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Abstract: Higher dimensionality, Hughes phenomenon, spatial resolution of image data, and presence
of mixed pixels are the main challenges in a multi-spectral image classification process. Most of
the classical machine learning algorithms suffer from scoring optimal classification performance
over multi-spectral image data. In this study, we propose stack-based ensemble-based learning
approach to optimize image classification performance. In addition, we integrate the proposed
ensemble learning with XGBoost method to further improve its classification accuracy. To conduct
the experiment, the Landsat image data has been acquired from Bishoftu town located in the Oromia
region of Ethiopia. The current study’s main objective was to assess the performance of land cover
and land use analysis using multi-spectral image data. Results from our experiment indicate that, the
proposed ensemble learning method outperforms any strong base classifiers with 99.96% classification
performance accuracy.

Keywords: multi-spectral image classification; ensemble-based learning; XGBoosting; stacking method

1. Introduction

Ethiopia is the second most populous country after Nigeria on the African continent.
According to United Nation reports, more than 85% of the population is primarily depen-
dent on agriculture for their economic activity and livelihood [1,2].The agriculture sector is
still based on subsistence farming using traditional methods such as ox-drawn ploughs
with very little mechanization [3,4]. For thousands of years, agriculture in Ethiopia has
been practiced using traditional methods and tools. In addition, due to recurrent droughts,
the country was unable to feed a portion of its burgeoning population [5], now estimated
at 110 million. The other limitation in the agricultural sector was lack of a decision support
system for the purposes of land-cover analysis, disease monitoring system, yield prediction
mechanism, and efficient weather monitoring methods.

On the other hand, the current state-of-the-art in the agricultural domain requires an
application of high-tech to improve production and productivity. In this regard, Mahmoud
A. and colleague [6] proposed Precision agriculture is an approach to use information
technology to improve the quality of crops and increase yields. Precision Agriculture
has been defined as maximizing yields using minimal resources such as water, fertilizer,
pesticides and seeds by Spyridon, N. and his colleague [7]. Similarly, Alaa, A. and his
colleague [8] well defined the concepts of Precision agriculture as a farm management
system using information technology to identify, analyze and manage the variability of
fields to ensure profitability, sustainability, and protection of the environment. In addi-
tion, computer vision (CV) [9–11] and machine learning models play a significant roles to
determine soil properties. According to Kariheinz Knickel [3], since the 1950s and 1960s,
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agricultural modernization vigorously entrenched and established a form of agriculture
that is capital-intensive, high-input, high-output, specialized and rationalized system
by industrial countries. To achieve sustainable agricultural output [8], precision agricul-
ture is used and it is the technology that can enhance the farming process. Recently, AI
and machine learning simplified the complex process of data collection, data processing,
data-interpretation and decision-making strategy in the agriculture sector. Similarly, the
advancement of remote sensing technologies [12] significantly shifted the trends of agricul-
tural practices. Quite larger numbers of studies have been reported that, remote sensing
technologies are predominantly utilized to enhance production quality and crop health
monitoring purposes.

Due to the rich information contained, in them, in this study, our dataset includes multi-
spectral images. The research community in the domain area classified remote sensing
data into multi-spectral and hyper-spectral image data. The only difference between the
two data types are the ranges of numbers of bands employed to solve the problem at hand.
Knickel and his colleague [3], defined remote sensing as a method of extracting or acquiring
relevant information about earth’s surface [13] by analyzing the extracted hyperspectral
features. Hyperspectral image data comprises multiple bands [4,12,14] that are sensitive to
a very narrow wavelength range along the electromagnetic spectrum [12,15]. Hyperspectral
imaging is preferred because of its cost-effectiveness [16], the non-destructive measurement
of biophysical and biochemical properties of object on the surface, and the ease to analyzing
image data in real-time. The advantage is even more pronounced when one considers the
fact that processing handcrafted image data is time a consuming endeavor and getting high
quality images is very expensive.

In this study, we propose and test an ensemble-based machine learning approach to
classify remotely sensed image data collected from around Bishoftu, located in the Oromia
Region of Ethiopia. The area is rich in terms of its bio-diversity and large portions of the
land are covered with cereal crops. In the work, our main objective was to utilize multi-
spectral image to analyze land-cover [10] and land-use. Application of multi-spectral image
data in the agriculture domain allows us to make valuable contributions by addressing
the challenges of traditional data collection, interpretation, and analysis. In addition, such
system reduce the time and effort of domain experts to process large-sized image data
quickly and efficiently.

The proposed stack-based ensemble learning approach will have the following contri-
butions to the multi-spectral image process for land-use land-cover analysis:

• Crafting automatic spatial-spectral feature extraction, in order to resolve the challenges
of manual region of interest (ROI) due to labeling.

• Optimizing the classification performance of the proposed ensemble-based machine
learning model. Most GIS tools have a built-in classical machine learning model to
classify land-use and land-cover. But, due to the complex nature of multi-spectral
image data, these models suffer from a few limitations and fail to get optimal classifi-
cation performance.

• Our target was to design an ensemble learning approach to address the challenges
of bias-variance trade-off, which is the limitation of many classical machine learning
models. Many classical models are sensitive, small changes in the training data will
brought a significant change on the performance of the classifiers.

2. Review of Related Works

A self-trained ensemble with semi-supervised support vector machine (SVM) for pixel
classification of remote sensing imagery had been proposed by Maulik and Chakraborty [17].
He ensemble was based on application of the margin maximization principle to both labeled
and unlabeled data. In the semi-supervised support vector machine (SS-SVM) approach,
the classifier uses majority voting [18] to classify a pixel into its respective category.Maulik
and Chakraborty recommend that the Mahalanobis distance can be utilized to query the
correlated points from the unlabeled database when designing the various self-trained
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methods. The Mahalanobis distance is an effective multivariate distance metric that mea-
sures the distance between a point and the mean value of a distribution. It is an extremely
useful distance metric with applications in multivariate anomaly detection, classification
on highly imbalanced datasets, and one-class classification. Another useful approach is
the rotation-based SVM (RoSVM) ensemble in the classification of hyperspectral data with
limited training samples. The basic idea of RoSVM is to generate diverse SVM classification
results using random feature selection and data transformation. This approach can enhance
both individual accuracy and diversity within the ensemble (PCA and projection). Its
main weakness is the higher than normal computational complexity; compared to SVM
and RSSVM [19]. A fast learning method recommended by the authors, a combination
of SVMs and multiple classifier system (MCS) for the classification of hyperspectral data
and a semi-supervised approach, is another effective method to deal with limited training
samples and RoSVM’s drawback. Similarly, Fang and his colleague [18] proposed the
Adaptive Rotation forest (RoF) model to handle the challenge of class-imbalance due to
limited training sample. Fei LV [20] inspired extreme learning machine with auto-encoder
to solve ineffective classification of HSI data due to inadequate labeled training.

2.1. High Dimensional Hyperspectral Image Data

Hyperspectral image data contains hundreds of data channels with a large and various
number of features. Consequently, dimensional issues are the striking challenge when it
comes to processing such multi-spectral images. Similarly, down-sizing the numbers of di-
mensions will also cause the processing to eliminate some relevant features from the image
data. The dimensionality challenge [21,22] creates the Hughes phenomenon, a well-known
problem in the classification domain where an initial increase in the number of features
leads to an increase in a classifier’s performance load until an optimal number of features is
reached. Most conventional machine learning models fail to handle this phenomenon well
and lead to poor performance. Ceamanos and his colleagues [23] inspired the fusion ap-
proach to handle high dimensionality. The authors decomposed a large image dataset into
sub-samples [24,25] and trained each by using the standard SVM model. The prediction
output from each model was then fused using another SVM. Similarly, Mohamed [26] com-
bined the SVM model with a bagging technique to handle the n-dimensional hyperspectral
dataset. The study attempted to minimize prediction variances and, thus, improve overall
accuracy. On the other hand, Xia and his colleague [27] proposed a novel ensemble based
canonical correlation forest to address challenges associated with high-dimensionality.
The authors employed principal component analysis (PCA) on each subset to transform
the input data into a new feature space. Then, the final classification results were deter-
mined by the prediction of individual canonical correlation trees (CCTs ) using a majority
voting rule. However, it is not clear why [27] used the majority voting rule to produce
the final classification result. On the other hand, it is clear that the curse of dimension-
ality degraded classification accuracy. To tackle this challenge, Juang, Ch. X. and his
colleagues [28] proposed the fuzzy C-means based support vector machine or SVM-fuzzy
C-mean. The SVM was used for band selection purposes whereas the C-mean method was
used to build an ensemble of clustering maps. The Markov fisher selector has been used
to minimize computation complexity during the clustering process. They utilized major-
ity voting technique and Markov random field theory to fuse the final model. Similarly,
Samat and colleagues [29] also proposed an ensemble extreme learning method to resolve
high-dimensionality problems. Bagging-based and adaptive boost (AdaBoosting) based
ensemble schemes have been used to conduct experiment on the Reflective Optics System
Imaging Spectrometer (ROSIS) and the Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) [30] data.According to the authors, a differential and non-differential parameters
with a kernel based activation function can be used to improve classification performance
of the proposed model. Therefore, handling the dimensionality issues will significantly
improve the classification performance.
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2.2. Feature Extraction

Other challenges in multi-spectral image processing were extracting features used
to train a machine learning model. Manual feature extraction techniques are resource-
intensive and time- consuming processes compared to other state-of-the-art methodologies.
To tackle the limitation, a lot of attempts have been made in the domain area. Merentitis
and his colleague utilized principal component analysis (PCA) [15] to handle dimen-
sion reduction issues and Feature Extraction (FE) techniques for massive datasets. Some
authors argue that these techniques have a limitation: they ignore correlation between
neighboring features or pixels. Similarly, Parshakov and his colleague [31] inspired a
Spectral Angel Mapper technique to map a cluster of pixel values instead of individual
pixels. A unified framework method has also been inspired by Merentitis [32] to address
bias-variance decomposition. Merentitis, introduced MNF transformation, blind unmixing
and derivation of abundance maps (Ams), non-parametric weighted feature extraction
(NWFE), and synthetic features methods to resolve the trade-off. On the other hand, Zhong
and Liu [19] proposed a binary classifier or dichotomizer technique to separate subsets
of classes. Another important concern in multi-spectral images is the issue of combining
spectral and spatial features. To resolve the challenge, Chen and his colleague employ a
Gabor-filtering and kernel based extreme learning machine (KELM) classifier and multi-
hypothesis (MH)-prediction-based approach and they proposed and applied the approach
to produce superior results compared to pixel-wise classification. Similarly, Ergul and
Bilgin [33] combined spatial circle-neighborhood information with a semi-supervised clas-
sifier approach [34] to extract relevant features from image data. Random Multi-Graphs
(RMGs) for spectral and spatial classification framework and matrix-based spatial-spectral
feature representation have been used by Hang et al. [34] Likewise, Shaohui Mei and his
colleague proposed the CNN method to extract relevant features to train a deep stacked
neural network (DSNN) model. Shaohui applied a fusion approach to concatenate the
extracted features. Pan and colleague [35] also proposed Hierarchical guidance filtering
based ensemble learning to integrate the spatial and spectral feature from HSI data. In
addition, an Adaptive Boosting (AdaBoost) approach has been used by Chenming Qi and
his colleague [36] to minimize redundancy and maximize relevance in feature extraction
process. The authors argue that, a mutual information based ensemble learning classifier
outperforms similar classifiers for multi-class classification problems. There are hundreds
of feature extraction techniques available. Machine learning researchers and experts are
expected to critically assess the appropriate feature extraction approaches to tackle the
challenges of model over-fitting.

A good generalizable machine learning models mainly depends on the wealth of the
training dataset. In this regard, on the size of the training dataset causes the model either
to under-fit or over-fit on the testing or validation data. Preparing adequate representative
datasets is an important consideration when designing machine learning models. The
research community in the domain area attempted to handle the limitation of small-size
training datasets in multi-spectral image processing. Li and his colleagues [37], argue that
classification performance suffers due to training model having limited labeled training
samples [19]. In case of multi-spectral image classification, training samples need to be con-
sidered carefully to reduce model over-fitting. According to Maulik, Ujjwal [17], one of the
possible solutions to limited training samples was applying the semi-supervised approach
to classify multi-spectral image data. In semi-supervised approach, one combine [38] lim-
ited labeled samples [39] with large unlabeled samples to exploit the abundance of unla-
beled samples. Similarly, Ramzi and his colleague [40] highlighted that, for a broad range
of spectral bands, it is often difficult to find sufficient number of training samples. In
addition, Fang and colleague [18] proposed a multi-Scale CNN to extract features from an
unlabeled data. The multi-scale classifier is used to assign a label to unlabeled sample. A
majority voting schema have been used to select an unlabeled image with a predefined
threshold. Finally, the selected sample instances are added to the original training data to
be used in subsequent training iterations. In addition, image quality is a big concern in the
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area of multi-spectral image classification. To tackle this pitfall, the research community
proposed different approaches such as denoising [25,41,42] feature reconstruction, super-
resolution methodologies and image recovering technique. On the other hand, Xia and his
colleague [43] the proposed Random Forest ensemble where extended multi-extinction pro-
files are implemented to improve classification performance. They used different boosting
strategies to construct the ensemble model.

Therefore, from the review of related works, it is apparent that very optimal classifica-
tion performance is difficult to achieve without having adequate training samples. In the
current study, our main objective was to mitigate the challenges of models bias-variance
and enhancing classification performance. The proposed stack-based ensemble learning
model performs well to handle the complex multi-spectral image data.

3. Stack-Based Ensemble Learning Model

Stacking is an ensemble learning technique to combine multiple base classification
models via a meta-classifier. This approach combines multiple conventional classifiers
to build one generalized machine learning model. First different base learning models
L1, ..., LN are trained on the same dataset S, which consists of examples si = (xi, yi),
i.e., pairs of feature vectors (xi) and its corresponding target class (yi). To generate a
training set for learning the meta-level classifier, a leave-one-out or a cross validation
procedure is applied. The proposed stacked-based ensemble learning model has been
presented on Figure 1 below.

Figure 1. Proposed model architecture.

Note: d.pv represent input dimensional pixel values, and constructed a new L1
represents array of image data generated from each first level classifiers and pm1 to pm4
represents the prediction output of first level classifier respectively.

The improved version of the stacking algorithm is presented in Figure 2 below and
it can be summarized as follows: From the raster image data about 65, 000 features are
used as input dimension vectors to train first level classifier. First, we trained h first level
classifiers with D input dimension. In the current study, we have utilized four first level
classifiers to fit the training data. From the prediction output of each first level classifier,
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we generated a new training data-set x1 . The meta-classifier was trained using x1 to fit
the stacking model: S(x) = (h1i(x), h2i(x). . . hr(x)). To mitigate the over-fitting challenge,
we applied cross-validation techniques to split the training data into 10 fold. Let k = 1...N
implies 1. . . K be an index function that indicates the partition to which observation i is
allocated by the randomization.

Figure 2. Stacked based ensemble learning algorithm.

4. Experiment Results and Discussion
Datasets

To conduct the experiment, LandSat image data has been collected from Yerer Selassie
located near the town of Bishoftu in the Oromia region of Ethiopia. Yerer is located in the
East Shewa zone in the great rift valley at 38°57′40.863′′ E and 8°50′55.016′′ N. Yerer selassie
borders on the south by Dugda Bora to the south the West Shewa Zone to the West, the
town of Akaki to the Northwest, the district of Gimbichu to the northeast, and of Lome to
the east. Altitudes in this district range from 1500 to over 2000 m above sea level. From this
specific geo-location, three image data were collected in different time frames.

During the data pre-processing steps, we made all the required corrections such
as: determining Spatial resolution using operational land imagery, Top of Atmosphere
Reflectance, Radiometric correction and Topographic Correction, and Generating False color
composition (FCC). About four bands namely the red, blue, green and near-Infrared bands
have been selected to extract the relevant features. Layer stacking has been performed to
combine all four selected spectral bands to obtain a single stacked image data. At this level,
one can utilize different false color combinations to make the visualization of the stacked
image appear more natural. Figure 3 shows the image stacking process we utilized.

The stacked multi-spectral image was used as an input dataset to train the proposed
model which comprises a dimension of 372 nrow ∗ 200 ncol, 30 m spatial resolution,
and a total of 65,400 features. A sample or observation of 147 spatial-polygon has been
labeled as a training dataset from the raster image data. The distribution provides a
parameterized mathematical function that can be used to calculate the probability for any
individual observation from the sample space. From this analogy, the training datasets are
almost evenly distributed. Figure 4 illustrates the distribution of training samples on each
layer stack.
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Figure 3. Stacking the bands together.

Figure 4. The Statistical distribution of training data-set.

Then, the dataset split and 70% of it was used for training purposes and the remaining
30% was used for model testing purpose. The next step was applying multiple base
classifiers to build our classification models. In this regard, we selected RF, SVM, KNN
and XGBoosting models as base classifiers. All the base classifiers utilized nsample = 103,
predictor = 3, nclass = 4, nd the bootstrapped sampling technique was used to select
sample dataset. The Samples were constructed by drawing observations from a large data
sample one at a time and returning them to the data sample after they have been chosen.
This allows a given observation to be included in a given small sample more than once.
In this sub-section, we briefly discuss the nature of the individual base classifiers. First,
the support vector machine is one of the strong machine learning algorithms provided
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non-linear issues are properly handled. We have utilized the RBF kernel function to fit the
model. The radial kernel function has a form:

k(x, y) = exp−γ
k

∑
i=1

(xi − yi)
2 (1)

where γ is a tuning parameter which accounts for the smoothness of the decision boundary
and controls the variance of the model. If γ is very large then we get quiet fluctuating
and wiggly decision boundaries which accounts for high variance and over-fitting. If γ is
small, the decision line or boundary is smoother and has low variance. Then the support of
SVM becomes:

f (x) = β0 +
k

∑
αεs

αk(xi, yi)
2 (2)

The second base classifier is the random forest (RF) classifier which is an ensemble
learner by its very nature. It a classifier comprising a number of decision trees on various
subsets of the given observation and takes the average to improve the predictive accuracy
of that dataset. The output chosen by the majority of the decision trees becomes the final
output of the rain forest system. The third base classifier was the KNN algorithm that stores
all the available data and classifies a new data point based on similarity. That is, when new
data appears, then it can be easily classified into a category by using the KNN algorithm.
KNN is a non-parametric algorithm, which means it does not make any assumptions about
the underlying data. There is no particular way to determine the best value for “K”, so we
need to try some values to find the best performing one. The most preferred value for K is 5.

d(x, y) =

√√√√ k

∑
i=1

(xi − yi)
2 (3)

where, x and y are the two vector points on sample space. Optimal classification perfor-
mance obtained at k = 5.

Table 1 above summarizes experiment results and the classification performance of
each base classifier on the training data-sets. Generally, each classifiers performs very well
on the training data. In the case of KNN, the new training samples were classified into their
respective categories by a majority vote of its neighbors, with the case being assigned to
the class most common amongst its K nearest neighbors measured by a distance function.
There is no standard to define the numbers of K values. It needs several trial and errors to
get the optimal values. On the other hand, we have evaluate different distance metrics that
fit the problem domain. Similarly, SVM needs to address the non-linearity issue by finding
the best fitting kernel function. The idea behind generating non-linear decision boundaries
is that we need to do some nonlinear transformations on the features Xi, which transforms
them into a higher dimensional space. In our case, the non-linear decision boundary and
the values of the tuning parameters were c = 1, r = 1.8 and a number of support vectors.
Results of the experiment show that the number of predictors affects the classification
performance of each base classifier. In this regard, as the number of predictors increases or
decreases, the performance of the model also varies. The last but not least base classifier
was the XGBoost method [37–39]. Assume that our image dataset is D = (xi, yi): i = 1 . . . n,
xi E Rm, yi E Rm, then we get n observations with m dimensions each and with a target class
y. Let ŷi be defined as a result given by the ensemble represented by the generalized model
as follows [43]:

y = φ(xi) =
k

∑
i=1

f k(xi) (4)
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where fk is a regression tree, and fk(xi) represents the score given by the k-th tree to the i-th
observation in the data. In order to define function fk, the following regularized objective
function should be minimized:

L(φ) = ∑
i=1

(yi, yi) + ∑
k

ω( f x) (5)

L is the loss function. In order to prevent the model from getting too large and complex,
the penalty term Ω is included as follows:

( f k) = YT +
1

2λ|w|2 (6)

where Y and λ are parameters controlling penalty for the number of leaves T and the
magnitude of leaf weights w, respectively. The purpose of Ω( f kk) is to prevent over-fitting
while simplifying models produced by this algorithm.

Table 1. Summary of base classifiers accuracy on the training datasets

Model
Name S. Size Predictor N. Class Optimal P. Acc % Kappa V

in %

RF 103 3 4 Mtr = 2 96.89 95.64

KNN 103 3 4 K = 5 97.25 96.14

SVM 103 3 4 C = 1
sigm = 1.81 99.1 98.8

XGBoost 103 3 4 - 98.9 98.4

Note: The final values used for the model were nrounds = 50, maxdepth = 1, eta = 0.3,
gamma = 0, colsamplebytree = 0.8, minchildweight = 1 and subsample = 0.75.

After evaluating the performance of individual base classifier, we employed the
remaining 30% of our test data-set to evaluate the overall prediction performance of each
base classifier. Table 2 summarizes the prediction performance of the base classifiers using
the test dataset.

Table 2. Summary of the four model prediction accuracy.

SN Modles Accuracy

1 RF 97.72%

2 KNN 95.45%

3 SVM 97.72%

4 XGBoost 98.78%

From Table 2, one can deduce that all the models performed well in classifying the
test dataset with high accuracy. However, when we compared the prediction performance
of KNN and SVM on test and training data-sets, we encountered an issue an issue over-
fitting. One of the possible solutions is increasing the sizes of both the training and testing
data set. Another challenge is, the sensitive of base classifiers, where small variances
significantly affected their prediction performance. The main objective of this study was to
implement stack-based ensemble learning method. In ensemble learning method, before
proceeding to combine different base classifier, evaluating the correlation among individual
base classifiers are very import. If there is no difference among base classifier, then no
need of applying Ensembling learning approach. The rules of ensemble-based learning
are mainly based on difference among base classifiers. From our experimental results, the
correlation among the base classifiers are briefly summarized in Table 3.
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Table 3. Correlation among selected base classifier models.

Base Classifier KNN SVM RF XGBoosting

KNN 1.0000000 −0.2978871 −0.02741112 −0.02314032

SVM −0.29788705 1.0000000 0.08216830 −0.14313694

RF −0.02741112 0.0821683 1.0000000 −0.18873839

XGBoosting −0.02314032 −0.1431369 −0.18873839 1.00000000

In Table 3, the pairwise correlations between individual models are low and fulfill the
requirement of an ensemble learning rule. From experiment results, two models are highly
correlated in predicting the training data-sets. Building the ensemble learning demand the
analogy of less difference among the base classifiers. Due to the bootstrap re-sampling, the
size of selected samples in each target classes are differ at different executions. The base
classifier sensitivity was also observed in the correlation among the models.

Once the assessment has been completed, the next step was implementing the stack-based
ensemble learning approach to determine the final categories using meta-data. The stacking
approach utilizes meta-data generated from each base classifier as input for training the meta-
model. Bagging namely bootstrap aggregating [44,45] is one of the most intuitive and simple
frameworks in ensemble learning that uses the bootstrapped sampling method. In this method,
many original training samples may be repeated in the resulting training data, whereas others
may be left out. Samples are selected randomly from the training set, instructive iteration is
applied to create different bags, and the weak learner is trained in each bag. Each base learner
predicts the label of the unknown sample, respectively.

In the case of Stacked XGBoosting method, a multi-nominal distribution sampling
technique has been used to select observations randomly from the sample space. First, the
parameters P1. . . pk are sorted in descending order. Then, for each trial, variable X is drawn
from a uniform (0, 1) distribution. The resulting outcome is the component.

j−1 = mεj−1, 1, . . . K : (
j

∑
i=1

)− X ≥ 0 (7)

Xj = 1; Xk = 0 for K! = j is one observation from the multi-nomial distribution with
Pi . . . Pk and n = 1. A sum of independent repetitions of this experiment is an observation
from a multi-nominal distribution with n equal to the number of such repetitions. Our
overall results from the experiment, in terms of the classification accuracy of the base and
ensemble models are summarized in Table 4.

Table 4. Overall accuracy of the base and ensemble classifier

SN Models Accuracy on
Training Data% OA on Test Data%

1 RF 96.89 97.72

2 SVM 97.89 97.72

3 KNN 96.6 95.45

4 XGBoost 98.9 98.78

5 Stacked Ensemble 97.47 99.96

It is apparent from Table 4 that the majority of the individual base classifiers have
classified both the training and testing datasets with satisfactory accuracies. When the
base classifiers were combined using the stacking ensemble approach, the performance
improved. The proposed model classified the multi-spectral image data with 99.96%
classification accuracy. This is promising and the model is worth applying for various
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application areas. We plan to extend our work to further test the proposed model using
larger image datasets. In this study, handling the challenges of bias and variance is our
concern. To resolve this pitfall, we integrate the XGBoosting method into the ensemble
learning approach. The XGBoost model belongs to a family of boosting algorithms that
turn weak learners into strong learners. Boosting is a sequential process; i.e., trees are
grown using the information from a previous grown tree one after the other. This process
slowly learns from previously use of data and tries to improve its prediction in subsequent
iterations. Boosting reduces

both variance and bias. It reduces variance because it uses multiple models through
a bagging process. It also reduces bias through training successive models by passing
information on errors made by previous models. These are some of the reasons why we
integrated the XGBoosting method into the stacking learning approach to address the
challenges of bias-variance trade-off. In addition, Samat and colleague [25] also proposed
the Meta-XGBoosting framework to improve the limitations of the XGBoost model. Fi-
nally, the XGBoost model enabled us to achieve optimal classification accuracy from the
proposed model.

5. Discussion

Currently, remote sense image processing plays significant roles in the domain of
agriculture. One of the broader application areas was to conduct land use and land
cover (LULC) analysis using multi-spectral image data. A proper land cover management
provides insights into how to efficiently utilize scarce natural resources. In addition, this is
one of the ways forwarded for designing a mechanism to implement precision agriculture
approaches in the sector. Table 5 provides an example data collected on the land cover of
our study area.

Table 5. The pattern of Land-cover from September to November.

SN Class 10th Month 11th Month 12th Month

1 Forest 2.61 1.45 1.43

2 Dense
Vegetation 1.04 0.69 1.61

3 Sparse
vegetation 12.25 9.40 2.89

4 Urban /bare
land 44.45 45 52.91

From Table 5, the land-cover dynamically becomes bare land within 1.5 months. This
is due the fact that the majority of the crops are harvested during this period. Table 5
also shows the patterns of land-use and land-cover by different classes over three months.
Based on the insight obtained from the pattern, one could draw an informed decision.

In addition, we assessed the importance of variables (spectral bands) importance
to examine which bands are important to classify the land-cover. To classify the land-
cover, we used the blue, green, red and near-Infrared spectrum. These visible wavelengths
cover a range from approximately 400 to 700 nano meter. Each spectrum characterizes
objects on the surface by unique spectral signature. Blue spectrum is widely responsible
for increasing plant quality specifically crop leaf. Similarly, the green spectrum absorb
and used for photosynthesis. On the other hand, the red wavelength helps stem, leaf and
general vegetation growth. Table 6 shows variable importance in ranked order from the
highest to the lowest during model fitting using training data.
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Table 6. Variable importance assessment.

Bands Random Forest SVM KNN XGBoosting

B3 31.17 0.902 0.902 0.367

B2 24.88 0.801 0.801 0.347

B4 17.76 0.573 0.573 0.285

Variable importance assessment gives insight about the relevance of each bands used
to build the first level classifiers. From the experimental result, Band 2 and Band 3 are
the most important variables used to classify the training data-sets into the respective
categories. To deal with multi-spectral image data, good understanding about the nature of
data would help to handle the complexity.

Machine learning are a cost effective and efficient approach to analyze land-cover and
land-use in the domain of multi-spectral image processing.Those tools have built-in image
classifiers to label and classify the target classes. Figure 5 below present the semi-automated
multi-spectral image data training data labeling process.

Figure 5. XGBoost model classification output.

Manually training data-set labeling using a polygon (region of interest) methods
were prone to biases and error due to mixed pixel values. Similarly, most of conventional
machine learning models fail to handle the complexity of multi-spectral image data due to
their higher dimensionality, the Hughes phenomenon resulting from unbalanced training
samples, poor spatial and spectral resolution of the image data, large size of spectral
features, and presence of mixed pixels. The process of semi-automatic feature extraction
has been plotted on Figure 6 below.
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Figure 6. Semi-Automatic feature extraction using ErdaImagine.

In case of multi-spectral image classification, data preprocessing and correction are
the bed-rock to obtain robust classification accuracy. Extracting relevant feature from
multi-spectral image data to label the target class is a tricky task. In this study, we extracted
a feature from each bands namely red, green, blue, near infrared bands to represent each
pixel values. The stacked image was the combination of the above four band to represent
classes of land cover in our study area. We have used R programming language scripts to
automatically extract pixel values from the image data.

We have also used the Random Forest, Support Vector Machine, K-Nearest Neighbor,
and XGBoost as base classifiers. With well labeled training datasets, the classifiers were
competent enough to classify the test dataset into its respective categories. Generally, the
issues of bias and variances are the big concern to be addressed by the proposed model.

Therefore, the proposed stack-based ensemble model using the XGBoosting method
has been used to classify multi-spectral image data. An ensemble learning approach
integrated with the extreme gradient boosting (XGBoost) method handled the bias and
variance challenges of base classifiers much better. Based on experimental results, our
proposed stack-based ensemble learning method outperformed individual base classifiers.

In addition, multi-spectral image processing was used a tool to compute different
indexing parameters such as metrics. In Ethiopia, agricultural experts employ traditional
and time-consuming approaches to computing yield estimation and crop-disease monitor-
ing. To address the problem, one of the possible solutions is computing the Normalized
Difference Vegetation Index (NDVI) which gives a measure of the vegetative cover on wide
areas. Dense vegetation shows up very strongly in the imagery, and areas with little or no
vegetation are also clearly identified. NDVI also identifies water and ice. The Normalized
Difference Vegetation Index (NDVI) is a measure of the difference in reflectance between
these Wavelength ranges. NDVI takes values between −1 and 1, with values 0.5 indicating
dense vegetation and values <0 indicating no vegetation. Figure 7 below represent class
categories of land-cover using NDVI values.
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Figure 7. The NDVI values to label the land cover.

In this study, our main objective was to build stack-based ensemble learning approach
by combining multiple base classifiers. The main purpose of the stacking approach was to
further optimize classification performance by combining the base classifiers. Stack-based
method is a potentially capable enough to handle complex data such as raster image data.
Consequently, the proposed model outperformed all the individual base classifiers and
produced the highest classification accuracy. We have conducted a comparison analyses
between the performance of our proposed methods and state-of-the-art machine learning
models in similar domain areas. Table 6 summarize comparative data.

It is clear from Table ?? that several attempts have been made to improve classification
performance in the domain of hyper-spectral image processing. A number of ensemble
learning methods have been proposed to analyze land cover and land use using image
data. Our proposed Stacked-XGBoost model outperformed other models and it is efficient
enough to handle multi-spectral image data.

Table 7. Summary of performance by ensemble learning models.

Authors Data Source S.Resolution Models OA

Fang and colleague [18] Pavia Data 1.6 m MCE-SL 99.49%

Mei et al. [43] Indian Pines 17 m DSNN 98.33%

Jahan and colleague [14] Huston 2.5 m ICV (MNF) 98.73%

Chengming Qi et al. [34] Indian Pine 17 m MIMKB 91.37%

Bin Pan and colleague [33] Pavia university 1.3 m HiFi-We 94.93%

Fei Lv and colleague [20] Indian Pines 20 m SAE-ELM 94.67%

Feng and colleague [46] Indian Pines 20 m AdaSRoF 91.34%

Xia and colleague [36] Pavi University 1.3 m EMEPs-BRoRF 96.36%

Samat and colleague [25] Pavi University 1.3 m meta-XGBoost 96.93%

Proposed model Yerer Selassie 30 m Stacked-XGBoost 99.96

6. Summary and Conclusions

The purpose of the present work was to develop an effective method for accurate land
use/land cover (LULC) classification to efficiently utilize scarce natural resources and to
design a mechanism for precision agriculture. Well-designed machine learning method
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can address the limitations of current labor-intensive and time-consuming processes. In
addition, getting high resolution multi-spectral image data is a critical challenge in the
Ethiopian context. Despite image resolution, the process of labeling training and collecting
representative sample data were a tricky task. During model building, we observed that
most of the base classifiers suffer from an inability to handle complex and non-linear
hyper-spectral image data. This is due to the high-dimensionality of Landsat images that
contain hundreds and thousands of feature bands, mixed pixel values, dark-object on the
surface of the earth, and limitation of feature extraction, and others.

Therefore, we proposed a stack-based ensemble learning method to classify hyper-
spectral image data collected from a location in Ethiopia. The performance level of the
proposed model exceeded that of individual base classifier. Furthermore, integrating
ensemble learning methods can potentially lead to capable of handling complex hyper-
spectral image data.

Based on our findings, we can conclude that, ensemble-based approaches outperform
any strong single machine learning algorithm. However, there are many issues in the
domain area that need further exploration. First, in the case of Ethiopia, obtaining satellite
data with less than 10 m resolution is a big challenge. To conduct high-level domain
specific research such as precision agriculture, image resolution and its quality are critical
factors when making the final decision. Second, we employed small-size observations to
fit the model. Small size and imbalance of training samples were the causes leading to
model over-fitting. A semi-supervised features extraction can be a possible solution to
obtain representative feature to enhance models’ classification performance. Finally, model
sensitivity needs further exploration in multi-spectral image classification. To handle the
pitfalls, currently we are working on an ensemble of deep-learning to classify hyper-spectral
image data. Combining the feature extraction capabilities with deep-learning ensemble
approaches could resolve the above-mentioned bottle-necks.
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KELM Kernel based Extreme Learning Machine
LCLU Land cover Land Use
NDVI Normalized Difference Vegetation Index
NIR Near Infrared Band
NWFE Non-parameteric Weighted Feature Extraction
PA Precision Agriculture
RF Random Forest
RMG Random Multi-Graph
RIO Region Of Interest
ROSIS Reflective Optics System Imaging Spectrometer
SVM Support Vector Machine
XGBoost Extreme Gradient Boosting

References
1. Eshetu, A.A. Forest resource management systems in Ethiopia: Historical perspective. Int. J. Biodivers. Conserv. 2014, 6, 121–131.
2. Hanuschak Sr, G.A. Timely and accurate crop yield forecasting and estimation: History and initial gap analysis. In The first

Scientific Advisory Committee Meeting, Global Strategy; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013;
Volume 198.

3. Knickel, K.; Ashkenazy, A.; Chebach, T.C.; Parrot, N. Agricultural modernization and sustainable agriculture: Contradictions and
complementarities. Int. J. Agric. Sustain. 2017, 15, 575–592. [CrossRef]

4. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
5. Abdullahi, H.; Zubair, O.M. Advances of image processing in precision agriculture: Using deep learning convolution neural

network for soil nutrient classification. J. Multidiscip. Eng. Sci. Technol. (Jmest) 2017, 4, 7981–7987.
6. Anandhakrishnan, T.; Jaisakthi, S. Internet of Things in Agriculture-Survey. J. Comput. Theor. Nanosci. 2018, 15, 2405–2409.

[CrossRef]
7. Kumar, N.; Vidyarthi, D.P. A green routing algorithm for IoT-enabled software defined wireless sensor network. IEEE Sens. J.

2018, 18, 9449–9460. [CrossRef]
8. Araby, A.A.; Abd Elhameed, M.M.; Magdy, N.M.; Abdelaal, N.; Abd Allah, Y.T.; Darweesh, M.S.; Fahim, M.A.; Mostafa, H.

Smart iot monitoring system for agriculture with predictive analysis. In Proceedings of the 2019 8th International Conference on
Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4.

9. Dubey, S.R.; Jalal, A.S. Apple disease classification using color, texture and shape features from images. Signal Image Video Process.
2016, 10, 819–826. [CrossRef]

10. Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine vision systems in precision agriculture for
crop farming. J. Imaging 2019, 5, 89. [CrossRef]

11. Aboneh, T.; Rorissa, A.; Srinivasagan, R.; Gemechu, A. Computer Vision Framework for Wheat Disease Identification and
Classification Using Jetson GPU Infrastructure. Technologies 2021, 9, 47. [CrossRef]

12. Mateen, M.; Wen, J.; Nasrullah.; Akbar, M.A. The role of hyperspectral imaging: a literature review. Int. J. Adv. Comput. Sci. Appl.
2018, 9, 51–62.

13. Kale, K.V.; Solankar, M.M.; Nalawade, D.B.; Dhumal, R.K.; Gite, H.R. A research review on hyperspectral data processing and
analysis algorithms. Proc. Natl. Acad. Sci. India Sect. Phys. Sci. 2017, 87, 541–555. [CrossRef]

http://doi.org/10.1080/14735903.2017.1373464
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1166/jctn.2018.7478
http://dx.doi.org/10.1109/JSEN.2018.2869629
http://dx.doi.org/10.1007/s11760-015-0821-1
http://dx.doi.org/10.3390/jimaging5120089
http://dx.doi.org/10.3390/technologies9030047
http://dx.doi.org/10.1007/s40010-017-0433-y


Technologies 2022, 10, 17 17 of 18

14. Jahan, F.; Zhou, J.; Awrangjeb, M.; Gao, Y. Inverse coefficient of variation feature and multilevel fusion technique for hyperspectral
and LiDAR data classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 367–381. [CrossRef]

15. Merentitis, A.; Debes, C.; Heremans, R. Ensemble learning in hyperspectral image classification: Toward selecting a favorable
bias-variance tradeoff. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 1089–1102. [CrossRef]

16. Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. Isprs J. Photogramm.
Remote. Sens. 2019, 158, 279–317. [CrossRef]

17. Maulik, U.; Chakraborty, D. A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote
sensing imagery. Pattern Recognit. 2011, 44, 615–623. [CrossRef]

18. Fang, L.; Zhao, W.; He, N.; Zhu, J. Multiscale CNNs Ensemble Based Self-Learning for Hyperspectral Image Classification. IEEE
Geosci. Remote. Sens. Lett. 2020, 17, 1593–1597. [CrossRef]

19. Ergul, U.; Bilgin, G. Multiple-instance ensemble learning for hyperspectral images. J. Appl. Remote. Sens. 2017, 11, 045009.
[CrossRef]

20. Lv, F.; Han, M.; Qiu, T. Remote sensing image classification based on ensemble extreme learning machine with stacked
autoencoder. IEEE Access 2017, 5, 9021–9031. [CrossRef]

21. Gao, F.; Wang, Q.; Dong, J.; Xu, Q. Spectral and spatial classification of hyperspectral images based on random multi-graphs.
Remote. Sens. 2018, 10, 1271. [CrossRef]

22. Ceamanos, X.; Waske, B.; Benediktsson, J.A.; Chanussot, J.; Fauvel, M.; Sveinsson, J.R. A classifier ensemble based on fusion of
support vector machines for classifying hyperspectral data. Int. J. Image Data Fusion 2010, 1, 293–307. [CrossRef]
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