM DEM. Most of the absolute
errors (versus reference DEM) from iConvDEM-2 were below 5 m. This was a significant
improvement because the original SRTM DEM had a majority of its absolute error values
above 10 m.

The iConvDEM-2 was shown in testing to perform very well when applied to a
faraway location (Orchard Road area in Singapore). The RMSE reduction of iConvDEM-2
remained quite impressive at 30%, and its visibility (land shapes, buildings, and roads) was
far clearer than that of the original SRTM DEM. Over Singapore’s Orchard Road area, a



Technologies 2022, 10, 61 17 of 20

majority (80%) of the absolute errors (versus reference DEM) of iConvDEM-2 were below
10 m (while the original SRTM DEM had only 40% of absolute errors that fell below 10 m).

The iConvDEM-2 model presented in this paper was proven to enhance the quality of
SRTM DEM. In addition, the CNN approach proposed in this study can also be applied
to different input DEMs at any spatial resolution, such as AW3D [21] and TanDEM-X [51].
Moreover, the trained CNN model can be applied to any site that has an urbanization
profile similar to that of the training site.

Generally, the method can be implemented to improve any satellite DEM data and
in any urban city. The work presented in this paper effectively and efficiently obtained a
good-quality, high-resolution DEM at low cost. The results of this work have promising
potential to be applied over many urban cities, especially in developing countries where
high quality DEM data are usually not available or very costly. Good-quality DEMs at high
spatial resolutions generated, for example, by the proposed DEM improvement scheme
with the CNN model are an indispensable input parameter in flood simulations to assess
the impacts of changing climate and sea level rise.
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