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Abstract: In this paper, a robotic Multitasking Intelligent Nurse Aid (MINA) is proposed to assist
nurses with everyday object fetching tasks. MINA consists of a manipulator arm on an omni-
directional mobile base. Before the operation, an augmented reality interface was used to place
waypoints. Waypoints can indicate the location of a patient, supply shelf, and other locations of
interest. When commanded to retrieve an object, MINA uses simultaneous localization and mapping
to map its environment and navigate to the supply shelf waypoint. At the shelf, MINA builds a
3D point cloud representation of the shelf and searches for barcodes to identify and localize the
object it was sent to retrieve. Upon grasping the object, it returns to the user. Collision avoidance
is incorporated during the mobile navigation and grasping tasks. We performed experiments to
evaluate MINA’s efficacy including with obstacles along the path. The experimental results showed
that MINA can repeatedly navigate to the specified waypoints and successfully perform the grasping
and retrieval task.

Keywords: robotics; assistive robotics; intelligent systems; augmented reality

1. Introduction

Nurses represent the largest portion of health professionals and play vital roles in
healthcare. Nurses provide and coordinate patient care and educate patients and the
public about health conditions. The U.S. Bureau of Labor Statistics projects that the needed
number of nurses will grow by 9% over the next decade [1]. Growth will occur for a number
of reasons, including primary and preventive care for a growing population, increasing
rates of chronic conditions, and healthcare services demand for an aging population.

Safe, high-quality healthcare depends on the physical and mental well-being of nurses
and other healthcare personnel [2]. Nurse burnout is a widespread phenomenon described
by a decrease in nurses’ energy, emotional exhaustion, lack of motivation, and feelings
of frustration, all of which can lead to a decrease in work efficacy and productivity. A
study of fifty-three-thousand eight-hundred forty-six nurses from six countries showed a
strong correlation between nurse burnout and ratings of care quality [3]. Nurses are often
overburdened, stressed, work long hours, and suffer from a lack of sleep and a poor diet [4].
During the COVID-19 pandemic, the nurse workload increased, and nurses were under
stress and pressure due to the need to provide intensive care to COVID-19 patients and
longer working hours [5].

Nurses are responsible for a dizzying number of tasks: assessing patients’ conditions,
observing patients and recording data (including vital signs), recording patients’ medical
histories and symptoms, administering patients’ treatments, operating and monitoring
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medical equipment, transferring or walking patients (especially after surgery), performing
diagnostic tests and analyzing the results, ensuring a clean and sterilized environment for
the patient, establishing plans for patients’ care or contributing information to existing
plans, consulting and collaborating with doctors and other healthcare professionals, edu-
cating patients and their families on how to manage illnesses or injuries, devising at-home
treatment and monitoring after discharge from hospital, training new nurses and students,
and other tasks. Typically, nurses are directly responsible for 6–8 patients during their
10–12 h shift. Hospitals and other healthcare facilities are obligated to ensure the safety
of patients and minimize medical errors, which is the third leading cause of death in the
U.S. [6]. Enhancing the work of nurses is vital to ensure quality healthcare and directly
contributes to the nation’s economic and social well-being. Pervasive technologies offer
the potential to improve the work performances of tomorrow’s nurses in multiple ways,
including improving the productivity, efficacy, occupational safety, and quality of nurses’
work life [7].

We envision the future of work for nurses to be enhanced by a Multitasking Intelligent
Nurse Aid (MINA) robotic system. One of MINA’s primary tasks would be to retrieve items
from supply rooms, sparing the nurse time and effort. However, healthcare facilities usually
are complex, dynamic environments. Such fetching tasks could benefit from human–robot
interaction, where nurses or other users can provide location information to the robot to
assist it in task planning and navigation. For instance, a user can set or update navigation
waypoints for a robot system to follow and fetch items needed for direct patient care. This
would require a natural, intuitive interface to specify waypoints and visualize their location.

In this work, the focus is on using the MINA robotic system in a medical supply sce-
nario, where the robot will be used for fetching and providing medical items. The scenario
can be divided into the following steps; (1) navigation towards the supply cart when the
robot receives a request, (2) locating an object of interest by visually detecting and reading
barcodes, (3) grasping the required item from the supply cart, and (4) returning the fetched
items to the required destination.

For Steps (1) and (4), our navigation concept involves human–robot interaction using
Augmented Reality (AR), as it allows hospital staff to set specific waypoints in an indoor
area using virtual navigation pins and natural interfaces. The waypoints can be related
to the location’s interest, e.g., supply shelves, doorways, bedside, etc. To enable users’
free movement in a given space and hands-free interaction, we used an Augmented
Reality Head-Mounted Display (ARHMD). Once waypoints have been established, the user
commands the robot to move to a specific waypoint to fetch a specific object and bring it
back. For Step (2), RGB and depth images are used to build a 3D point cloud map of the
location. The images are then processed to detect barcodes in the scene and determine their
3D location with respect to the robot. In Step (3), the barcode position is collected from
the point cloud map and sent to the robot arm. A collision-free trajectory is calculated to
position the gripper around the object. With the object grasped by the gripper, the arm is
moved to a pose suitable for transportation. A previous paper presented the preliminary
work of this project [8]. This paper presented the initial design of the assistive robot and
was limited to the validation of Step (2).

The main contributions of this paper are as follows: (1) Barcode detection has been
used mostly as a means of localizing mobile robots in navigation and SLAM, as seen in
works such as [9–13]. Most of these works have used manually placed markers rather
than the barcodes that are already in the environment on products. Additionally, we used
barcode detection and localization, in a novel manner, to perform the task of grasping the
object by identifying the barcode and mapping its location in a point cloud for fetching the
object. (2) We used augmented reality in the context of human–robot collaboration to allow
the user to place waypoints for robotic navigation in real time. For that, we implemented a
novel approach of using AR with a cloud-based service, Azure Spatial Anchors, as a means
for mobile robotic navigation.
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The paper proceeds as follows. A review of previous and related research is presented
in Section 2. In Section 3, we present the design of the MINA robot, including its user
interface, hardware, and software systems. Experimental tests of the MINA robot in
carrying out a fetching task are presented in Section 4. We discuss the current limitations of
MINA and the directions these present for future efforts in Section 5 before concluding in
Section 6.

2. Related Work
2.1. Nursing Assistance and Service Robotics

There is notable research focusing on robotics to provide assistance to nurses, such as
supplying items and acting as a teammate while nurses focus on treating patients, especially
during pandemics [7]. Robots such as Moxi and YuMi were developed for such purposes.
Moxi primarily focuses on autonomous supply and delivery of items to patient rooms [14],
and YuMi, a mobile robot developed by ABB, primarily functions to assist medical staff in
handling laboratory-based items in hospitals [15].

Both of the robots were tested in hospitals in Texas, and YuMi was primarily tested in
Texas Medical Center in Houston, Texas.

There are also robots that are designed to assist nurses by training and preparing them
for the use of new technologies. Danesh et al. [16] focused on the robot RoboAPRN, which
uses remote presence telehealth technology designed to provide remote communication and
assessments to prepare nursing students in using telecommunication, through a simulation
lab especially on psychiatric/mental health care delivery [17].

2.2. Augmented Reality and Robot Navigation

AR has the potential to facilitate the communication between humans and robots [18].
For mobile service robots, AR can improve navigation by enabling human operators to set
waypoints. Waypoint navigation provides humans with a supervisory role as they are in
charge of task planning, leaving only the local path-planning to the robot [19]. Furthermore,
waypoint navigation has the potential to reduce the workload of users [20] as it allows
users to delegate some tasks to robots creating a human–robot collaborative environment
and turning the robot into an assistant.

Waypoint navigation is one use of the ARHMDs for mobile robots in human–robot
collaboration, as augmented and virtual reality can provide an immersive interface for
robot control. Baker et al. [21] presented a target selection interface in virtual reality
using a head-mounted display to allow waypoint navigation of mobile robots. Kästner
and Lambrecht [22] presented a prototype of the AR visualization of the navigation of
mobile robots using the Microsoft HoloLens. Further, Chacko et al. [23] presented a spatial
referencing system using AR that allows users to tag and allocate tasks for a robotic system
to be performed at those locations.

2.3. Grasping Common Objects

With their maneuverability, precision, and speed and a variety of end-effector options
(grippers, hands, vacuums, etc.), robot manipulators have long been used for pick and
place tasks ranging from automotive assembly lines moving heavy chassis to small delicate
silicon chip components. While their use is widely limited to industrial and manufacturing
scenarios, more recent efforts have focused on the pick and place of unstructured items
in cluttered environments such as box packing or use in-home and workplace service
robots [24,25]. Ni et al. [26] implemented a two-stream convolutional neural network
to extract features from RGB image and depth image data and performed two-fingered
parallel-jawed grasping on objects in a cluttered environment. Zapata-Impata et al. [27]
developed a geometry-based approach to perform grasping by finding the best pair of
grasping points on an object surface using point cloud data. Xia et al. [28] focused on grasp-
ing by implementing a cuckoo search strategy on point cloud data to obtain a hierarchical
decomposition model and used a region decision method to evaluate the grasping position
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on the object. There are also research works such as [29] that focus on the estimation of
the optimal grasping pose of the robot arm to fetch objects through a hybrid generative
grasping convolutional neural network.

2.4. SLAM and Use Of Barcodes

Simultaneous Localization and Mapping (SLAM) has been an active research topic for
years in the field of robotics. In particular, vision-based SLAM (Visual SLAM (VSLAM))
utilizes visual information such as camera images and depth sensing. PL-SLAM [30] is a
VSLAM approach that is based on ORB-SLAM [31], with improved efficiency by modifying
the original approach to include simultaneous point and line processing, enabling VSLAM
to work in low-textured and motion-blurred scenes. OpenVSLAM [32] is a graph-based
SLAM approach that uses three modules: tracking, mapping, and global optimization.

There are some notable works that incorporate barcodes with SLAM and other navi-
gation methods for robotic navigation. Some research works use square fiducial markers,
which are akin to 2D barcodes (e.g., April tags [9] and ArUco tags [10]). UcoSLAM [11]
uses keypoints in the environment along with square fiducial markers as part of its SLAM
method, where a map can be created only through markers, keypoints, or through a
bot. JORB-SLAM [33] is another SLAM method that uses ORB-SLAM in a collaborative
multi-agent scenario for quicker and greater area coverage, where AprilTags are used for
robot-to-robot loop closure. George et al. [12] used AprilTags as 2D barcodes to construct
a map of the environment for the localization and navigation of a humanoid robot in
indoor environments. Kwon et al. [13] used unmanned aerial vehicles with barcode readers
for autonomous navigation in a warehouse scenario, and the barcode data were used
among other data such as odometry, altitude, velocity, etc. to create map and path for the
UAV navigation.

3. System Design

The system architecture is presented in Figure 1. The first part of the MINA robotic
system involves robot navigation to a point of interest. To facilitate that, the user sets a
location by placing a virtual pin. The second part of the system involves the process of
identifying objects and locations by detecting barcodes and building a point cloud map.
The third part of the system involves the fetching task, where the robot moves to the
identified location of the objects and performs the grasping operation to fetch the objects.

Figure 1. Overview of MINA’s system architecture.

3.1. Hardware and Software Overview

The MINA robot consists of a Franka Emika Panda robot manipulator mounted on a
Clearpath Ridgeback mobile base. The Panda has seven joints, with torque sensors at each
joint allowing for compliant control. The Panda payload is 3 kg, with a reach of 855 mm.
The Ridgeback base is omnidirectional through the use of Mecanum wheels. It is 960 mm
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long, 730 mm wide, and 311 mm high, with a payload of 100 kg. It has a pair of integrated
LiDARs with a 270◦ field of view in the front and rear parts of the base. The Ridgeback
carries and provides power to the Panda arm, as well as its controller. We added an Intel
Realsense D435i RGBD camera to perform object identification localization, as well as build
3D maps of the environment. The MINA robot can be seen in Figure 2.

Figure 2. The MINA robot (highlighted) consists of a Franka Emika Panda robot manipulator
mounted on a Clearpath Ridgeback mobile base. Sensors include LiDARs and an RGBD camera.

Both the Panda arm and Ridgeback mobile base have drivers for the Robot Operating
System (ROS). We leveraged the ROS for integration and control [34], in order to leverage its
large community and open-source packages. One such package is Moveit, which is used to
calculate forward and inverse kinematics, collision-free joint trajectories, and visualization
data. The ROS runs on an internal computer in the Ridgeback mobile base. Due to
the computational load of perception, mapping, navigation, and object detection, two
laptops running additional ROS threads were carried as the payload by the Ridgeback. The
consolidation of the computation is an avenue of future work.

Merging the Ridgeback base and Panda arm within Moveit is not trivial. The Ridge-
back base and Panda arm are designed to function as independent robots, and simply
networking their respected computer systems causes multiple software conflicts and errors.
The most critical of these errors are related to naming collisions in joints, links, executables,
and data pipelines. The solution required moving all of the Panda software into a unique
namespace during runtime. This prepends all joint, link, executable, and data pipeline
names to avoid conflict. A new static joint was created in the software to define the connec-
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tion between the base and arm. With these changes, MINA can function as a single unified
robot with Moveit.

3.2. Augmented Reality User Interface and Navigation

The MINA navigation control interface employed the Microsoft Hololens 2 ARHMD
and was developed using Unity 2020.3.12f1 and the Mixed Reality Toolkit 2.7.2.0. for
the HoloLens. To exchange information between the robotic system and the Microsoft
HoloLens, we used ROSBridge [35] libraries, as they provide a JSON API that allows ROS
publishing and subscribing functionalities to any other application.

In order to share the navigation goals between the Microsoft HoloLens and the robotic
system, we use an Azure Mixed Reality Service named Azure Spatial Anchors (ASA). An
ASA is a representation of a real physical point that persists in the cloud and can be queried
later by any other device that connects to the service [36]. ASAs allow users to specify
locations in non-static environments, which is the case of hospital hallways. Further,
ASAs support different devices and platforms, such as the Microsoft HoloLens and mobile
devices (through ARKit and ARCore), allowing seamless information exchange. There
are other solutions that could have been considered for navigation, such as using markers
(e.g., AprilTags or Vuforia Image Markers), but we preferred to avoid the additional step of
modifying the environment.

Our application sends information about the ASA by publishing a message to a topic
in the ROS. This message is processed by a back-end application in Python, which collects
the location and orientation of the spatial anchor and sets the ASA as an ROS navigation
goal (see Figure 3, top and bottom left) including the desired orientation for the robot
using the navigation goal (as opposed to simply specifying the location). This facilitates
searching for barcodes and grasping the desired objects, i.e., the camera mounted on the
robot must be facing the potential objects, and the arm must be oriented within reaching
distance. After the navigation goal has been received, the MINA robot makes a 360° turn to
scan the room, looking for ASAs. To enable the ASA, the robot is equipped with an ASUS
Xtion RGBD camera. Additionally, we used RViz as a 3D visualizer for ROS to check the
location of the ASA in the map; see Figure 3 (top and bottom right). Once the robot has
found and localized one or more ASAs in the map, a new anchor can be created to be sent
to the MINA robot as a new navigational goal (see Figure 3, bottom right and left).

Figure 3. User interface: (Top left) The AR interface with 6 buttons to set navigation goals. A virtual
pin is located in front of the robot. (Top right) The RViz rendering of the map and the navigation
goal. (Bottom left) The MINA robot moving to a new navigation goal; the previous navigation goal
is shown in red. (Bottom right) The RViz rendering of the map and navigation goals.
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The MINA robot uses the ROS 2D Navigation Stack. This software stack utilizes the
robot’s wheel odometry, IMU navigation, and LiDAR to perform SLAM and collision-free
navigation. Using OpenSlam’s Gmapping, the Navigation Stack uses the LiDAR data to
localize the robot with Adaptive Monte Carlo Localization (AMCL) and fuses this result
with the vehicle odometry via an extended Kalman filter. The LiDAR data are used to create
a three-dimensional collision map in the form of a voxel grid, and this is then flattened into
a two-dimensional cost map. The navigation stack uses an ROS topic to input a navigation
goal coordinate from higher-level software, such as our AR user interface [37]. Both a
global path planner and a local path planner are used to navigate the robot from its current
location to the goal coordinates.

The ROS has multiple global and local path planner algorithms, including the Dynamic
Window Approach (DWA), trajectory rollout, A*, and Dijkstra’s algorithm [38]. The MINA
robot is configured to use the DWA for its local path planner and Dijkstra’s algorithm for
its global path planner. Trajectory roll out offers a more detailed forward simulation of
acceleration than the DWA at the expense of greater computational expense. However, this
detail is not necessary for a robot with a powerful drive train as the Clearpath Ridgeback.
A*, if configured correctly, can offer a computationally less expensive global path planner
than Dijkstra. However, in a complex environment such as a hospital or medical suite,
the optimal solution provided by Dijkstra’s algorithm provides more reliable and safer
navigation. The Ridgeback base is a large robot with a capable Intel processor for the
computationally more expensive Dijkstra’s algorithm.

The ROS Navigation Stack can be started with or without a pre-existing map. In our
experiments, we constructed a map with the LiDAR data and saved it to the robot’s files
system. This map was reloaded alongside Azure Spatial Anchors.

3.3. Barcode Detection and SLAM

There were three steps that were performed in terms of barcode detection and SLAM
to enable the robot grasping task. The first step in this process was creating a point cloud
map of the environment in front of the robot. In our current case, this was an experimental
supply cart filled with barcodes and objects. During the process of point cloud map creation,
the system simultaneously performs barcode detection and identifies the locations of the
barcodes and the corresponding objects placed with them. Once the barcode locations are
identified, the system places a marker point for each barcode location in the point cloud
map, which is used by the robot to perform the fetching task on the object.

The barcode detection and map cloud creation are performed using RGB and depth
images obtained from an RGBD 3D camera. As shown in Figure 2, the camera is mounted
on the robot from which it performs barcode detection and map cloud creation by obtaining
RGB and depth images. The point cloud map is created from the RGB and depth images
using a SLAM approach called Real-Time Appearance-Based Mapping (RTAB-Map) [39],
which is a graph-based SLAM approach with a loop closure detector that uses a bag-of-
words approach to determine the location of an image for loop closure detection.

The barcode detection process is shown in Figure 4. We used the European Article
Number (EAN-13) barcodes placed right below the objects, as shown in Figure 5. The mo-
tivation for using the EAN-13 barcodes was their popularity in consumer products and
supply shelves. The barcode detection and localization were implemented using OpenCV
and the ZBar library [40]. OpenCV is used to convert the RGB images to grayscale, which
are then passed to the zbar library. The zbar library performs the barcode detection and
location identification process using three main components: image scanner, linear scanner,
and decoder. The image scanner scans the two-dimensional images to produce a linear
intensity sample stream The linear scanner scans the intensity sample stream to produce a
bar width stream using one-dimensional signal processing techniques. The decoder scans
and decodes the bar width stream to produce the barcode data and other information such
as the barcode type and its 2D location in the image.
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Once the barcode location is identified in the image, the depth value of the barcode at
that location is obtained from the depth image. The depth values from the depth image are
passed to a spatial median filter to remove noise, and the appropriate depth value at the
barcode location is obtained. Given the barcode location and depth value, the location of
the barcode in the point cloud map is obtained by mapping the values with respect to the
RGBD camera’s transform frame.

Let (u, v) be the pixel coordinates of the detected barcode in the image and d the depth
value at (u, v) in the depth image. Let (x, y, z) be the location of the barcode in the point
cloud map with respect to the point cloud map’s reference frame. Let ( f x, f y) be the focal
lengths of the camera and (cx, cy) be the principal points of the camera. The 2D image
coordinates (u, v) are converted to 3D world coordinates as:

x = ((u − cx)/ f x) ∗ d/1000

y = ((v − cy)/ f y) ∗ d/1000

z = d/1000.

Scaling by 1000 converts the camera depth units in millimeters to the point cloud map
units in meters. For placing the marker points, text- and cube-based markers are used,
through which the barcode information and its location can be identified, as shown in
Figure 6. The camera is mounted on the robot at a height of 40 cm above the robot mobile
base, and the camera is able to detect the barcode at a distance of approximately 93 cm
from the cart.

Figure 4. Barcode detection and SLAM architecture.
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Figure 5. Barcodes placed below the items in front of the MINA robot.

Figure 6. Two barcodes detected in the RGB image and indicated by green squares.

3.4. Grasping Control

To implement grasping control, an existing robot control framework MoveIt was used.
Our software uses MoveIt in order to calculate a coordinate waypoint navigation plan to
precisely move to and pick up the object. MoveIt includes a virtual planning environment,
in which the occupied space can be mapped for collision avoidance. The MoveIt motion
planning algorithms then ensure that no part of the robot enters into this space. The
coordinates of the objects were obtained from the barcode detection module and were then
transformed into the robot arm’s frame of reference. The control interface was implemented
using both a GUI built using the PyQt5 platform and an ROS topic interface. Grasping can
be initiated and controlled with either the GUI or ROS topic.

MoveIt enables collision-free movement and control of our robotic arm, including
forward and inverse kinematics, during run-time. While the base is moving, the arm is in
a tucked position to reduce vibration and induced moments. Before initiating a grasping
task, the arm untucks. During this stage, the cart, objects, camera, and camera pole are
mapped as occupied space. This ensures that there are no collisions with the environment
or camera system. When the arm is untucked and ready for grasping, the occupied space
designation surrounding the object is removed, so the gripper can approach the object.
An end effector waypoint is calculated 15 cm above the object and another at the object’s
location, so the gripper fingers are on both sides of it. The robotic arm untucks, moves
through these waypoints, grasps the object by closing the gripper, moves reverse through
these waypoints, and tucks, ready for the robot base to move. While the object is held by
the gripper, the collision avoidance space is extended to include the grasped object and
avoid collisions with the table or camera system.
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4. Experiments

A series of experiments was conducted to test the capability of the MINA system in
a fetching task. The MINA system is still in a preliminary design phase, but the results
indicated its efficacy and potential for future capability.

4.1. Experimental Setup

The experiments were intended to replicate a medical supply shelf or cart scenario.
A typical medical supply cart is shown in Figure 7. A laboratory cart was placed with mul-
tiple objects placed on it, and barcodes were attached below each. MINA then performed
navigation, barcode detection, and the grasping task.

Using the Microsoft HoloLens and ASAs, we placed four anchor points, including the
home position, to define the path for the robot to navigate, see Figure 8 (left). The home
position was set as the first anchor point, and two anchor points were placed along the
robot path from the home position to a supply cart holding various objects; another anchor
point was placed on the return path from the cart to the home position. Since the main
focus was on a hospital scenario, medical-related objects were used for the fetching tasks
in the experiments, including a prescription pill bottle, a box of bandages, a thermometer,
and a water jug. The objects were placed on the laboratory cart with barcodes attached
to it. An EAN-13-type barcode was attached to the cart below the object of interest for
target detection and localization. Due to the camera resolution, the barcode was oversized
in this proof-of-concept work. Future efforts will focus on using the barcodes that are on
object packaging or smaller ones printed and placed on the shelves. This can be seen in
Figure 8 (Right).

Figure 7. Typical medical supply cart used in hospitals.
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The map generated by the robot, including reference frames associated with each ASA
that were used for navigation, can be seen in Figure 9. The experiments were repeated
multiple times. We present data for four trials without any obstacles and three trials with
an obstacle placed in the robot motion path. The obstacle was placed in the path of the
robot between Anchor Point 1 and Anchor Point 2.

Figure 8. (Left) A view of the three ASAs that the robot will visit. A fourth ASA was added to the
left of the cart to make the return safer. (Right) A view of the cart with graspable objects, the barcode,
and the ASA near the cart.

Figure 9. Anchor points placed along the path of the robot.

4.2. Experimental Results

Figure 10 shows the plot of the robot movement in comparison to the specified anchor
point locations for the four trials. The robot maneuvered within 30 cm of each ASA
waypoint before it moved to the next. Note that the starting and ending positions are at the
bottom of the figure, and the shelf is at the top. The robot motion is counterclockwise when
viewed on a top-down map. The robot paused at the object shelf while the arm moved
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to grasp the object. The trajectories were notably consistent across the tests. In Trial 4,
the robot sensed one of the human observers and moved around to the right of where he
had been. In Table 1, we present the travel times between each ASA waypoint for each trial,
as well as the mean travel times. The times in each trial were consistent. The travel time
from ASA 1 to 2 did not require much rotation of the robot, so its time was notably shorter.
The rotation speed is a tunable parameter, so the time can be reduced between ASAs in
the future.

Table 1. The travel times between ASA waypoints for each trial with no obstacles.

Time between ASAs (secs)

trial 1-2 2-3 3-4 4-1

1 4.620 26.260 9.7390 29.1580

2 8.8030 17.4880 30.6030 21.00

3 11.0520 21.8800 25.5200 20.6170

4 15.1890 20.7850 25.5120 20.7140

mean 8.1657 20.8760 21.9540 23.5917

Images of the robot base movement from one of the fetching task experiments, starting
from the home position towards the cart, grasping the object, and then, returning back to
the home position, are shown in Figure 11. Figure 12 shows the barcode that is detected
and highlighted as a separate frame in the point cloud shown from both the camera view
and rviz view respectively.

-1 0 1 2 3 4

1

2

3

4

5

ASA locations

base traj 1

base traj 2

base traj 3

base traj 4

Figure 10. Plot of robot base trajectories for four trials with respect to the ASA locations. The base
moves within a neighborhood of each ASA. At ASA 2, which is the cart, it performs the barcode
identification and object grasping task.
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Figure 11. (Top left) Robot moving from home position to Anchor 1 waypoint. (Top right) Robot
moving from Anchor 1 waypoint to Anchor 2 waypoint. (Middle left) Robot getting into pre-grasp
position. (Middle right) Robot grasping the object. (Bottom left) Robot getting into post-grasp
position. (Bottom right) Robot moving to home position.

Figure 12. Barcode detected and highlighted at the detected location in the point cloud shown from
camera view (left) and rviz view (right).

Experiments with an obstacle in the path were performed to see the consistency
of robot motion with respect to the ASA waypoint locations while performing collision
avoidance. An obstacle was placed between ASA 1 and ASA 2. Figure 13 shows plots of
three robot motion trajectories with respect to ASA locations while performing collision
avoidance. It can be seen that the robot moved further right once it detected the obstacle,
thus preventing a collision and still reaching the ASA 2 waypoint near the experimental
cart. In Trial 1, between ASA 3 and home, the robot detected the obstacle and moved
alongside it for a short distance to make sure it was added to the map. Table 2 shows the
time for travel between each waypoint for each trial. There was notably more variation
in times compared to the trials when there was no obstacle, as the robot slowed down for
safety when near the obstacle, even if it did not need to alter its course.

Table 2. The travel times between ASA waypoints for each trial with an obstacle between Waypoints
1 and 2.

Time between ASAs (secs)

trial 1-2 2-3 3-4 4-1

1 11.2360 48.8050 73.6020 67.0440

2 14.0240 47.9820 38.9340 63.4510

3 15.8380 28.2120 69.5370 21.0270

mean 13.5370 38.5085 71.5695 44.0355
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Figure 14 provides a series of images collected during an experiment with an obstacle
between ASA 1 and ASA 2 (Trial 2 in Figure 13). From Figure 14, it can be seen that the
robot was able to successfully perform collision avoidance, following which it was able
to identify and move towards the specified anchor point location. This capability of not
deviating from the path, even in the presence of obstacles, will make the robot more efficient
in hospital navigation scenarios, especially in supply shelf or fetching scenarios, where
there are high chances of obstacles being present in its navigation path.
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base traj 1
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Figure 13. Plots of the robot base trajectories over three trials with respect to the ASA locations for
the case of an obstacle between ASAs 1 and 2. The robot moves to the right of the obstacle to avoid it.

Figure 14. Robot motion while avoiding the obstacle in the path to the experimental cart: (top left)
robot detecting the obstacle; (top right, middle left, middle right, bottom left) robot moving around
the obstacle; (bottom right) robot moving to Anchor 2 waypoint after avoiding the obstacle.

5. Limitations and Future Work

This work, while in the preliminary stage, presents opportunities for assisting nurses
through robotic systems. However, we acknowledge that MINA currently has limited
applicability in realistic hospital settings. This provides the direction for our future efforts.
One limitation is the current barcode detection system, which relies on the camera having
an unobstructed view of a rather large barcode. This is not the case in typical hospital
stockrooms, where the barcodes on objects or on shelves are small. We will investigate
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mounting a camera on the end effector of the robotic arm to scan barcodes on a shelf or on
items and incorporate them into the 3D map. We feel using existing barcodes is preferable
to adding markers such as QR-style codes such as the April or ArUco tags.

Another limitation is that object grasping is currently open-loop. Closed-loop grasp
planning based on 3D images is an area of future effort. Currently, the vision-based
functionality used for the grasping task is based on barcode detection and mapping its
location to the 3D point in the point cloud. We will investigate the use of 2D and 3D image
data to localize the objects, such as in our prior works [41] (which used clustering in the
3D point cloud) and [42] (which used deep learning to identify classes of objects). Using
barcodes to identify objects will still reduce the need for extensive training to identify
specific items.

Additionally, our AR user interface is presented through the Microsoft HoloLens.
However, there are other devices that could be used to set waypoints, e.g., mobile phones
or more than one ARHMD. All these devices could be used simultaneously to connect to
the ASA cloud service and exchange information. This can provide multiple users, nurses
in our scenario, the possibility to add stops to the robot trajectory before delivering an item.
An initial investigation of ASA using ARCore for Android devices [43] is seen in Figure 15,
in which ASAs were placed in the same location as for the experiments in Section 4. Mobile
devices have more limited interfaces than gesture recognition in Hololens, creating new
challenges in the placement and orientation of ASAs.

Figure 15. The ASAs used for robot navigation recreated on an Android device using ARCore.
(Left) A view of the mobile app rendering points. (Right) A screen capture showing the default
user interface.

6. Conclusions

MINA is designed as a multitasking robotic aid for nursing assistance, which consists
of a manipulator arm and an RGBD camera mounted on a mobile base. Navigational
waypoints are specified through an AR-based control interface using Azure Spatial Anchors,
which are later used by the robotic system for navigation. Barcode detection and 3D
point cloud representation, built using RGBD camera images, are incorporated for object
localization, which is then used for the robotic grasping task, while the grasping control is
implemented using the MoveIt framework. Experiments were conducted with the robot
while performing a fetching task on an experimental cart filled with medical items. Tests
included cases with obstacles between the waypoints. The results showed that the robot
was able to consistently navigate to the specified spatial anchor waypoints and perform the
grasping task, with and without an obstacle in the path.
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