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Abstract: Deep learning solutions for hand pose estimation are now very reliant on comprehensive
datasets covering diverse camera perspectives, lighting conditions, shapes, and pose variations.
While acquiring such datasets is a challenging task, several studies circumvent this problem by
exploiting synthetic data, but this does not guarantee that they will work well in real situations
mainly due to the gap between the distribution of synthetic and real data. One recent popular solution
to the domain shift problem is learning the mapping function between different domains through
generative adversarial networks. In this study, we present a comprehensive study on effective hand
pose estimation approaches, which are comprised of the leveraged generative adversarial network
(GAN), providing a comprehensive training dataset with different modalities. Benefiting from GAN,
these algorithms can augment data to a variety of hand shapes and poses where data manipulation
is intuitively controlled and greatly realistic. Next, we present related hand pose datasets and
performance comparison of some of these methods for the hand pose estimation problem. The
quantitative and qualitative results indicate that the state-of-the-art hand pose estimators can be
greatly improved with the aid of the training data generated by these GAN-based data augmentation
methods. These methods are able to beat the baseline approaches with better visual quality and
higher values in most of the metrics (PCK and ME) on both the STB and NYU datasets. Finally, in
conclusion, the limitation of the current methods and future directions are discussed.

Keywords: generative adversarial networks; hand pose estimation; data augmentation; domain
translation; semi-supervised learning; weakly supervised learning

1. Introduction

Hand pose estimation, which is a problem of predicting the 2D/3D position of hand
joints, given an RGB/depth input, is receiving a lot of attention in the computer vision field.
It has been applied in many applications, such as human–computer interaction (HCI) [1],
gesture recognition [2–4], sign language recognition [5–8], interactive games [9–11], user
interface controls [12], computer-aided design (CAD) [13], etc. In recent years, by the
advancements in deep learning algorithms, data-driven approaches have become more
advantageous and have led to significant improvements in 2D/3D hand pose estimation, as
a large number of annotated datasets have become available [14–16]. However, acquiring
accurate 3D labeled data requires an expensive marker-based motion capture system or
a massive multi-view camera setting. Therefore, to avoid annotating such large datasets,
which is costly, time consuming and labor intensive, researchers are trying to find alternative
approaches that can leverage them. One upcoming solution is to use synthetic data for
training, where data are automatically annotated and convenient for generating a large
scale of data with accurate ground truth. Although image synthesis can be generated using
a physical renderer, there are usually a few differences between real and synthetic data,
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without consideration of depth sensor noise in a realistic way. Therefore, models trained
on the synthetic data suffers from the domain shift problem, and they fail to perform well
on real datasets, due to the domain gap between the real and synthetic datasets.

The most promising approach is to use generative models that learn to discover
the essence of data and find a best distribution to represent it. Generative adversarial
networks [17], or GANs in short, are a class of generative models, where two neural
networks, generator and discriminator, contest with each other in a zero-sum game, where
one agent’s gain is another agent’s loss. Given a training set, the generator learns to generate
new data with the same statistics as the training set, while the discriminator’s goal is to
distinguish between real and generated samples. GANs have the ability to translate source
synthetic images into realistic target-like images for training purposes. This is known as
domain transfer learning. Several state-of-the-art transfer learning research works used
GANs to enforce the alignment of the latent feature space. The conditional generative
adversarial networks (CGANs) [18], which is an extension of GAN, has the ability to train
synthetic models to generate images based on auxiliary information. Due to the popularity
of the framework, it has become the foundation for many successful architectures, such as
CycleGAN [19], StyleGAN [20], PixelRNN [21], DiscoGAN [22], etc.

The great success of these methods inspired more researchers to apply the generative
adversarial networks to the hand pose estimation problem and train deep learning models
either with a synthesized comprehensive dataset or few existing datasets in a weakly
supervised setup or benefit from unlabeled data in a self-supervised manner to mitigate
the burden of labeled-data acquisition.

Despite the large body of works that have been conducted on hand pose estimation
using generative adversarial networks, no recent all-round survey has been conducted on
it. As far as we know, this is the first survey among current publications which focused
on GAN-based data augmentation for hand pose estimation problem. Moreover, different
from existing review papers on the hand pose estimation problem which mainly discuss
depth-based methods [23,24], in this paper, we present a comprehensive study on the most
recent GAN-based methods based on input data modality, i.e., RGB, depth, or multi-modal
information. Another point of motivation of our work is that researchers do attach much
importance to semi/unsupervised learning using GANs.

In what follows, in Section 2, we discuss the challenge followed by a comprehensive
study of the most representative GAN-based data augmentation studies in solving the hand
pose estimation problem in Section 3. Additionally, the existing hand pose datasets, the
evaluation metrics, and the state-of-the-art results on two common datasets are summarized
in Section 4.

Finally, potential research directions in this rapidly growing field and conclusions are
highlighted in Sections 5 and 6, respectively.

2. Challenge Analysis

Despite the rapid progress in hand pose estimation, it conventionally struggles from
many difficulties, such as an extensive space of pose articulations, self-occlusions, and
limited number of manually annotated data. The most important challenges in hand pose
estimation are the following:

• Annotation difficulties: Existing learning-based methods require a large number of
labeled data to accurately estimate hand poses. However, acquiring precise labels is
costly and labor intensive.

• Lack of various modalities: Most of the existing hand pose datasets only contain RGB
images, depth frames or infrared images instead of paired modalities.

• Requirement for variety and diversity: The real datasets are limited in a quantity
and coverage, mainly due to the difficulty of annotations, annotation accuracy, hand
shape and viewpoint variations, and articulation coverage.

• Occlusions: Due to the high degree of freedom (DoF), the fingers can be heavily
articulated. In particular, hand–object and hand–hand interaction scenarios are still a
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big challenge, due to object occlusion and the lack of a large annotated dataset. Severe
occlusion might lead to loose information on some hand parts or different fingers
mistakenly. To handle occlusion, several studies resorted to a multi-camera setup from
different viewpoints; however, it is expensive and complex to set up a synchronous
and calibrated system with multiple sensors.

• Rapid hand and finger movements: Most conventional RGB/depth cameras cannot
capture the speed of the hand motions and, thus, cause blurry frames or uncorrelated
consecutive frames, which directly affect the hand pose estimation results.

Although many existing methods try to address these challenges with powerful
learning-based approaches, as the effectiveness of generative deep learning aroused, many
researchers try to address these through generative adversarial networks. Such methods
dominate the benchmarks on large public datasets, such as NYU [25], ICVL [26], and
FreiHAND [27]. In what follows, we first explain GANs, then we discuss studies on hand
pose estimation, focusing on addressing the above challenges through data augmentation
using GANs.

3. GAN-Based Hand Pose Data Augmentation

The generative adversarial network (GAN) is an unsupervised learning task in ma-
chine learning that involves automatically discovering and learning the regularities or
patterns in input data such that the model can be used to generate new examples as simi-
larly as possible to the original dataset. GAN consists of two networks called the generator
and discriminator; Figure 1a. The generator takes a simple random variable and generates
new examples, and the discriminator tries to distinguish real samples from the generated
ones. The two models are trained together in a zero-sum game—adversarial—until the
discriminator model is fooled about half of the time, meaning that the generator model
generates plausible examples. Although the original framework [17] has no control of
what is to be generated and it is only dependent on random noise, in a later study [18],
the authors introduced conditional-GAN, where they add the conditional input vector c
concatenated with noise vector z and feed the resulting vector into the generator. This
conditional GAN can be used to generate examples from a domain of a given type. This
allows for some of the more impressive applications of GANs, such as image-to-image
translation, style transfer, photo colorization, and so on.

Figure 1. GAN-based hand pose data augmentation. (a) Overview on generative adversarial network,
(b) procedure illustration of using generated data in HPE problem.

GANs are perhaps best known for their contributions to realistic image synthesis and
model patterns of motion in video. GANs are able to enhance synthetic datasets such that
the statistical distribution resembles a real-world dataset. Many approaches explore how to
better manipulate images by applying GAN models [19,28,29]. Although image synthesis
can be generated using a physical renderer, the difference between real and synthetic data
is not considered in the image synthesis process. Moreover, GANs’ successful ability to
model high-dimensional data, handle missing data, and the capacity of GANs to provide
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multi-modal outputs or multiple plausible answers made researchers more ambitious to
the extent that they use GANs for the hand pose estimation problem either by generating
data in new modalities or by realistic image synthesis through eliminating the domain gap
between the synthetic and real data (Figure1b). Despite the large body of work that has
been conducted on hand pose estimation through GANs, to the best of our knowledge,
this is the first review paper on data augmentation for hand pose estimation using GANs.
Moreover, unlike other studies that focus on a single modality, such as depth or RGB, in
this survey we cover various modalities. Below is a comprehensive survey on GAN-based
hand pose data augmentation based on GANs’ application.

3.1. Image Style Transfer and Data Augmentation

To achieve high accuracy, much annotated data are required in data-driven methods,
which are a labor-intensive and expensive process. Therefore, a few works aimed at im-
proving the accuracy of pose estimation by using a synthetic image for data augmentation.
However, using a physical renderer cannot embed the realistic noise in real data into data
augmentation. To this end, several recent methods enrich existing training examples with
style transfer by modeling real data noise realistically. Transferring the style from one
image onto another has been a trendy subject in computer vision for the last few years.

In [30], they proposed a data-driven approach to generate depth hand images given
ground-truth hand poses using a generative model. The style transfer is applied to generate
the image with the style equivalent to the style image and the content from the content
image. The style and content are defined based on the loss functions by measuring how far
away the synthesized images are from the perfect style transfer. The proposed style-transfer
network aims to transform the smooth synthetic images to become depth hand images more
similar to the real ones. Figure 2 shows the architectural structure of the developed method.
It contains three parts: a generator to transform the 3D hand pose into a deep hand image,
and a discriminator which determines the authenticity of the generated image and the
style-transfer network. At the end, they performed 3D hand pose regression on generated
depth hand images based on the residual convolutional neural network. Their approach
was evaluated and analyzed on three publicly available datasets—NYU [25], ICVL [26], and
MSRA gesture [31] datasets—and it was shown to boost hand pose estimation performance
when used as training images.

Figure 2. Flowchart of the proposed method in [30], covering the generator, the discriminator, and
style-transfer networks in detail. Originally used in [30].

To increase the amount of training data, Shrivastava et al. [32] proposed a framework
which uses simulated and unsupervised learning to fit a model that uses unlabeled real
data to improve the realism of a simulator’s rendered data. They performed an experiment
using real hand depth maps from the NYU [25] hand pose dataset in an extended version
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of SimGAN [32], and successfully added realistic noise to synthetic frames to better imitate
imperfect real frames that are captured by depth cameras. Figure 3 gives an overview of the
proposed model. Once the synthetic data are generated by a black box simulator, they are
refined using a neural network called the ‘refiner network’. The refiner network is trained
using adversarial loss from [17] to enforce the refined images similar to the real ones.

Figure 3. Overview of SimGAN; the self-regularization term minimizes the image difference between
the synthetic and the refined images. Adapted from [32].

3.2. Domain Translation

Although using synthetic data is a potential solution to acquire accurate and unlimited
data, avoiding expensive annotated real data, it has the strong disadvantage that the
network trained only on synthetic data has limited generalization to real images and fails
to generalize to real-world imagery. This visual domain shift from non-photo-realistic
synthetic data to real images presents an even more significant challenge. Although the
classical domain adaptation methods can be used to eliminate the dissimilarity between the
real and synthetic images, recent studies focus on using GANs to bridge the gap between
image distributions through adversarial training. Using domain translation techniques,
such as image-to-image translation, not only leads to generating realistic training images
which can be used to train any machine learning model, but it is also useful for generating
data in different modalities. Since collecting and preparing training data in different
modalities is a challenging task and it requires expensive tools and a complex setup,
researchers focus on using GANs to translate data from one domain to another or to
multiple domains to generate a large scale of data in different modalities for the hand pose
estimation problem.

Image-to-Image Translation

Image-to-image translation can be considered a type of image synthesis which maps
an image from one domain to a corresponding image in another domain. It can be viewed
as a generalization of style transfer since it not only transfers the style but also manipulates
the attributes of the objects. Pix2Pix [29] and CycleGAN [19] are the most popular ones in
supervised and unsupervised image-to-image translation. Pix2pix makes the assumption
that paired data are available for the image translation problem that is being solved. In
Pix2pix, model G was trained to translate images from domain X to domain Y. Cycle
GAN does the same, but additionally, it also trains a model F that translates images in
the opposite direction—from domain Y to domain X. CycleGAN was created in order to
support working with unpaired data since having paired data available is actually rather
rare, and collecting such data can require a large amount of resources.

In [33], Chen et al. suggested blending a synthetic hand poses generated by an
augmented reality (AR) simulator with real background images to generate more realistic
hand images, which later served as training data. Inspired by the pix2pix [29] which
leverages the shape map to constrain the output image, they proposed a tonality-alignment
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GAN (TAGAN) to take the color distribution and shape features into account. Evaluation
on multiple hand pose datasets indicates that their proposed approach outperforms state-
of-the-art methods in both 2D and 3D hand pose estimation. Figure 4 gives an overview of
the proposed method.

Figure 4. Overview of the TAGAN method for realistic hand image synthesis [33]. Synthetic pose by
an AR simulator is blended with real background to yield a synthetic hand image, which is then fed
to the proposed TAGAN to produce a more realistic hand image. Originally used in [33].

In another study by Wu et al., they proposed to directly generate realistic hand images
from 3D pose and synthetic depth maps. However, unlike pose-guided person image
generation, pose-guided hand generation is more challenging due to self-similarity and
self-occlusion. To address these difficulties, they proposed a four-module model, MM-
Hand, which contains 3D pose embedding, multi-modality encoding, progressive transfer,
and image modality decoding [34]. They aimed to convert 3D hand poses to depth maps
using a depth map generator. More specifically, in the 3D pose embedding module, they
project the 3D hand pose onto a 2D image, given the projection matrix, which is followed
by connecting the keypoints on each finger with an ellipsoid, using different colors. Then,
a palm surrogate is formed through connecting a polygon from the base of each finger
and wrist. Then, the depth map generator, which is a pix2pix-based model, is trained
to synthesize depth maps based on any given 3D pose. Their experimental results show
that the augmented hand images by their proposed approach significantly improved the
3D hand pose estimation results, even with reduced training data. The synthesized hand
images using the proposed MM-Hand on the two benchmark datasets STB and RHP are
shown in Figure 5.

Figure 5. Qualitative results under MM-Hand model originally reported in [34]. Synthesized hand
images using MM-Hand on two datasets, STB and RHP. From top to bottom: the STB dataset and the
RHP dataset.

Moreover, to address the lack of various modalities problem, the authors in [35]
presented a depth-image guided GAN model named DGGAN, which includes two sub-
networks: a depth-map reconstruction module and a hand pose estimation module. Once
the depth-map reconstruction module is trained using the GAN loss, it is able to generate a
depth map of a hand based on the RGB input image. The second module trained using
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the task loss estimates hand poses from the input RGB and the GAN-reconstructed depth
images. They aim to reconstruct the depth map from RGB hand images in the absence
of paired RGB and depth training data. Once the depth maps are constructed from the
RGB images, the hand pose estimation modules takes both RGB and depth images to
estimate the 3D hand pose first by estimating the 2D hand keypoints on the RGB images
followed by regressing the 3D hand poses from the inferred 2D keypoints. Next, exploiting
the reconstructed depth map, it regularizes the inferred 3D hand poses. Experimental
results on multiple benchmark datasets show that the synthesized depth maps produced
by DGGAN are quite effective, yielding new state-of-the-art results in estimation accuracy
by notably reducing the mean 3D end-point errors (EPE).

In another study [36], to generate new modalities, Haiderbhai et al. introduced a
novel architecture based on the pix2pix model. They proposed a method of synthetic
X-ray generation using conditional generative adversarial networks and created triplets
for X-ray, pose, and RGB images of natural hand poses sampled from the NYU hand
pose dataset . As a result, they introduced a two-module network. The first one aims to
generate a 2D image of the pose, given the RGB input. Next, the output is stacked with
the original RGB, which is used as input for the second module, which is identical to the
pix2pix architecture. Their proposed model, pix2ray, has the advantages of creating X-ray
simulations in situations where only the 2D input is available and generating more clear
results, especially in occluded cases.

In [37], to improve hand pose estimation on weakly blurred infrared (IR) images under
fast hand motion, the authors proposed a method based on domain transfer learning. The
proposed model consists of a hand image generator (HIG), hand image discriminator (HID)
and three hand pose estimators (HPE). The HIG synthesizes a depth image given input
IR images. To train the HIG network, adapted by [29], they used the pair of unblurred
depth and IR images with slow hand movement. The HID classifies whether the generated
depth map conforms to the human hand depth map. The HPEs estimate the hand skeleton
given an input depth image from the actual depth sensor, synthesized depth map, and IR
image. It is worth mentioning that collecting depth and IR images from a single sensor
eliminates the additional effort for depth image labeling. Moreover, since consistency loss
is back propagated from the results of HPE, given the real depth image, the training is
self-supervised. The proposed model is able to effectively improve hand pose estimation
results in infrared images by generating un-blurred depth images as shown in Figure 6.

Figure 6. The HIG synthesizes a depth map from an infrared map. In the case of slow motion (the
first and second column), the largest discrepancy is shown near the outline of the hand due to sensor
noise. In the case of fast motion (the third and fourth column), the largest discrepancy is shown in
blurry fingers. Originally reported in [37].
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Since acquiring a large paired dataset can be difficult and expensive, inspired by
CyclicGAN, Mueller et al. applied cycleGAN for realistic appearances of generated syn-
thetic samples to reduce the synthetic-real domain gap [38]. They proposed a translation
model, named GANerated, based on cycle-consistent adversarial networks (CycleGAN)
to transfer the synthetic images to “real” ones so as to reduce the domain shift between
them. Mueller et al. controlled the process through these two objectives: first converting
synthesized image to real and calculating synth2real loss, and again converting the result to
synthesized image and calculating real2synth loss. To make the images even more realistic,
they also randomly put some background behind the hands. To simulate the occlusion,
they artificially put some objects in front of the hand.

The proposed model obtains the absolute 3D hand pose by kinematic model fitting,
which is more robust to occlusions, does not require paired data, and generalizes better
due to enrichment of the synthetic data such that it resembles the distribution of real
hand images.

In another study [39], inspired by cycleGAN [19], the authors applied a generative
adversarial network to estimate hand poses through one-to-one relation between the
disparity maps and 3D hand pose models. They aimed to enrich the existing dataset by
augmenting them. Unlike other studies, they synthesized data in the skeleton space (instead
of depth-map space), where data manipulation is intuitively controlled and simplified and,
thereafter, automatically transfers them to realistic depth maps. Their proposed model
consists of three networks: hand pose generator (HPG), hand pose discriminator (HPD),
and hand pose estimator (HPE). The job of HPG is to generate a hand based on the 3D
representation of joints while the HPD tries to determine how real or fake the generated
samples are. The HPE is responsible for estimating the 3D hand pose based on the input
depth map. During the training, these three networks are optimized to reduce the error of
HPE. In the inference time, the algorithm refines the 3D model, which is guided by HPG to
generate the most realistic depth map. More detailed architecture can be found in [39].

Although the recent studies try to solve an issue of lacking reliable RGB/depth datasets
through generations of hand images, most of these works have focused on the generation
of realistic appearances of hands without considering the temporal information. In [40],
leveraged temporal information, they presented an unsupervised domain adaptation
strategy based on CycleGAN for 3D hand–object joint reconstruction. Exploited by 3D
geometric constraints and cycle consistency, their approach is able to effectively transfer
annotation from the synthetic source images to an unlabeled real target domain. Moreover,
by embedding short-term and long-term temporal consistency loss, the proposed model
leverages unlabeled video to fine tune the model and outperforms the state-of-the-art
models on benchmark datasets.

4. Results and Discussion
4.1. Benchmark Datasets

Although earlier hand pose datasets contain only depth data, more datasets that
contain both RGB and depth images have been introduced due to the robustness of meth-
ods that leverage the RGB image. Since the performance of the DNN-based methods is
closely tied to both the quality and quantity of the training data, in the following para-
graphs, we compiled and described the most frequently used datasets in GAN-based data
augmentation studies.

• NYU Hand Pose Dataset It has 72,000 images as training and 8000 as testing data.
Data are collected by 3 Microsoft Kinect cameras from 3 different views with 36 3D
annotations. It is the most commonly used dataset in the hand pose estimation
problem since it covers a variety of poses in RGB and depth modalities.

• Imperial College Vision Lab Hand Posture Dataset (ICVL) The ICVL contains
300,000 training and 1600 images as testing images. All depth images are captured by
Intel RealSense and, in total, 16 hand joints are initialized by the output of the camera
and manually refined.
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• MSRA15 This includes 9 subjects with 17 different gestures. In total, it has 76,000 depth
images with 320 × 240 resolution, collected by Intel’s Creative Interactive Camera,
with 21 annotated joints.

• BigHand2.2M It contains 2.2 million real depth maps collected from 10 subjects. Since
it is collected by six magnetic sensors, it has precisely 6D annotations.

• Stereo Hand Pose Tracking Benchmark (STB) STB includes 18,000 frames, 15,000 for
training and 3000 for testing with 640 × 480 resolution. The 2D keypoint locations are
obtained using the intrinsic parameters of the camera.

• Rendered Hand pose Dataset (RHD) It has 43,986 rendered hand images from 39 ac-
tions performed by 20 characters. Each depth image comes with segmentation mask,
3D and 2D keypoint annotations.

Modality, the type of data (i.e., synthetic or real data), the number of joints and the
number of frames, are summarized in Table 1.

Table 1. Summary of hand pose estimation datasets commonly used in data augmentation using GANs.

Dataset Modality Type Number of Joints Number of Frames

NYU D Real 36 81 k
ICVL D Real 16 332.5 k

MSRA15 D Real 21 76.5 k
BigHand2.2M D Real 21 2.2 M

STB RGB+D Real 21 18 k
RHD RGB+D Synthetic 21 44 k

4.2. Evaluation Protocol

The most common evaluation metrics that are used to gauge the performance of these
methods are end-point error (EPE) and percentage of correct keypoints (PCK). The former
one is the average 3D Euclidean distance between the ground truth and predicted joints,
and the latter one measures the mean percentage of the predicted joint locations that fall
within a certain error threshold.

4.3. Quantitative and Qualitative Results

It should be noted that since not all these works evaluate their performance using both
metrics and on the same dataset, we summarized the reported results for methods on NYU
and STB hand pose datasets.

For the NYU hand dataset, we choose refs. [30,39] since the other studies with NYU do
not provide the quantitative results and only compare the quality of synthesized images. In
Figure 7, the results are illustrated with and without the use of synthetic images for training
on the NYU dataset. As it is reported in [30], the developed method obtains 0.4 mm reduction
of the average 3D joint error, compared with the current best performance by Pose-REN [41].
Moreover, the results from ref. [39] also indicate the 3.2 mm reduction in mean error due to
the increase in training samples from the proposed GAN-based data augmentation model.
Furthermore, the developed methods are compared by the percentage of frames at different
maximum error thresholds in Figure 7b. It has shown that both studies [39] and [30] achieved
higher accuracy compared to the HPE base lines, [42] and [41], respectively.
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Figure 7. On NYU dataset, the contribution of the [30,39] methods to the accuracy are compared.
(a) Mean error. (b) The fraction of frames over different maximum Euclidean distance error threshold.
The larger the area under each curve, the better. (Best viewed on screen).

For the STB dataset, we compare DGGAN [35], GANerated [38], TAGAN [33], and
MM-Hand [34] based on the reported PCK value in Figure 8. As it is mentioned, the larger
the area under the curve, the higher the represented accuracy. The GANerated [38] has the
lowest value of 0.965, compared to the others.

Figure 8. Comparison of [33–35,38] approaches for 3D pose estimation on the STB dataset. The
fraction of frames over different maximum Euclidean distance error threshold. The larger area under
the curve (AUC) represents better results. (Best viewed on screen).

5. Discussions and Future Directions

The explosion of interest in GANs is driven not only by their potential to learn deep,
highly nonlinear mappings from a latent space into a data space and back, but also by their
potential to make use of the vast quantities of unlabeled image data that remain closed to
deep representation learning. While GAN has achieved great success due to its ability to
generate realistic samples, GANs are still hard to train due to several common problematic
unstable training and convergence behaviors, such as mode collapse, non-convergence and
oscillatory behavior. To address the GAN challenges, recent studies are categorized in three
main groups: proper architecture, loss function and optimization techniques. Therefore, a
combination of careful balance during the adversarial optimization, finding new objective
functions and the proper architecture can prove to outperform the state-of-the-art methods
and can be a future research direction to explore. Moreover, due to the lack of robust and
consistent metrics, coming up with good evaluation metric is still an open challenge to
compare different GAN variants based on the visual assessment of the generated images.

On the other hand, despite the great performance of the current methods on hand pose
estimation using GANs, still there remain difficulties in generalizing them to multi-hand
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interaction. Furthermore, when it comes to evaluating GANs, there are many proposals
but little consensus. Therefore, another future direction to study would be exploring
good evaluation metrics in this field. Moreover, because of the interest of big technology
companies in this field, perhaps in the near future, we can acquire much bigger and more
generalized datasets generated by GAN and, therefore, very well-performing models on
different modalities.

6. Conclusions

In this study, we reviewed the most recent state-of-the-art methods in data augmen-
tation for hand pose estimation problem using GANs. Since most of the top-performed
methods in HPE required large-scale training datasets, the current lack of large-scale
training datasets that are accurate and diverse causes such methods to overfit. Moreover,
manual hand–keypoint annotation is expensive, labor intensive, and still error-prone, often
not being accurate enough either due to measurement errors or due to human errors. To
address the quantitative and qualitative issues of hand pose training data and to enrich the
hand pose dataset in modality and quantity, recent studies focus on using GANs to acquire
comprehensive datasets in terms of quantity and modalities.

The main goal of this paper is to provide an overview of the methods used in hand
pose estimation leveraged by GANs and point out the strengths and drawbacks of these
methods. We classify these studies based on the use of GANs’ application. In other
words, we provide a detailed discussion of the most recent studies on image synthesis and
image-to-image translation in HPE, where they aim to alleviate the burden of the costly
3D annotations in a real-world dataset. We aim to provide a simple guideline for those
who want to apply GAN to the hand pose estimation problem and help further research in
weakly/self-supervised learning.
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