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Abstract: Benes/Clos networks constitute a particularly important part of interconnection networks
and have been used in numerous areas, such as multi-processor systems, data centers and on-chip
networks. They have also attracted great interest in the field of optical communications due to the
increasing popularity of optical switches based on these architectures. There are numerous algorithms
aimed at routing these types of networks, with varying degrees of utility. Linear algorithms, such
as Sun Tsu and Opferman, were historically the first attempt to standardize the routing procedure
of this types of networks. They require matrix-based calculations, which are very demanding in
terms of resources and in some cases involve backtracking, which impairs their efficiency. Parallel
solutions, such as Lee’s algorithm, were introduced later and provide a different answer that satisfy
the requirements of high-performance networks. They are, however, extremely complex and demand
even more resources. In both cases, hardware implementations reflect their algorithmic characteristics.
In this paper, we attempt to design an algorithm that is simple enough to be implemented on a small
field programmable gate array board while simultaneously efficient enough to be used in practical
scenarios. The design itself is of a generic nature; therefore, its behavior across different sizes
(8 × 8, 16 × 16, 32 × 32, 64 × 64) is examined. The platform of implementation is a medium range
FPGA specifically selected to represent the average hardware prototyping device. In the end, an
overview of the algorithm’s imprint on the device is presented alongside other approaches, which
include both hard and soft computing techniques.

Keywords: Benes network; routing algorithm; hardware implementation; FPGA; optical switching;
data center

1. Introduction

Communication between different integrated systems has been one of the cornerstones
of technological advancement in the last decades. As time passes, more devices and
autonomous circuits require connection to some kind of network in order to function
properly. In the contemporary digital world, a sophisticated and complex structure ranging
from data center (DC) servers to multicore processors are in need of fast and reliably
functioning interconnection networks in order to attain maximum efficiency.

One such type of interconnection network that emerged from the Clos family [1] with
2 × 2 switching elements and N/2 switches per stage is the Benes network [2]. Benes
networks are a well-known type of non-blocking multistage interconnection networks [3,4].
They are rearrangeable and non-blocking [5], which practically means that all possible
routing schemes (n!) can be satisfied if the entire network is reconfigured from the beginning
every time there is a change in routing. For this reason, it is also a permutation network [2].
Benes networks have 2r inputs and 2r − 1 stages of 2 × 2 switches.

In the DC network application domain, optical switches based on the Benes archi-
tecture are attracting a lot of research interest due to their non-blocking nature, which is
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highly desirable for optical interconnects within DC. Optical switches are an attractive
alternative to traditional electrical packet switching (EPS), as they hold the promise to
obviate the need for optical-to-electrical and electrical-to-optical conversion, which requires
an ever-increasing number of serdes lanes on the switch silicon. For example, electrical
packet switches with 25.6 Tb/s capacity use 256 serdes lanes at 50 Gbaud pulse amplitude
modulation 4-level (PAM-4) with 100 Gb/s per lane capacity, and the next step to 51.2 Tb/s
would require to either double the serdes lanes to 512 at 100 Gb/s per lane or double the per
lane capacity to 200 Gb/s while keeping the serdes lanes at 256 [6]. Both approaches face
scalability problems related to power consumption, size, and cost. Increasing the number
of serdes lanes translates to increased power dissipation and a larger application-specific
integrated circuit (ASIC) footprint to accommodate the extra pins. Increasing the speed
for the serdes lanes will also increase power dissipation on the ASIC and on the pluggable
transceiver modules located at the switch’s front panel. What is more, further shrinking
of the ASIC’s transistors that naturally happens approximately every 2 years in order to
evolve to the next generation, apart from being extremely costly, will soon reach its physical
limits, as moving to <5 nm complementary metal–oxide semiconductor (CMOS) node
technology will be very challenging.

On the other hand, optical switches are transparent to the incoming signal data rates
and can have similar radix (e.g., 16, 32) with their EPS counterparts. In general, they
have been proposed in various implementations, such as, for example, arrayed waveg-
uide grating routers (AWGRs) in combination with microcombs [7], 4 × 4 AWGRs [8]
or 8 × 8 cyclic AWGR (CAWGR)s [9], or cascades of (nested) Mach–Zehnder switches
(MZS) [10]. The AWGR implementations require that the optical transmitters operate
at different wavelengths. This is typically achieved by using arrays of lasers or tunable
wavelength transmitters. In [11], a switching concept based on the combination of a high-
capacity tunable optical transceiver and several wavelength selective switches (WSSs) were
presented; however, these were commercial bulk devices, they were limited in port count
and had rather slow (tens of milliseconds) switching speed. WSSs rely on complex assem-
blies of micro-optic elements necessitating accurate alignments, making their fabrication
costly and limiting any integration potential. The Benes architecture is based on simple
cross bar switches, is typically realized as Mach–Zehnder structures with thermo-optical or
electro-optical actuation, can be fully integrated in photonic integrated circuit (PIC), and
it requires the fewest switch elements to realize the end-to-end connections; this in turn
translates to lower insertion loss, fewer components to actuate, and less power consumed,
eventually resulting in compact switches. Benes optical switches can be realized in various
technologies, such as microelectromechanical systems (MEMS) [12] or PICs. More specifi-
cally, PIC-based Benes optical switches have been reported in lithium niobate (LiNbO3) [13],
silicon [14,15], and indium phosphide (InP) [16]. InP has the advantage of the very fast (ns)
electro-optic actuation; however, the achievable switch size is not large, due to yield issues.
Silicon photonic switches can also achieve fast (few ns) electro-optic actuation, but when
scaling to higher than 8 × 8 sizes, their performance will deteriorate in terms of insertion
loss and crosstalk. A 32 × 32 Benes optical switch fabricated on optical polymer is being
pursued for the first time in the EU project POETICS [17]. Optical polymer switches can
provide polarization independence, low insertion loss and transparency over a wide wave-
length range [18]. Actuation is based on the thermo-optic effect which provides millisecond
switching speeds, and despite the fact that they are not suited for packet level switching,
they are expected to find their place within hybrid optical–electrical DC networks [19],
where the EPS switches would handle only the dynamic, rapidly changing traffic (“mice
flows”) and off-load the slowly varying traffic (“elephant flows”) to the optical switch.
They can handle multi-gigabit traffic flows of parallel [20] or multiplexed optical lanes
without the need for demultiplexing as in the case of EPS switches. In this manuscript, we
focus only on the implementation of the algorithm, which is shown for the first time as
previous work focused on optical transmission experiments using high-capacity arrayed
optical transceivers for use in intra-DC optical interconnects.
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A simple and efficient routing algorithm taking up only minimal hardware resources
on the control electronics is what is required to unlock the full potential of PIC-based Benes
switches and increase their throughput. In the electronic (digital) domain, the throughput
increase is achieved by increasing the number of ports while keeping the algorithm’s
procedure as undemanding and cost effective as possible [21].

The Benes network is a well-established solution to the problem of connecting ports in
distinct types of networks. It has been used in shared memory multiprocessor systems [22].
Due to its utility, a great number of algorithmic solutions have been proposed, parallel and
sequential. One of the most famous linear algorithms is Opferman’s [23] looping algorithm,
which starts from the switches in the outer stages and ends in the center stage. It dissects
the network into smaller networks and recursively routes all of them, creating a complete
path in the process. There is also an expansion of this method by Andresen that enables
the routing of base 2k networks [24]. Waksman [25] proposed a recursive procedure in
service of a uni-processor system. Both examples have the complexity of n*logn, which is
the lowest possible in a 1-proccessing unit system [23].

In the parallel domain, Nassimi and Sahni [26,27] presented a parallel algorithm which
is significantly faster than the linear methods, but its complexity varies from (logn)2 to
(logn)4 depending on the type of system that it is applied on. Lee’s parallel algorithm [28]
has been implemented in hardware since it offers the lowest complexity (logn)2 while
consuming only n/2 processing units. There are many other algorithms that route Benes
networks [21,29,30]; however, essentially, they are all variations of the aforementioned ones.
The solution presented in [31] is the closest, in terms of function, to the solution covered in
this paper. Even though it is one of the solutions that use two-dimensional (2D) matrixes,
in some instances, it produces the same switch setting. It is, however, purely a theoretical
approach and does not include any hardware implementation.

There have been some attempts to translate certain algorithms to hardware implemen-
tations [32]. However, to our knowledge, all of these attempts focus primarily on parallel
routing algorithms for Benes networks. Moreover, all the already established methods,
linear and parallel, involve complex calculations. Linear methods generally focus on the
use of 2D matrix permutations [29], with some of them requiring backtracking to previ-
ously set switches and changing their setting [23], thus heavily impeding their throughput.
Parallel implementations are centered around Lee’s algorithm [28], which although faster,
it consumes a lot of resources when translated into hardware. The intent of this paper is
to introduce an original, simple algorithmic solution while presenting the corresponding
implementation method. The implementation is of a generic nature and was experimentally
tested on a various number of inputs. By taking advantage of the recursive nature of the
network, the routing problem is reduced to an elementary sorting of the input–output pairs
in each layer. The position each pair occupies on the sorted list determines the switches’
setting. All switches are routed linearly, and there is no back warding. The design was
implemented as part of a larger project and was therefore thoroughly tested experimentally.
The major obstacle in this endeavor was the condensation of the 2D matrix permutations
used in other algorithms for each layer of the network, as well as the substitution of the
aforementioned 2D-matrices’ convolutions with the simple rearranging of elements. The
latter part specifically was instrumental to giving our approach an advantage over other
proposed algorithms.

The organization of the paper is as follows. Section 2 provides the propositions which
serve as the foundations for the method. Section 3 includes the theoretical explanation as
well as the proof of the design’s functionality. Section 4 covers the hardware implementation
of all ideas discussed in Section 3. Section 5 is where the implementation results are
presented. Finally, we conclude in Section 6.

2. Preliminaries

The major goal of our work is to find an efficient, scalable, and functional way to
route a Benes network. The act of “routing” is to produce a valid setting scheme for all
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switches in the network in order to satisfy an input–output routing table given as an input.
Specifically for the case of Benes optical switches for application inside DCs, sizes of 8 × 8,
16 × 16, 32 × 32 and 64 × 64 are particularly interesting, as they offer similar port numbers
with their electric switch counterparts, while at the same time, it is feasible to fabricate
them in PICs. The algorithm itself was made for a generic number of inputs, but for the
sake of brevity, both in the theoretical explanation and in the implementation section, in
many cases, we consider only an 8 × 8 Benes network. It can be inferred, however, that the
algorithmic steps presented herein can route any generic network, and in the following
sections, the validity of our approach will become apparent. This section provides a list of
propositions which are going to set the basis of this paper’s approach. In all propositions
listed below, all letter variables signify switches and ports (input and output) and thus
should be considered integers.

Proposition 1. The general recursive form of a Benes network is shown in Figure 1. It has
n = 2r, r > 1, inputs, and n = 2r outputs. All n ports (0, 1, 2, 3) are the input ports and all n’
ports (0′, 1′, 2′, 3′) are the output ports. There are m = 2r – 1 input switches and m’ = 2r – 1’
output switches. There are 2 subnetworks in the center, upper (U) and lower (L). These
2 subnetworks are Benes networks with 2r−1 inputs and 2r−1 outputs (half of the origi-
nal network).
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Figure 1. Recursive form of a Benes network.

Proposition 2. In a Benes network with 2r inputs and outputs, there are r layers. r − 1
layers with 2r switches (input and output switches) and 1 layer (the center layer) with 2r−1

switches. Layer k ∈ [0, r − 1], k has 2k subnetworks with 2(r-k) inputs, outputs each. The
number of subnetworks doubles in each layer, while the number of inputs per subnetwork
is halved. Figure 2 presents an 8 input-output Benes network. As we can see, it is a Benes
network of 23 = 8 (r = 3) input–output ports. Red is layer 0 (k = 0, 23 − 0 = 8 input–output
ports per subnetwork, 20 = 1 subnetwork which is the original), blue is layer 1 (k = 1,
2(3−1) = 4 input–output ports per subnetwork, 21 = 2 subnetworks), and green is layer 2
(k = 2, 2(3−2) = 2 input–output ports per subnetwork, 4 switches/subnetworks). One layer
has multiple subnetworks. With every layer, the number of subnetworks is doubled and
number of inputs per subnetwork is halved. For this reason, the number of input and
output switches of each layer remains the same, except in the last layer. Layer k = r − 1 is
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the center of the network and consists only of switches and not subnetworks (switches and
subnetworks coincide).
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Proposition 3. A switch (input or output) z ∈ [0, m − 1] (Proposition 1) has 2 input ports,
2 × z, and 2 × z + 1 and 2 output ports, 2 × z’ and 2 × z + 1′. For every switch, 2 settings
are possible (Figure 3). When 2 × z is connected to 2 × z + 1′ and 2 × z + 1 is connected to
2 × z’ the setting is cross. When 2 × z is connected to 2 × z’ and 2 × z + 1 is connected to
2 × z + 1′ the setting is bar. Satisfying the requested routing paths by setting all switches in
the correct setting is the purpose of the routing algorithm.

Figure 3. The 2 types of switch settings, bar (left) and cross (right).

Proposition 4. Because of the general form of the network (Proposition 1) and since 2 × z
and 2 × z + 1 are ports of the same switch, they are connected to different subnetworks (up
and down) regardless of the setting the switch has (cross or bar).

Proposition 5. If the switch is bar, input 2 × z is connected to the upper subnetwork and
2 × z + 1 is connected to the lower subnetwork; if the switch is cross, the opposite is true.
The same stands for the outputs.

Proposition 6. If the subnetwork, with which every input and output is connected, is
known, then by merit of Proposition 5, all switches can be configured correctly. Addition-
ally, it is clear that the knowledge of the input–output table of the 2 subnetworks of the
subsequent layer can be used to configure them. Therefore, the sequence that successfully
routes layer 0 (the outmost layer) can be recursively used to route the inner layers and
eventually the entire Benes network. This is related to the general form of the Benes net-
work. The middle networks (the ones presented as “black boxes”) follow the exact same
form as layer 0 (the outermost layer). The only thing required to route the outer layer
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is the input–output routing table. The process of routing the outer layer itself produces
the input–output routing tables of the inner networks. This is shown in Figure 4j clearly,
where the lines connecting inputs–outputs of the inner networks can be seen. Each of these
networks plays the same role for its own subnetworks and propagates the new routing
tables. This process continues until all layers are routed fully.
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Figure 4. As we can see in Figure 4, the patch goes back and forth from inputs to outputs and up and
down from the upper to lower subnetwork, constantly. The order of routing as seen in the subfigures
is (a) path 0-0′, (b) path 1-2′, (c) path 5-3′, (d) path 4-1′, (e) end of loop/no routing takes place,
(f) path 2-4′, (g) path 3-6′, (h) path 6-7′, (i) path 7-5′, (j) entire network is routed.
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3. Proposed Routing Algorithm
3.1. Algorithm

According to Proposition 6 and because of the recursive nature of the Benes network,
successfully routing layer 0 of a Benes network equates to routing the entire network. The
algorithm described in this section aims to do just that. Set all 2r (Proposition 2) switches of
layer 0 to a setting that satisfies the given input–output table. With that completed, routing
the entire network is simply a matter of producing the routing tables of the rest of the layers
and successfully routing them. A typical run of the algorithm is presented in Figure 4.

Step 1. Select an output port of an unset switch and a subnetwork (upper or lower). If
there are no unset switches, end the process. Generally, when the algorithm starts routing
for the first time, we pick output 0′. If we come back to this step during the routing, we
can pick any unvisited port. No matter what the starting output port or subnetwork is, the
algorithm is going to produce a correct setting.

Step 2. Route the output port through the selected subnetwork all the way to its
corresponding output (Figure 4a).

Step 3. Pick the input of the same switch and route it back to its corresponding
output by using the opposite subnetwork of what was used in Step 1 (Figure 4b). This is
particularly important. Whether the upper or lower subnetwork is selected in Step 1, it will
not change the outcome. It is, however, necessary to change subnetworks. If Step 1 used
the upper subnetwork, Step 3 must use the lower subnetwork. If Step 1 used the lower
subnetwork, Step 3 must use the upper network. This ensures the balance of occupied
paths between the two possible routes (upper and lower) and essentially guarantees that
for every routing toward a switch, there is always a routing out of it.

Step 4. If the output switch that the path leads to is already visited, go to Step 1
(Figure 4d). If the output switch is unoccupied, select the output of the same switch and
the original selected subnetwork and proceed to Step 2 (Figure 4c). In the first case, a path
loop is reached. Switches that belong to the same path loop can be treated as belonging to
the same cluster. If a cluster occupies paths equally in both subnetworks (Step 3), its routes
do not affect the rest of the network. The origin point of every cluster is the starting output
of Step 1. In the second case, we select the output of the same switch to maintain the path
course. The subnetwork selected in Step 1 for every cluster is always the opposite of the
subnetwork, routes, which originate from an input, pass through. In other words, paths
exchange subnetworks constantly.

Table 1 is the input-output routing table of the network routed in Figure 4.

Table 1. Example of an 8-input port Benes routing Table.

Input Ports Output Ports

0 0′

1 2′

2 4′

3 6′

4 1′

5 3′

6 7′

7 5′

A complete algorithmic run of the proposed algorithm for input–output routing table
mentioned on Table 1. In Figure 4a, as mentioned, when starting the routing of a layer, we
select output port 0′ and upper subnetwork (Step 1). We then proceed to route the first path
(Step 2). In Figure 4b, the input of the same switch is routed back to the outputs (Step 3). In
Figure 4c, the output switch is not visited, so we proceed with Step 2 (Step 4). The output is
routed to the input through the upper subnetwork (Step 2). Figure 4d presents the routing
of the input of the same input switch to the output (Step 3). In Figure 4e the output switch
(switch 0′ with ports 0′, 1′) is already routed, so we proceed to Step 1 (Step 4) and pick
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output 4′ as the origin of path 2 and the upper subnetwork as the starting subnetwork
(Step 1). Figure 4f shows the routing of output 4′ to the corresponding input (Step 2); in
Figure 4g, the path routes back to the outputs (Step 3). In Figure 4h, Output 7′ is selected
(Step 4) and routed (Step 2) since it is in the same switch as 6′. Finally, in Figure 4i, we route
the input of the same switch back to the outputs (Step 3). Figure 4j presents the completed
routing.

When the process is completed, all switches of the layer are set. Moreover, all inputs
and outputs of both subnetworks are consumed, providing the input–output tables for
the next layer. In each layer k of a network of 2r inputs, there are 2k (subnetworks) × 2r−k

(inputs per subnetwork) = 2r switches. There are r layers. The overall complexity is 2r × r.
If 2r = n inputs, the complexity becomes n × logn. This is the typical linear complexity
of a Benes routing algorithm. There is no linear solution that can complete the routing in
fewer steps [23]. Considering the fact that this is a linear algorithm, this is no surprise. One
thing that should be mentioned is that in contrast to Opferman’s algorithm, there is no
backtracking to change the settings of the switches [31].

3.2. Proof of Concept

In this section, we present why the algorithm described in the previous section always
leads to a valid solution. As per Proposition 6, successfully routing layer 0 of the network
leads to routing the entire network. This is because, starting from layer 0 (outmost layer),
all inner layers are recursively constructed by Benes networks with half the inputs of the
layer before them. The example in Figure 4 clearly showcases how the inner subnetworks
have 4 input–output pairs instead of the 8 that the outer layer has. In other words, if the
validity of the algorithm for layer 0 is proved, then the entire network can be routed using
the same steps on all subnetworks of all layers.

For the sake of simplicity and shortening the proof, the steps between the routing
of one output and the routing of the next output (Steps 1 through 4) are referred to as
an iteration. In every iteration, at least two switches are set; therefore, in layer 0 with
2r inputs–outputs, 2r−1 iterations are needed. We prove that iteration a0 leads to a1 and
iteration ai leads to ai+1, (in short a0 → a1, ai → ai+1) without fail.

This means that the first step is always viable and all steps after that are always viable
until all switches are set. In the following figures (5,6,7) *** denotes the starting output
switch of an iteration.

Case ao → a1. It is obvious that all paths are available, and the first iteration can
always be completed without fail (Figure 5).

Case ak → ak+1. Firstly, it is clear that since both inputs of an input switch are routed
in one iteration, the routing to an input switch (Step 2) is immediately followed by the
routing of the other input port to the corresponding switch (Step 3). It is impossible that an
input switch is partly routed (Figure 6).

This means that in the ak iteration, the target input switch has both paths open. For
the path back to the next output, there are two possibilities.

1. Output switch at the end of the iteration is not set. It has not been visited before and
can simply be set in the same way as all others: in this case, the algorithm proceeds as
usual by selecting the output of the same switch as the starting point of ak+1 iteration.

2. If the output switch is routed, then we have reached the end of the loop path, and
a new path needs to be selected. The possibility of conflict does not exist since the
path which closes the loop always returns to the output side through a different
subnetwork than the one who started the loop. Notice that in Figure 7, path 7-1′,
which ends the loop, is routed through the lower subnetwork, and path 4-0′, which
starts the loop, is routed through the upper subnetwork. Between paths 4-0′ and 7-1′,
there are two paths, 5-3′ and 6-2′. The order of routing is 4-0′, 5-3′, 6-2′, 7-1′. If we were
to add some more paths to the loop, these must be in multiples of two. For example,
in Figure 7, if we change path 7-1′ to 7-5′, then we have to add 3-4′ to the input side
and then again end on the output side with 2-1′. The entire routing now is 4-0′, 5-3′,
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6-2′, 7-5′, 3-4′, and 2-1′. The path needs to visit the inputs first and the return and end
at the outputs (where it started). This costs at least two paths or multiples of two. This
is the reason the first and last paths are on different subnetworks. 4-0′ (Upper), 5-3′

(Lower), 6-2′ (Upper), 7-5′ (Lower), 3-4′ (Upper), 2-1′ (Lower). No matter how many
paths come between path x-0′ and y-1′, they are always on different subnetworks.
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To summarize, we now know that a0 → a1 and ak → ak+1. The process successfully
routes the entire outer layer. By applying the same algorithm to subsequent layers, we can
route the entire network.

4. Implementation

This section covers the hardware implementation of the algorithm described in the
previous sections. The input of the circuit is the input–output routing table, and the output
is the switches’ setting. After the routing is complete, it is expected that every output can
be reached through its corresponding input.

The recursive nature allows the use of the same circuit for every subnetwork albeit
with a different number of inputs–outputs. The overall architecture of the design for a
generic number of inputs is shown in Figure 8. All subnetworks work identically. In each
layer, the number of subnetworks is doubled, and the number of inputs per subnetwork is
halved. The main output of each layer is the switches setting. The number of switches is the
number of inputs–outputs (half input switches and half output switches) and is the same
(2r switches) for every layer, except the center (2r−1 switches). Apart from the switches’
setting, each subnetwork also creates the input–output tables that it feeds to the next two
subnetworks that replace it. In each instance, the act of “routing” inputs and outputs is
translated to a simple sorting of the input–output entries. This sorting ensures that in the
new list, pairs in 2 × z positions are routed through the upper subnetwork and pairs in
2 × z + 1 positions are routed through the lower subnetwork. Figure 8 presents the
subnetwork of the first layer with 2r inputs. There are four modules. Modules 1 and 4
handle the input and output formatting, respectively. Modules 2 and 3 constitute the main
system, and it is where the sorting takes place.
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Figure 8. Implemented system for a generic number of inputs.

For the more detailed explanation of the system, we used an example of an 8 input–
output network (Figure 9). Out of all the subnetworks (Proposition 2) in the network,
we focus on the function of the first layer (Figure 10) (8 input–output ports, 8 switches).
Proposition 6 ensures that once the first layer is routed, all others follow in the same way.

The choice to present things in this way was primarily made in order to present the
concept of each module in a concise way, which is easy to follow. The relationship between
the 8-port network and the generic version is examined in each module section separately.
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4.1. Module 1: Reverse Input Vector

This module creates the inverse input vector of the input–output routing table. The
process uses the number of the output as the index of the inverse vector entries. For
example, Table 2 presents the input–output routing table of an 8-port Benes network.

Table 2. Input–output routing table.

Input Ports Output Ports

0 0′

1 2′

2 4′

3 6′

4 1′

5 3′

6 7′

7 5′

Input port 0 leads to output port 0′. Input port 1 leads to output port 2′. Port 2 to 4′,
etc. The inverse vector contains the output ports on the left side in an ascending order and
their respective input port on the right side. In our example, position 2′ in the new vector
is filled with the number 1, position 0′ with the number 0, and 4′ with 2. The entire reverse
vector in shown in Table 3.

Table 3. Inverse input–output table.

Output Ports Input Ports

0′ 0
1′ 4
2′ 1
3′ 5
4′ 2
5′ 7
6′ 3
7′ 6
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The left side of both vectors are always in an ascending order. That is why we can
simply keep the right side and use the index of the input vectors as the left side. The
right side of these two vectors is the input that is fed to the first layer and starts the entire
routing process.

In the case of a generic number of input ports, nothing changes. We use the left side as
an index and complete the inverse vector. If there is more than one zero elements, two or
more input ports are connected to the same output. With n = 2r inputs, the creation of the
inverse vector needs 1 clock cycle. The creation of the inverse vector is necessary in order
to be able to find the corresponding port to an input or an output without searching the
entire vector.

4.2. Module 2: Sorting Mechanism

Module 2 implements the algorithm described in the Section 3. In every cycle, it routes
two paths: one from the outputs to the inputs and one from the inputs back to the outputs.
In the circuit environment, “routing” means sorting input–output pairs in a way in which
pairs in 2 × m positions are routed through the upper network and pairs in 2 × m + 1
positions are routed through the lower network. Whether it is up and down, or down and
up, makes no difference to the solution. Utilizing the two indexed vectors (Tables 2 and 3),
a detailed run of the algorithm is shown below. As we mentioned in Section 3, one iteration
consists of all steps, essentially routing an output to an input and routing the input of the
same switch back to the output.

1st iteration. Any output can be selected to start the algorithm, but in our case, we
select output 0′ as the origin point of the first path (Table 4).

Table 4. 1st iteration.

Input Ports Output Ports

0 0′

1 2′

2nd iteration. The output for the next iteration is 3′ since it in the same switch as 2′

(Table 5). This is detected simply by dividing the number of the 2 ports by 2.

Table 5. 2nd iteration.

Input Ports Output Ports

0 0′

1 2′

5 3′

4 1′

3rd iteration. 1′ is in the same switch as 0′ so a new path must be created. Output port
4′ is the new origin point (Table 6).

Table 6. 3rd iteration.

Input Ports Output Ports

0 0′

1 2′

5 3′

4 1′

2 4′

3 6′

4th iteration. 7′ is in the same switch as 6′. Last iteration since all switches are routed
(Table 7). This is the same example that is presented in Figure 4.
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Table 7. 4th iteration.

Input Ports Output Ports

0 0′

1 2′

5 3′

4 1′

2 4′

3 6′

6 7′

7 5′

In the case of a generic number of inputs, the algorithm is the same. We keep repeating
the same steps until all switches are routed. The process is linear, and, in every clock cycle,
two switches are routed. For 2r = n input, 2r−1 = n/2 clock cycles are needed.

4.3. Module 3: Unrouted Switch Pointer

Module 3 is a complementary module to the previous part. It is responsible for
selecting the next starting point (origin) in the case of a path loop. For example, in iteration 2
(Table 5), the path ends in a loop on output switch 0′ (output ports 0′,1′). To continue
the process, a new starting point is necessary. When there are no more available switches
in Module 3, all loops are closed, and the algorithm ends. In order to avoid the long
critical path of the priority encoder needed for the 1st implementation, a different design is
considered. Every switch element, with the use of two auxiliary vectors, becomes a part
of a linked list. Vector (left) contains the list entries on the left of each element and vector
(right) contains the list entries on the right of each element. The head of the list is the first
available pair. When an element is used in Module 2, it is ejected from the list by connecting
the two adjacent entries. If the head is selected, then it is ejected, and the head pointer
moves to the left entry. The list is always organized from left to right. An equivalent run to
the first implementation is as follows.

1st iteration. The two vectors (left) and (right) have four entries, one for every output
switch. The initial values for these entries are the adjacent switches. For example, position
1 refers to the 1′ switch (ports 2′,3′). Left of 1 is 2, and therefore, left [1] = 2; right of 2 is
3, and therefore right [1] = 3. Switch 0′ (ports 0′,1′) does not contribute since it is always
routed first. The other vector cells are initialized with the same logic (Table 8). The head of
the list is switch 1′ (ports 2′,3′), head = 1′.

Table 8. 1st iteration.

Number of Output Switch Left of Switch Right of Switch

3′ 0′ 2′

2′ 3′ 1′

1′ 2′ 0′

0′ X X

2nd iteration. Output switch 1′ is ejected from the list. Switch 2′ (4′,5′) becomes head
of the list, head = 2′ (Table 9).

Table 9. 2nd iteration.

Number of Output Switch Left of Switch Right of Switch

3′ 2′ 2′

2′ 3′ 3′

1′ X X
0′ X X
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3rd iteration. A path loop is reached. Output switch 2′ (head of list) is used to proceed
with the routing. Consequently, switch 2′ is ejected from the list (Table 10).

Table 10. 3rd iteration.

Number of Output Switch Left of Switch Right of Switch

3′ 3′ 3′

2′ X X
1′ X X
0′ X X

4th iteration. Output switch 3′ is ejected from the list. The routing is complete (Table 11).

Table 11. 4th iteration.

Number of Output Switch Left of Switch Right of Switch

3 3 3
2 X X
1 X X
0 X X

Such an implementation dramatically improves the speed of the circuit. It allows us to
avoid using logical constructs with long critical paths, such as a priority encoder to decide
the availability of switches.

4.4. Module 4: Switch Routing and Input-Output Routing Tables of the Next Layer

The last module of the design reads the sorted list of pairs and routes the input and
output switches accordingly. It reads every two entries in each side since adjacent entries
belong to the same switch. In the case of a path loop, since the path has 2 × k + 1 steps, it
never samples the same switch. If a 2 × m input or output is the first input/output of a
switch, then the switch is bar. If it is the second one, then the switch is cross. It also prepares
the input–output table for the two subnetworks. The process is completed in n/2 cycles.

After sorting the entries with the previous modules, we now have the mapping of
the paths (Table 12). All pairs in 2 × m positions are routed through the upper Benes
subnetwork, and all pairs in 2 ×m + 1 are routed through the lower subnetwork. We check
all 2×m positions of the table and determine the routing of both input and output switches.
In position 0, there is input port 0 and output port 0′. Both ports 0 and 0′ are the first
port of their respective switch, so both switches are routed bar according to Proposition 5
(Table 13).

Table 12. U: upper subnetwork, L: lower subnetwork.

Input Ports Output Ports Subnetwork

0 0′ U
1 2′ L
5 3′ U
4 1′ L
2 4′ U
3 6′ L
6 7′ U
7 5′ L
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Table 13. 1st iteration.

Input Switch Output Switch

0 Bar bar
1
2
3

The next 2 ×m position is position 2 (3rd row). The respective ports are 5 and 3′. Both
are the second port of their respective switch, so both switches are cross (switch 2 for 5 and
switch 1′ for 3′) (Table 14).

Table 14. 2nd iteration.

Input Switch Output Switch

0 Bar bar
1 cross
2 Cross
3

Position 4 (5th row) contains ports 2 and 4′. They are both the first port of their
respective switch, so both switches are set to bar (Table 15).

Table 15. 3rd iteration.

Input Switch Output Switch

0 Bar bar
1 Bar cross
2 Cross bar
3

Position 6 (7th row) contains ports 6 and 7′. Here, port 6 is the first input of input
switch 3 and 7′ is the second output of switch 3′. Switch 3 is set to bar, and switch 3′ is set
to cross (Table 16).

Table 16. 4th iteration.

Input Switch Output Switch

0′ Bar bar
1′ Bar cross
2′ Cross bar
3′ Bar cross

The entire layer is presented routed in the picture below (Figure 11).
Regarding the input routing tables to the next layers (upper and lower subnetworks),

each switch can only be connected to a subnetwork once. The number of a subnetwork
port that a switch is connected to is the same as the number of the switch (Proposition 2).
For this reason, in order to produce the input–output tables for the next layer, we separate
the input–output pairs (Table 12) by their subnetwork (Tables 17 and 18).
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Table 17. Input–output pairs that are routed through the upper subnetwork.

Input Ports Output Ports Subnetwork

0 0′ U
5 3′ U
2 4′ U
6 7′ U

Table 18. Input–output pairs that are routed through the lower subnetwork.

Input Ports Output Ports Subnetwork

1 2′ L
4 1′ L
3 6′ L
7 5′ L

We then must divide by 2. This division is necessary in order to produce a valid routing
table since subnetworks have half the number of input and output ports (Tables 19 and 20).

Table 19. Upper pairs are divided by 2.

Input Ports Output Ports Subenetwork

0 0′ U
2 1′ U
1 2′ U
3 3′ U

Table 20. Lower pairs divided by 2.

Input Ports Output Ports Subnetwork

0 1′ L
2 0′ L
1 3′ L
3 2′ L
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Finally, the pairs are organized in the same manner (ascending input order) as the
original input–output routing table (Tables 21 and 22).

Table 21. Routing table of the upper subnetwork.

Input Ports Output Ports Subnetwork

0 0′ U
1 2′ U
2 1′ U
3 3′ U

Table 22. Routing table of the lower subnetwork.

Input Ports Output Ports Subnetwork

0 1′ L
1 3′ L
2 0′ L
3 2′ L

At this point, the tables are passed as inputs to the subnetworks of the next layer and
are used to route it (Proposition 6). The process repeats until all switches on all layers are
set. The entire fully routed network can be seen in Figure 12.
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The process is linear in this case also, and it is the same for a generic number of inputs,
as nothing changes. We simply keep setting the switches until the end. Since we use only
2 ×m positions for 2r inputs, 2r-1 = n/2 clock cycles are needed.

The cycles of the individual modules are Module 1: 1, Module 2: n/2, Module 3:
1, Module 4: n/2, and thus, 1 + n/2 + 1 +n/2 = 2 + n ≈ n total cycles. Due to the
recursiveness of the Benes network (Proposition 1) there are logn = r layers of subnetworks.
The complexity of the entire system is logn × n, the minimum complexity to route a Benes
network with one processing unit [23].
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5. Board Implementation, Results and Discussion

In [32], the author used the Taiwan Semiconductor Manufacturing Company (TSMC)
ASIC libraries to implement their work. In our case, we implemented the design on the
mid-range FPGA board, ZCU-104 Evaluation board (Figure 13) using Vivado. In order to
leave as many resources as possible available for the algorithm to utilize, we used a single
pin for the input and a single pin for the output.
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The input–output routing table entries were linearly inserted to a shift register (input
vector), whose elements became the corresponding output port (Table 23). In the example,
port 0 is paired with port 0′. So, the first 3 bits are 000. Port 1 is paired with port 2′, so
the next 3 bits are 010. Using this logic, the corresponding input vector of the example is
000 010 100 110 001 011 111 101. For a generic size of 2r inputs, the input vector’s size is
r × 2r bits.

Table 23. Shift input register for 8 × 8 Benes network.

Shift Input Register (3 × 23 = 24 bits)

Input ports 0 1 2 3 4 5 6 7
Bits 000 010 100 110 001 011 111 101

Output ports 0′ 2′ 4′ 6′ 1′ 3′ 7′ 5′

The same logic applies to the output. For all layers, the setting of all switches is loaded
to a shift register connected to the single output pin. The size of the output shift register for
a Benes network of 2r inputs is (r − 1) × 2r + 2r−1 bits. Each switch is represented by one
bit: 1 for cross setting and 0 for bar setting (Proposition 3). There are (r − 1) layers with
2r switches and one layer with 2r−1 switches (Proposition 2). Table 24 shows the output
vector of the 8 × 8 example per layer (Proposition 2). The first 4 bits are the input switches
of the first layer (red). The next 4 are the output switches of the first layer, etc.

Table 24. Shift output register for 8 × 8 Benes network.

Shift Output Register [(3 − 1) × 23 + 23−1 = 20 bits (1 bit for Every Switch)]

Layers (r = 3) 1st layer 2nd layer 3rd layer
Bits 00100101 01010110 0101

The design was implemented originally for Benes networks of size 8, 16, 32, and 64
(Table 25).
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Table 25. Resource utilization.

Size of Benes Network 8 16 32 64

CLB LUTs as Logic 1416 (0.61%) 3656 (1.59%) 13549 (5.88%) 35925 (15.59%)
CLB Registers as Flip Flop 561 (0.12%) 1558 (0.34%) 4002 (0.87%) 9993 (2.17%)

CARRY 8 67 (0.23) 145 (0.5%) 315 (1.09%) 657 (2.28%)
F7 Muxes 2 (<0.01%) 94 (0.08%) 610 (0.53%) 2405 (2.09%)
F8 Muxes 0 (0.00%) 9 (0.02%) 91 (0.16%) 486 (0.84%)

The operational frequency along with the time needed to produce one fully routed
setting is listed below (Table 26). Complexity of the algorithm is n × logn so in order to
find the time need to produce one complete result, we multiply the required clock cycles
with the minimum period (Table 26). No DSP, RAM blocks or other specialized blocks
were used.

Table 26. Operating frequency.

Size of Benes Network 8 16 32 64

Minimum Operational Period (ns) 4 4 6 8
Maximum operation frequency (MHz) 250 250 166 125
Time needed for 1 complete setting (ns) 96 256 960 3072

Lastly, we have the power consumed as reported by the Vivado tool (Table 27).

Table 27. Power.

Size of Benes Network 8 16 32 64

Power consumed (W) 0.036 0.105 0.241 0.437

In [32], the author provides a utilization report on a synthesized ASIC implementation
of Lee’s algorithm [28]. For a 64-port network, the parallel design consumes around
1.32 × 105 logic cells and needs 5.6 × 36 = 201.6 ns (5.6 ns being the critical path and 36 the
needed clock cycles to complete 1 operation) to complete one routing.

A rather rough comparison between these two implementation approaches could
be done as follows. According to [33], the fact that architectures built on FPGAs are, on
average, 35 times larger and 4 times slower than those build on ASICs, these values can
be converted to FPGA terms. However, the difference in the technology nodes (65 nm vs.
16 nm of the used FPGA) should be taken into account since there is a proportional increase
in devices speed, according to the scaling factor. More specifically, the above correspond
to an area of 132,000 × 35 = 4,620,000 cells and a required time of 201.6 × 4/4 = 201.6 ns.
By merit of this analogy, it seems that the metric of space × time is lower in our design
(49,466 × 3072 < 4,620,000 × 201.6) by a factor of 6.12.

Apart from parallel and linear routing algorithms, there is another approach to routing
interconnection networks and networks in general. Machine learning has risen to promi-
nence in recent years and is being used in many different areas of networking, including
network routing. In our case, machine learning-assisted routing of Benes networks primar-
ily concerns photonic switches. Researchers have opted to used machine learning for Benes
switch routing since it is less resource demanding compared to the already established
algorithms. The author of [34] conducted extensive work on the subject. In [34], a photonic
4 × 4 Benes switch was routed using machine learning techniques. The author stated that
there are 26 = 64 possible combinations. This is drastically more than our model which
needs only 4 × log24 = 4 × 2 = 8 clock cycles (n × log2n, n = 4) to complete the routing.
In [35], the same trend is continuous. For a classic 8 × 8 Benes network, the possible
combinations are in the range of millions. This would require much more time than our
approach of 8log28 = 8 × 3 = 24 clock cycles/steps. The author also used non-classic,
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arbitrary size Benes networks [36] with ports not equal to a power of 2. The modification
needed for our proposed algorithm to route all kinds of Benes networks (arbitrary size and
classic) will be the subject of our future work. It seems that the proposed algorithm can
replace both hard and soft existing computing methods. It is straightforward enough to be
implemented easily and does not consume a lot of resources. As it was presented, parallel
solutions require too many resources while not offering the counterweight advantages in
terms of speed (metric speed × space) and machine learning has to contend with very big
data sets (millions for 8 × 8 Benes switch).

6. Conclusions

In this paper, we presented a linear algorithm for the purpose of routing Benes net-
works of all sizes. The purpose of the development of the algorithm is to create an archi-
tecture that can perform the routing in a reasonable amount of time while simultaneously
being confined enough to fit on a low-cost FPGA. Other linear solutions involve complex
matrix calculations or require backtracking. This impairs their effectiveness and causes
them to demand additional resources. On the other hand, the parallel hardware solutions,
although faster, are very resource demanding. The design presented in this work is straight-
forward enough to be coded easily in any type of hardware description language and does
not use any specialized blocks (DSP, RAM blocks). Its implementation is possible, even on
relatively small boards, and the resources it consumes are very few. There is strong evidence
to suggest that with a slight modification, it can handle the routing of AS-Benes networks
(arbitrary size Benes networks). Despite its efficiency however, at the present time, the
proposed algorithm can only be used to route a classic Benes network (2000 inputs). Classic
Benes networks are only a subset of the Clos family of interconnection networks and are
only used extensively in optical applications. An immediate improvement would be to
make slight modifications in order to be able to handle the routing of AS-Benes networks
(arbitrary size Benes networks). After that, the same principle of sorting input–output
entries can be applied to the routing of other 3-stage Clos interconnection networks in order
to establish whether or not it can be used for a wider selection of these types of structures.
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