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Abstract: The work is devoted to the study of technology that can be used to obtain lithium-containing
ceramics of the Li2+4xZr4−xO3 type using the method of solid-phase synthesis combined with thermal
annealing at a temperature of 1500 ◦C. A distinctive feature of this work is the preparation of pure
Li2ZrO3 ceramics with a high structural ordering degree (more than 88%) and density (95–97% of the
theoretical density). During the study, it was found that a change in the content of initial components
for synthesis does not lead to the formation of new phase inclusions; however, an increase in the
LiClO4·3H2O and ZrO2 components leads to changes in the size of crystallites and dislocation density,
which lead to the strengthening of ceramics to external mechanical influences. The results of the
measurements of thermophysical characteristics made it possible to establish that the compaction
of ceramics and a decrease in porosity lead to an increase in the thermal conductivity coefficient
of 3–7%.

Keywords: lithium-containing ceramics; mechanochemical synthesis; thermal annealing; phase
composition; grain sizes

1. Introduction

One of the important tasks in nuclear energy, set by the International Atomic Energy
Commission, is the search for alternative ceramics to the main type, Li4SiO4 ceramics, which
are used as tritium breeder materials in new-generation reactors, particularly in helium-
cooled pebble-bed reactors [1–3]. The search for alternative materials is associated with
expanding the capabilities of materials such as blankets, as well as studying the possibilities
of increasing the production of tritium in the reactor itself due to transmutation reactions
of the 6Li + n→ He + T type and its subsequent accumulation [4,5]. At the same time, it is
worth considering the fact that the short lifetime of tritium, due to rapid radioactive decay,
makes its shelf life extremely limited, which leads to the need for constant reproduction of
tritium in a thermonuclear reactor.

One of the ways to solve this problem is the use of lithium-containing ceramics as
blanket materials, which are placed in the reactor walls for the continuous reproduction
of tritium and the maintenance of thermonuclear reactions [6–8]. In this case, the ceramic
material is subjected to continuous irradiation, accompanied by thermal heating and the
accumulation of radiation damage associated with transmutation reactions, the main
products of which are tritium and helium [9,10]. In turn, the accumulation of helium
in the structure can lead to gaseous swelling of the near-surface layer of ceramics, the
accumulation of stresses, and the deformations of the structure, which can subsequently
lead to a decrease in strength and thermal characteristics [11–14]. In this regard, additional
requirements are imposed on lithium-containing ceramics, related to their resistance, that is,
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requirements not only related to their radiation resistance to helium swelling processes but
also to their resistance to mechanical and thermal loads that may occur during operation.

Moreover, one of the selection criteria for lithium-containing ceramics is the choice
of the oxide component, which plays an important role in determining the structural
characteristics of ceramics. In particular, one of the alternative materials to classical lithium-
containing ceramics of the Li4SiO4 type is lithium zirconate (Li2ZrO3)-based ceramics,
which have high mechanical strength; resistance to corrosion and radiation damage; and
high compatibility with various materials, which opens up prospects for their application as
materials for blankets [15–17]. As is known, the main factor influencing the rate of tritium
release as a result of nuclear reactions is the microstructure of ceramics, which depends not
only on the choice of ceramic type but also on the conditions for their production.

The most common method to obtain Li2ZrO3 ceramics is the method of thermal fusion
of lithium carbonate (Li2CO3) and zirconium dioxide (ZrO2) at high temperatures (over
700 ◦C), although in a number of works, it is indicated that this method is accompanied by
the production of ceramics containing amorphous inclusions, as well as impurities in the
form of undissolved ZrO2 or transitional phases of the Li6Zr2O7 type [18–20]. At the same
time, if the presence of the ZrO2 impurity phase, as a rule, is due to an excess of the initial
powders used for synthesis, then the formation of the Li6Zr2O7 phase may be associated
with the appearance of heterogeneities in the composition, leading to local variations in
stoichiometry [21]. One of the alternative options for the synthesis of lithium-containing
ceramics is the replacement of Li2CO3 with LiClO4·3H2O, which makes it possible to obtain
pure ceramics at high temperatures due to accelerated melting processes.

One of the ways to reduce the concentration of impurities is the doping of ceramics
with various oxides, which leads to a decrease in the sintering temperature but, at the
same time, is accompanied by the formation of two–three-phase ceramics [22–25], which
have also found their application in view of the possibility of increasing the productivity
of tritium release, as well as an increase in resistance to external mechanical influences.
Moreover, in a number of works, it was noted that the presence of two phases leads
to an increase in the resistance of ceramics to external influences, including radiation
damage [26,27].

Despite a fairly large number of scientific studies aimed at studying the properties of
Li2+4xZr4−xO3 ceramics, as well as the methods for their production, there are still many
questions related to the formation of the ceramic structure and ways to get rid of impurities,
as well as an increase in the lithium content in the ceramic structure, which plays a key
role in the further practical application of ceramics. In this regard, the main purpose of
this work was to study the structural ordering processes, as well as the mechanical and
heat-conducting properties of Li2ZrO3 ceramics obtained by solid-state synthesis followed
by thermal sintering at a temperature of 1500 ◦C, depending on the concentration of
components in the composition of ceramics. At the same time, the features of this work that
distinguish it from previous studies are as follows: Firstly, based on the results of previous
studies [28], as well as a number of other studies, the annealing temperature was chosen
to be much higher than (1500 ◦C instead of 900–1100 ◦C) that used in most studies, the
choice of which was determined by the possibilities of the thermal annealing of defects
and impurity inclusions arising during thermal sintering at temperatures below 1000 ◦C.
Secondly, a change in the concentration of the xLiClO4·3H2O and (1−x)ZrO2 components
from x = 0.1–0.5 made it possible to evaluate the change in the properties of ceramics with
different lithium content in the structure, as well as its effect on the structural, mechanical,
and strength properties of ceramics.

The interest in this class of ceramics is due to their great prospects for use as nuclear
materials for breeders for the purpose of breeding tritium, as well as the production of
nuclear fuel and the maintenance of thermonuclear reactions. The use of oxide ceramics
as nuclear materials is associated with radiation damage processes, which, as is known
from the literature [29–33], can have a significant effect on the preservation of material
properties, including strength characteristics and thermophysical parameters [29–33].
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2. Experimental Section

LiClO4·3H2O and ZrO2 powders, purchased from Sigma Aldrich (Saint Louis, MO, USA),
were chosen as initial reagents for synthesis; the powder sizes were no more than 1 µm,
and their chemical purity was 99.95%.

The synthesis of ceramics was carried out using the method of mechanochemical
synthesis, combined with thermal annealing of the resulting ground mixtures at an anneal-
ing temperature of 1500 ◦C. The synthesis was carried out by varying the content of the
components xLiClO4·3H2O and (1−x)ZrO2, where x = 0.1–0.5 in order to determine the
effect of changes in the concentration of the components on the structural parameters and
phase composition of the studied ceramics. The grinding of samples after weighing was
carried out in a PULVERISETTE 6 planetary mill (Fritsch, Germany) under the following
conditions: grinding speed 400 rpm and grinding time 1 h. Thermal annealing was carried
out in a muffle furnace at a temperature of 1500 ◦C for one hour; the heating rate was
10 ◦C/min, and the cooling time was 24 h.

Figure 1 shows a schematic representation of the main processes used to obtain
lithium-containing ceramics, including component weighing, mechanochemical grinding,
and subsequent thermal sintering at specified parameters.
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Figure 1. Schematic representation of the production of Li2+4xZr4−xO3 ceramics.

The study of the structural parameters, as well as the phase composition of the
synthesized ceramics, was carried out using the method of X-ray diffraction phase analysis.
The diffraction patterns were taken in Bragg–Brentano geometry on a D8 Advance ECO
powder diffractometer (Bruker, Germany). The recording conditions were as follows:
2θ = 25–75◦, step 0.03◦, and spectrum acquisition time at the point 1 s. An analysis of the
structural parameters was carried out using the DiffracEVA v.4.2 program code, the phases
were determined using the full-profile Rietveld method, and the phases were refined using
the PDF-2 (2016) database.

The determination of ceramic density was carried out by analyzing changes in crystal
lattice volume with further application of the obtained data in Formula (1):

p =
1.6602∑ AZ

Vo
, (1)

where Vo is the crystal lattice volume depending on the composition of the ceramics, Z is
the number of atoms in a crystal cell, and A is the atomic weight of atoms.

The crystallite sizes were determined using the Scherrer method, which is based on
the determination of the FHWM value depending on the angular position of the diffraction
maxima.

The dislocation density was estimated using Formula (2):

δ =
1
L2 (2)

where L is the crystallite size, determined using the Scherrer method, taking into account
the contribution of reflection shape distortions.
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The crystallinity degree was determined by calculating the ratio of the diffraction
reflection areas to the background radiation area, which is characteristic of disordered
regions in the ceramic structure.

The study of strength properties was carried out using two methods. The determina-
tion of hardness was carried out using the indentation method, which was implemented
using a LECO LM 700 microhardness tester (LECO Corporation, Saint Joseph, MI, USA).
A Vickers pyramid was used as an indenter, with an indenter load of 10 N.

Resistance to single compression was determined by testing the compression of sam-
ples in a press with a compression rate of 0.1 mm/min. The resistance limit was defined
as the maximum pressure that the sample could withstand until cracking and partial
destruction.

The study of the thermo-physical properties of the ceramics was carried out using the
method of determining the temperature difference with a longitudinal heat flux through
the sample during heating. The thermal conductive characteristics were evaluated using
Formula (3), which makes it possible to determine the thermal conductivity coefficient.

λ =
qδ

tc1 − tc2
, (3)

where q is the heat flux density, W/m2; tc1 and tc2 are the temperatures on both sides of
the sample, K; and δ is the thickness of the sample, m. The temperature difference was
measured using a KIT-800 instrument (Moscow, Russia).

3. Results and Discussion

Figure 2 shows the results of the X-ray diffraction phase analysis of the studied ceram-
ics regarding the concentration of the components. A full-profile analysis of the obtained
diffraction patterns made it possible to establish that the main reflections are characteristic
of the Li2ZrO3 monoclinic phase (PDF-01-070-8744) with C2/2(15) spatial syngony. Ac-
cording to the results in [28], thermal annealing at temperatures above 900 ◦C leads to the
displacement of LiO and ZrO2 impurity phases from the ceramic structure, and a further
increase in the annealing temperature leads to the ordering of the structural parameters
(lattice parameter and crystallinity degree) and a change in the grain size associated with
their coarsening and increase in density. An analysis of the obtained diffraction patterns
indicated that a change in the component concentrations in the composition of the ceramics,
as well as subsequent thermal annealing, does not lead to the formation of new phases, as
evidenced by the absence of new reflections in the diffraction patterns. Unlike commer-
cial samples of Li2ZrO3 ceramics, in the structure of which, according to the data in [18],
the presence of impurity phases of the initial ZrO2 and Li2CO3 powders was observed,
impurity inclusions were not found in the studied samples obtained at a temperature of
1500 ◦C. At the same time, the data of a comparative analysis of the areas of diffraction
reflections and background radiation indicate a high crystallinity degree of the samples
(more than 85%), which varies depending on the content of the components. Moreover,
the content of ZrO2 impurity inclusions in the structure of Li2ZrO3 ceramics was reported
in [19], the presence of which is due to manufacturing processes. Moreover, in most known
works [20], thermal sintering occurs at temperatures of 700–1100 ◦C. The main changes in
the diffraction patterns are mainly associated with changes in the intensity of reflections
and their width; this is characterized by a change in the size of crystallites, as well as a shift
of reflections to the region of large angles, which is typical for a change in crystal lattice
parameters. For comparison, the changes in the main reflections and their positions are
presented, according to which, an increase in the concentration of the LiClO4 component
in the initial mixture leads to a decrease in the intensity of reflections and their shift. At
the same time, the greatest changes are observed for ceramics with a content of x = 0.4–0.5.
Such a shift may be due to the substitution of zirconium ions (13.9 Å), which have a radius
larger than that of lithium ions (7.1 Å). An increase in the lithium concentration in the
structure, in turn, does not lead to the formation of impurity phases, and a decrease in the
intensity of reflections and a change in their width (FWHM) indicate changes in the size of
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crystallites and their fragmentation, which, in turn, lead to an increase in the dislocation
density due to an increase in grain boundaries. A change in the positions of reflections,
including their shift to the large angle region, as is known, leads to a decrease in crystal
lattice parameters, which can be due to several factors: the processes of substitution of
atoms of one type for atoms of another type; the deformation processes of crystal lattice
compression, leading to its compaction; and relaxation processes associated with changes in
point defect concentration in the composition of ceramics as a result of external influences.
It is also worth noting that the change in the crystal lattice parameters may be due to the
effect associated with a change in the component concentration of O-vacancies. An increase
in the lithium concentration in the structure can also lead to the formation of additional
vacancy defects, which are formed as a result of the partial breaking of Zr-O chemical
bonds. In this case, part of the free oxygen can be displaced from the structure during
thermal annealing.
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Figure 2. X-ray diffraction patterns of the studied ceramics.

When estimating the shape of the diffraction reflection lines, it was determined that
deformation effects associated with the structure distortion make a very small contribution
to the change in structural parameters (no more than 5–10% according to the Williamson–
Hall method), and the change in the shape of reflections is mostly due to size effects, leading
to a change in the dislocation density.

Relaxation processes also do not make a large contribution to the change in structural
parameters, since the crystallinity degree does not increase with changes in component
concentrations, but it has a slight downward trend, which indicates the absence of defect
annealing processes.

Based on this, it was assumed that the main changes in diffraction reflections asso-
ciated with a maxima position shift to the large angle region are due to the effects of the
substitution of zirconium ions by lithium ions in the lattice sites with an increase in the
lithium-containing component concentration in the ceramic during its synthesis.

Table 1 presents the results of evaluating the structural parameters, as well as the
crystallinity degree of the samples under study. It can be seen from the data presented
that an increase in the X component content leads to a decrease in the crystal lattice
parameters. However, a change in the crystal lattice parameters leads to a slight decrease in
the structural ordering degree, which may be due to the partial replacement of zirconium
ions by lithium ions at the lattice sites, as well as the fragmentation of crystallites, the size
of which also decreases. In turn, a decrease in the size of crystallites leads to an increase in
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the dislocation density, which plays an important role in increasing the strength properties.

Table 1. Unit-cell parameters and crystallinity characteristics for Li2ZrO3 ceramics.

Parameter
Content of LiClO4·3H2O Component

0.1 0.2 0.3 0.4 0.5

Li2ZrO3 monoclinic phase
(PDF-01-070-8744)

(a0 = 5.42660 Å, b0 = 9.03100 Å,
c0 = 5.42270 Å, β0 = 112.720◦,

V0 = 245.13 Å3)
Crystal lattice parameters, Å

a = 5.3915 ± 0.0011,
b = 9.0363 ± 0.0014,
c = 5.4216 ± 0.0021,

β = 112.609◦

a = 5.3829 ± 0.0017,
b = 9.0291 ± 0.0022,
c = 5.4173 ± 0.0024,

β = 112.564◦

a = 5.3786 ± 0.0018,
b = 9.0061 ± 0.0015,
c = 5.4056 ± 0.0022,

β = 112.474◦

a = 5.3691 ± 0.0016,
b = 8.9989 ± 0.0013,
c = 5.3855 ± 0.0014,

β = 112.384◦

a = 5.3617 ± 0.0015,
b = 8.9901 ± 0.0023,
c = 5.3761 ± 0.0017,

β = 112.010◦

Crystal volume, Å3 243.84 ± 0.19 243.14 ± 0.16 241.96 ± 0.12 240.61 ± 0.15 240.25 ± 0.14

Crystallinity degree, %
(structural ordering value) 90.2 ± 0.4 89.3 ± 0.5 88.7 ± 0.3 88.6 ± 0.5 88.0 ± 0.7

Crystallite size, nm (size
determined using

the Scherer equation)
80.2 ± 2.5 76.4 ± 2.6 76.3 ± 2.8 72.2 ± 2.4 65.5 ± 2.1

Dislocation density, 1010 1/cm2 0.155 0.171 0.172 0.191 0.233

Figure 3 shows the assessment results of changes in the crystal lattice parameters
depending on the X component concentration in comparison with the reference values of
the parameters for the Li2ZrO3 phase (PDF-01-070-8744) (a0 = 5.42660 Å, b0 = 9.03100 Å,
c0 = 5.42270 Å, β0 = 112.720◦, and V0 = 245.13 Å3).

The results of changes in the structural parameters (Figure 3) for high annealing
temperatures are in good agreement with the results in [34], according to which, at high
annealing temperatures, an anisotropic change in the crystal lattice parameters was ob-
served due to thermal effects, as well as the difference in cationic radii. In this case, changes
in the parameter a depending on the content of the component have an isotropic nature
of distortions, while the parameters b and c change anisotropically, which may be due to
the difference in the filling of lattice sites, as well as inhomogeneity in the replacement of
zirconium ions by lithium ions.

A decrease in the crystal lattice parameters, as is known, leads to a decrease in its
volume and, consequently, to a decrease in porosity and an increase in the density of
ceramics. Figure 4 shows the results of changes in the density and porosity of the ceramics
depending on the X component concentration. A change in density, including its decrease
at high annealing temperatures of 1500 ◦C, is due to the fact that with a change in the com-
ponents used for synthesis, by varying them with a subsequent increase in LiClO4·3H2O,
the crystal lattice volume decreases, which leads to ceramic compaction. At the same time,
the difference from the density values presented in [28], which are close to the theoretical
values, is that, at high lithium concentrations, there is an overall increase in the lattice
volume, which leads to lower ceramic density values.

As can be seen from the data presented, a change in the crystal lattice parameters
leads to the compaction of ceramics, as well as the approximation of the experimentally
obtained density values to the theoretical value (95–97%). In this case, porosity decreases
from 4.1% to 2.6%, with an increase in the X component, which, in turn, results in the
ceramics strengthening to mechanical stress.

Figure 5 shows the measurement results of the ceramics’ single compression resistance.
The change in the resistance value depending on the concentration of X varies in the range
from 29.3 to 38.4 N, while for concentrations X = 0.4–0.5, an increase in resistance of 25–30%
is observed. Such an increase in single compression resistance is due to an increase in
the density of the ceramics, as well as a change in the dislocation density, which leads
to a strengthening effect and an increase in fracture resistance. A comparative analysis
with the known literature data on measurements of resistance to single compression, taken
from [20,35,36], indicated that the synthesized ceramics have an increased resistance to
mechanical stress, as well as greater strength. At the same time, as shown in [30], in which
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the properties of two-component Li4SiO4-Li2ZrO3 ceramics were studied, an increase in
density led to an increase in strength, which confirms the obtained results. The authors
found that an increase in the resistance of ceramics to mechanical stress was not only
due to an increase in density but also due to an increase in the content of Li2ZrO3 in the
composition of the ceramics. A similar effect was also observed in [36], where it was shown
that a change in component content in the composition of ceramics leads to an increase in
resistance to mechanical stress.
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As can be seen from the presented data on changes in the hardness value of the surface
layer of ceramics, an increase in dislocation density leads to an increase in resistance to
mechanical stress. At the same time, in the case of component concentrations of X = 0.4–0.5,
the ratio of dislocation density to hardening is 3:1. The hardening effect is due to the
creation of additional obstacles to the propagation of microcracks due to the high density
of dislocations, which leads to an increase in resistance to mechanical stress. Moreover, an
important role in strengthening is played by a decrease in the porosity of the ceramics and
an increase in density; this causes a decrease in the concentration of disordered structural
inclusions, which, in turn, leads to the strengthening of ceramics.

The results of the ceramic hardness obtained by indentation are shown in Figure 6.
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The important characteristics for the determination of the operational parameters of
lithium-containing ceramics are their thermophysical parameters, which play an important
role in the processes of heat transfer and heat removal. Figure 7 shows the results of
the change in the thermal conductivity coefficient depending on the concentration of the
X component.
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(b) results of the change in the average value of the thermal conductivity coefficient.

As can be seen from the data presented in Figure 7a, the value of the thermal conduc-
tivity coefficient in a wide measured temperature range remains almost unchanged, with
a slight increase in thermal conductivity (no more than 0.5%) at elevated measurement tem-
peratures. At the same time, the dependences obtained indicate a high stability of thermal
conductivity over the entire temperature range. A comparative diagram of the average
value of thermal conductivity shows that a change in the X component concentration leads
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to an increase in thermal conductivity of 3.5–7%, which indicates an increase in thermal
conductivity due to structural changes, as well as a decrease in porosity. For example, as
a comparison, Figure 7b shows the results of the thermal conductivity for Li2ZrO3 used
as a blanket material [37]. According to this work, the change in thermal conductivity is
influenced by two factors that are associated with heat transfer and heat transfer processes,
as well as the contact area. In our case, the contact area was the same for all the samples
under study; thus, the main changes are associated with the processes of heat transfer and
heat transfer, which directly depend on the structure of the ceramics, as well as porosity.
A decrease in porosity as a result of a change in the X component concentration leads to an
increase in heat transfer and, accordingly, in the thermal conductivity. It should be noted
that such a significant difference from the results in [32] is due to the fact that the studied
ceramics in this work were highly porous samples with a packing density of 1.921 (at
a density of 3.1 g/cm3, 53.4% of the theoretical value).

4. Conclusions

In conclusion, the results of the research can be summarized as follows:

1. The proposed conditions to obtain Li2ZrO3 ceramics with different contents of the
initial components xLiClO4·3H2O and (1−x)ZrO2 (x = 0.1–0.5) at an annealing tem-
perature of 1500 ◦C make it possible to obtain highly ordered pure ceramics with
a monoclinic phase (Li2ZrO3) and a density close to the theoretical value (95–97%).

2. The decrease in the crystal lattice parameters for the Li2ZrO3 monoclinic phase is due
to the substitution of zirconium ions (atomic radius = 13.9 Å) by lithium ions (atomic
radius = 7.1 Å), and it indicates an increase in lithium concentration in the ceramic
structure. At the same time, changes in the crystal lattice parameters depending on
the X component concentration are anisotropic.

3. A change in the X component content leads to an increase in the dislocation density,
a change in which leads to the strengthening of ceramics and an increase in resistance
to mechanical stress and cracking.

4. An increase in the density of ceramics, as well as a decrease in density, leads to
an increase in the thermal conductivity coefficient of 3.5–7%.
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