
Article

Gas Storage Valuation and Hedging: A Quantification
of Model Risk

Patrick Hénaff 1, Ismail Laachir 2 and Francesco Russo 3,*
1 IAE Paris, Université Paris I-Panthéon Sorbonne, 75006 Paris, France; pa.henaff@gmail.com
2 Ismail Laachir, Zeliade Systems, 56 Rue Jean-Jacques Rousseau, 75001 Paris, France; ilaachir@zeliade.com
3 Francesco Russo, ENSTA ParisTech, Unité de Mathématiques Appliquées, 91120 Palaiseau, France
* Correspondence: francesco.russo@ensta-paristech.fr; Tel.: +33-1-8187-2112

Received: 1 December 2017; Accepted: 23 February 2018; Published: 5 March 2018

Abstract: This paper focuses on the valuation and hedging of gas storage facilities, using a spot-based
valuation framework coupled with a financial hedging strategy implemented with futures contracts.
The contributions of this paper are two-fold. Firstly, we propose a model that unifies the dynamics
of the futures curve and spot price, and accounts for the main stylized facts of the US natural gas
market such as seasonality and the presence of price spikes in the spot market. Secondly, we evaluate
the associated model risk, and show not only that the valuation is strongly dependent upon the
dynamics of the spot price, but more importantly that the hedging strategy commonly used in the
industry leaves the storage operator with significant residual price risk.
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1. Introduction

Natural Gas (NG) storage units are used to reconcile the variable seasonal demand for gas with
the more constant rate of natural gas production. These gas storage facilities are mainly owned by
distribution companies which use them for system supply regulation, and for reducing the risk of
shortages. In fact, regulation requires that local distribution companies own storage units, in order to
secure their gas supply and to be able to meet any sudden increase in demand or any disruption in the
pipeline transportation system.

Traditionally, say prior to about 2005, gas storage units were valued using a discounted cash
flow, also called intrinsic, method. The idea was to project an optimal schedule of injections and
withdrawals, using the term structure of future prices, and compute the corresponding discounted
cash flow, which provided a lower bound to the storage value. Following this strategy, the storage
manager observed the futures curve at the beginning of the storage contract and bought/sold futures
contracts, thereby determining once and for all the complete schedule of injection and withdrawals;
essentially, this lead to buying cheap summer futures and selling expensive winter futures and the
corresponding storage value greatly depended upon the summer-winter spread.

Since the late 2000s, however, the seasonal spread has consistently shrunk, putting into question
the futures-based methodology. The 2011 State of the Markets report, issued by the US Federal Energy
Regulatory Commission (FERC 2012), noticed the following: We have also seen a decline in the seasonal
difference between winter and summer natural gas prices. Falling seasonal spreads reflect increased
production and storage capacity, as well as greater year-round use of natural gas by power generators.
This decline has developed over the past several years and we expect the trend to continue.
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This narrowing winter/summer spread was mainly due to two factors that simultaneously put a
downward pressure on winter gas prices and an upward pressure on summer prices. The first factor
was the recent surge in non conventional shale gas supply, with geographical locations that were closer
to gas consumption areas. The main effect of this new abundant supply was a downward pressure on
winter prices. The second factor is related to power consumption by cooling systems during summer
periods and the growing use of natural gas as a fuel for electricity generation. This puts an upward
pressure on summer gas prices. The combination of these two factors had the logical consequence of
narrowing the seasonal spreads between winter and summer prices, diminishing the intrinsic value of
gas storage units. The phenomenon has even amplified over time to the point that, as of January 2018,
the maximum summer-winter spread is about 50 cents.

Static strategies based on futures contracts were no longer adequate to monetize the value of
gas storage facilities; they even sometimes failed to recover the operating expenses. This motivated
an interest in dynamic strategies that took advantage of the real options embedded in gas storage
facilities. These methods are called extrinsic because they take into account the time value of the
embedded calendar spread options. As intended, they evaluated the storage units, in particular the
units with a high injection/withdrawal rate, at a much higher value than the traditional intrinsic value.
However, switching from an intrinsic to an extrinsic valuation method was a major paradigm shift in
risk management, and this for two reasons:

• The extrinsic method relies on a precise model of the dynamics of the Natural Gas term structure,
and in particular on the modeling of correlation between futures contracts, and between the
futures prices and the cash price of Natural Gas. Contrast this with the intrinsic method,
which takes the term structure as a given, and does not require any model of the price dynamics.

• The traditional intrinsic method assigned to the storage unit a value that could be recovered for
certain by implementing a static trading strategy in Natural Gas Futures. In contrast, the extrinsic
method, by analogy with financial options, determines the expected discounted value of future
cash flows. The analogy with a financial option stops here however, because, contrary to an
option on a stock, for example, the hedging strategy is far from being as readily available.

The purpose of this paper is to stress the magnitude of this paradigm shift, and its contributions
are two-fold.

• Firstly, we provide a model of the dynamics of the NG market, that incorporates all the features
relevant for the evaluation of options embedded in a storage unit. To this end, we introduce a
new modeling framework that unifies the dynamics of the futures curve and spot price, and is
consistent with the two stylized facts that are essential to the gas storage valuation problem:
price seasonality and spot price spikes.

• Secondly, we attempt to quantify the model uncertainty inherent to the extrinsic method.
We highlight in particular the significant sensitivity of gas storage value to the specification
and estimation of the spot model. This result puts into perspective the extensive literature on
gas storage valuation, and calls for a more careful assessment of the model risk inherent to these
valuations. We conclude that in the current state of the art, a significant portion of the extrinsic
value cannot be monetized in a reliable manner.

Summary of Findings

We find that the switch from an intrinsic to an extrinsic valuation method introduces a significant
level of model risk in the pricing and risk management of storage units. We have identified a model
formulation for the dynamics of the asset price that somehow mitigates this risk, but model risk
still remain a full order of magnitude larger than for standard financial options. In this context,
the extrinsic method, should be understood as providing a broad indicator of value rather than a
firm price. This puts into perspective the concentration of effort in the literature on the specification
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of an optimal valuation strategy. More attention should probably be devoted to the discussion of
modeling assumptions.

After this introduction the paper is organized as follows. In Section 2, we provide a summary of
the literature with respect to both the storage valuation methods and the modeling of the dynamics
of the Natural Gas term structure. Next, we introduce in Section 3 our model for the price process,
and motivate our modeling choices by an investigation of the stylized facts observed in the Natural Gas
market. In Section 4 we use our models to price typical storage facilities, using both the extrinsic and
intrinsic methods. Section 5 is devoted to the measure of model risk in extrinsic methods. We introduce
two natural model risk measures to quantify the sensitivity of a class of models with respect to the
parameters; those risk measures are computed in several test cases.

2. Survey of Relevant Literature

In this section, we summarize the existing literature on the two topics of interest for our inquiry,
which are the methodology for pricing and hedging a gas storage facility on one hand, and the
dynamics of the term structure of gas price on the other hand.

2.1. Valuation and Hedging of a Gas Storage Unit

The problem of valuing gas storage units has been discussed from many angles in the literature,
yielding different approaches and numerical methods. Leasing a gas storage unit is equivalent to
paying for the right, but not the obligation, to inject or withdraw gas from the unit, and the operator’s
goal is obviously to optimize the exercise of that right by injecting or withdrawing gas from the
unit and, at the same time, trading gas on the spot and/or futures market. All these decisions have
to be made under many operational constraints, such as maximal and minimal volume in storage,
and limited injection and withdrawal rates. Methods for determining the optimal operating policy—an
therefore the value of the storage—fall in two broad categories: the intrinsic methods and the extrinsic
methods, which are described next.

Remark 1. For simplicity, in the rest of this article, we suppose the discount interest rate to vanish, and consider
the problem specification in a time discrete setting.

2.1.1. Gas Storage Problem Formulation

We consider a gas storage facility with technical constraints (either physical or regulatory) on
the volume of stored gas, Vmin and Vmax i.e., at all time, the volume of stored gas V should verify
Vmin ≤ V ≤ Vmax.

We assume a discrete set of dates ti = i∆t for i = 0, . . . , n− 1 with ∆t = T/n. At each date ti and
starting from a volume Vti , the user has the possibility to make one of three decisions: either inject gas
at rate of ainj, or withdraw gas at rate of awith or take no action. We denote by ui the decision at time ti,
and write ui = inj (resp. with, no) if the decision is injecting gas at rate ainj (resp. withdrawing gas at
rate awith, no action).

If the user follows a strategy (ui)i=0,...,n−1, then the volume of gas in storage (Vti )i is given by
the iteration

V0 = v, (1)

Vti+1(u) =


min(Vti (u) + ainj∆t, Vmax) if ui = ing
max(Vti (u)− awith∆t, Vmin) if ui = with
Vti (u) if ui = no,

i = 0, . . . , n− 2. (2)
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Denoting St the spot price of gas, the generated cash flow (positive when withdrawing gas,
negative when injecting) is given by

φui (Sti ) := Sti (Vti+1(u)−Vti (u)).

In general, the maximum injection and withdrawal rates (ainj and awith) are functions of the
amount of gas in storage. However, without loss of generality, we assume for simplicity that these
rates are constant. In Table 1 we summarize the possible decisions and their consequences on gas
volume and generated cash flow.

Table 1. Possible decisions.

Decision u Next Volume Cash Flow

Injection: ui = inj Vti+1 (u) = min(Vmax, Vti (u) + ainj∆t) φinj = Sti (Vti (u)−Vti+1 (u))

Withdrawal: ui = with Vti+1 (u) = max(Vmin, Vti (u)− awith∆t) φwith = Sti (Vti (u)−Vti+1 (u))

No Action: ui = no Vti+1 (u) = Vti (u) φno = 0

According to the intrinsic method, a trading strategy is determined once and for all at the beginning
of the lease. In order to determine the optimal futures positions, a linear optimization problem is
solved, with constraints imposed by the specifics of the storage unit (Eydeland and Krzysztof 2002).
Assume that N futures contracts, expiring at times TJ , j = 1, . . . , N, are available for trading, and let
F(t, Tj) be the price at t of a futures contract expiring at time Tj. The optimization problem amounts to
finding the number of futures contracts αj(t) ≡ αj(t0) to buy or sell at the start of the lease, and can be
expressed as follows:

IV(t) := max
(αj(t))j=1,...,N

−∑
j

αj(t)F(t, Tj)

−awith ≤ αj(t) ≤ ainj, for j = 1, ..., N

Vmin ≤ V(t) +
n

∑
j=1

αj(t) ≤ Vmax, for n = 1, ..., N,

(3)

The cash flow corresponding to the optimal solution can be obtained for certain by implementing
the trading strategy at the start of the lease. The subsequent evolution of the futures curve will not
have any impact on the cash flow.

This static methodology was extended by Gray and Khandelwal (2004) to the rolling intrinsic
valuation, to take advantage of the changing shape of the futures curve. According to this variant,
optimal futures positions are chosen at the beginning of the storage contract, but when the futures
curve moves away from its initial shape, new optimal futures positions are recalculated, and the
portfolio is rebalanced if this is found to be profitable.

Prompted by shrinking winter-summer spreads, it was soon recognized that this approach failed
to capture an important component of the storage value, related to the uncertainty of future prices,
and to operator’s ability to modify his policy to take advantage of new information. The methods that
capture the value of these options are called extrinsic methods, and they involve the resolution of a
constrained stochastic control problem, which is now described, using the notations of Warin (2012).
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The goal of the storage operator is to find a strategy u maximizing the expected cumulative cash flows.
We denote this optimal value by J?, which is the solution of the following problem:

J?(t0, x0, v0) = max
(ui)i=0,...,n−1

J(t0, x0, v0; u) = max
(ui)i=0,...,n−1

E
[

n−1

∑
i=0

φui (Sti )

]
(4)

= J(t0, x0, v0; u?).

From Table 1, we recall that Vti+1(u) only depends on Vti (u) and ui. To emphasize this fact,
if Vti = v, we also express Vti+1(u) by V̂ui (v).

At time t, for Xt = x and with current volume level v, the (optimal) value for gas storage will be
of course denoted by J?(t, x, v). The dynamic programming principle implies

J?(ti, x, v) = max
ui∈{inj, no, with}

{
φui +E

[
J?(ti+1, Xti+1 , V̂ui (v))|Xti = x, Vti = v

] }
. (5)

The classic way to solve this problem numerically is to use Monte Carlo simulations, combined
with the Longstaff and Schwartz (2001) algorithm, which approximates the above conditional
expectation, using a regression technique. This backward algorithm yields an estimate of the optimal
strategy u?; we refer the reader to Boogert and De Jong (2008) for a detailed description of the algorithm
and its implementation.

The optimal value for J?, however, is not used as such: having determined an optimal strategy
u? function of time, of the amount of gas in storage and of the forward curve, the storage value is
determined by a forward algorithm that involves two steps:

1. simulate paths for the forward curve and the spot price;
2. along each path, apply the optimal decision rule u? and determine the corresponding cash flow.

The expected total discounted cash flow over the paths is an estimate of J?, the optimal extrinsic
value (EV) of the storage unit.

Whereas the intrinsic method provide a price that can be obtained for certain through a trading
strategy in the futures market, a manager who follows the optimal strategy u? on a single path is not
assured to recover the expected value J?. There will certainly be a discrepancy between the realized
cumulative cash flows on a given path and the expected value. Hence, it is crucial for the storage
manager to reduce the variance of the cumulative cash flows, which is a random variable. As we will
explain in the next section, this can be achieved by conducting a financial hedging strategy, based on
futures contracts.

2.1.2. Financial Hedging Strategy

The optimal operating strategy will be combined with additional financial trades, so that the
expectation of the related cumulative wealth generated by both physical and financial operations is
still J?, but its variance (or some other risk criterion) is reduced. This additional financial hedging
strategy plays a role analogous to control variates in the variance reduction of Monte Carlo simulations,
as it preserves the expected value and reduces its variance. In order to reduce the variance of a Monte
Carlo estimator of a r.v. Y, one adds to it a mean zero control variate, which is highly (negatively)
correlated to Y. Since futures contracts are the most liquid assets in the natural gas market, and are
strongly correlated to the spot price, they form an ideal hedging instrument. In fact, although a futures
contract price F(t, T) does not converge to the spot price, when the time to maturity T − t goes to zero,
the correlation between the prompt contract (for example) and the spot price is very high, and often
the two contracts move in the same direction. The basic idea of a financial hedging strategy is to add
to the physical spot trading, a strategy of buying and selling, at a trading date ti, a quantity ∆(ti, Tj) of
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futures contracts F(., Tj) for 1 ≤ j ≤ m. Logically, those quantities will depend on the spot and futures
prices, S and {F(., Tj)}1≤j≤m, but also on the current volume level.

If the gas storage manager follows such a hedging strategy, in addition to the spot physical
trading, then the cumulative cash flows of the combined strategies is:

Wealthspot+futures =
n−1

∑
i=0

φu?
i
(Sti ) +

n−1

∑
i=0

m

∑
j=1

∆(ti, Tj)(F(ti+1, Tj)− F(ti, Tj)). (6)

Because the futures contract F(., Tj) stops trading after its expiration date Tj, we use the convention
∆(t, Tj) = 0, for t ≥ Tj.

Since the futures price process is a martingale under the risk neutral probability, we have

Eti

[
F(ti+1, Tj)

]
= F(ti, Tj). (7)

Hence, the expectation of this hedging strategy is null i.e.,

E
[

n−1

∑
i=0

m

∑
j=1

∆(ti, Tj)(F(ti+1, Tj)− F(ti, Tj))

]
= 0.

Consequently, following the optimal spot strategy in parallel with a futures hedging portfolio
gives the same cash flows in expectation, but very likely with lower variance.

E
[
Wealthspot+futures

]
= E

[
Wealthspot

]
= E

[
n−1

∑
i=0

φu?
i
(Sti )

]
= J?.

The specification of such a hedging strategy will of course depend on the nature of the relation
between the spot price and the futures curve.

A heuristic strategy that is widely used in the industry is to take the quantity ∆1(ti, Tj) of futures
F(., Tj) to be equal to the conditional expectation of volume to be exercised during the delivery period
of the futures contract, conditional on the information at ti. More precisely, the heuristic delta is equal
to the ti-conditional expectation

∆1(ti, Tj) = Eti ∑
Tj−1≤tl<Tj

Vl+1(u?)−Vl(u?). (8)

A modification of this heuristic delta, using the concept of tangent process has been introduced
by Warin (2012): If we assume that the prompt converges towards the spot, then we can write

Wealthspot =
n−1

∑
i=0

(Vi+1(u?)−Vi(u?)) Sti

'
n−1

∑
i=0

(Vi+1(u?)−Vi(u?)) Pti

= ∑
j

∑
Tj−1≤tl<Tj

(Vl+1(u?)−Vl(u?)) F(tl , Tj),

which yields the modified heuristic delta ∆2:

∆2(ti, Tj) = Eti

 ∑
Tj−1≤tl<Tj

(Vl+1(u?)−Vl(u?))
F(tl , Tj)

F(ti, Tj)

 (9)

We emphasize that the definition of these two hedging strategies is based on heuristic reasoning.
Therefore, the hedging will not be perfect and a residual risk still remains; still, the numerical
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experiments of Section 4 show that this financial hedging strategy does yield a significant reduction in
the cash flows uncertainty of the spot trading strategy.

Generally, the problem of gas storage unit valuation has been studied from the angle of numerical
methods, and not much interest has been paid to the modeling of the underlying price processes
themselves and their effects on the final outcome of the calculation, although these modeling choices,
as we shall see, have a profound impact on the valuation and hedging decisions.

2.2. The Dynamics of the Term Structure of Gas Price

Two modeling approaches may be found in the literature: the first approach consists in modeling
the spot price by itself, with classical mean-reverting models, while a more recent approach attempts
to model the dynamics of the entire term structure. We now describe in some details these two
approaches, focusing on the effect of modeling decisions on the valuation of storage units.

2.2.1. Spot Price Processes

A very common framework consists in modeling the spot price as a mean-reverting process.
For instance, Boogert and De Jong (2008) consider a one factor model for the spot price, which is
calibrated to the initial futures curve. The price process S is given by

dSt

St
= κ[µ(t)− log(St)]dt + σdWt, (10)

where W is a standard Brownian motion, µ is a time-dependent parameter, calibrated to the initial
futures curve (F(0, T))T≥0, provided by the market; the mean reversion parameter κ and the volatility
σ are two positive constants.

As pointed out by Bjerksund et al. (2011), this framework has several drawbacks with respect to
the goal of capturing the value of the gas storage. The calibration of the time-varying function µ(t) is,
as expected, quite unstable and gives unrealistic sensitivity of the spot dynamics, and hence of the gas
storage value with respect to the initial futures curve.

More importantly, this spot modeling implies a dynamic where future contracts are perfectly
correlated, and therefore does not open the possibility of a trading strategy involving spreads between
futures contracts. Modeling the futures curve is indispensable in order to formulate the hedging
strategies based on futures contracts. Finally, (10) does not account for price spikes, which may be an
important source of storage value.

An enhancement of this model is proposed by Parsons (2013), who considers the following
two-factor mean-reverting model:

dSt

St
= a[µ(t) + log(Lt)− log(St)]dt + σS,tdWt, (11)

dLt

Lt
= b[log(L)− log(Lt)]dt + σL,tdZt, (12)

where the spot price S follows a mean-reverting process, with a long-run mean which is itself a
stochastic process reverting to a deterministic value L.

While this model is more realistic than the one factor model, it still suffers from the instability
of the deterministic function µ, and still does not include the possibility of spikes in the spot price.
The author defines the futures contract price as the expectation of the spot price at maturity date T.
We emphasize that this definition implies that natural gas is delivered at the futures expiration T;
in reality, however, the delivery period spans an entire calendar month.

Finally, gas storage valuation has been studied by Safarov and Atkinson (2017) in the context of
a spot price modeled by a time in-homogeneous exponential Lévy process, taking into account the
seasonality, mean-reversion and price spikes with seasonal jump intensities.
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2.2.2. Term Structure Models

Early models of commodities futures prices F(t, T), such as the classical models of Gibson and
Schwartz (1990) and Schwartz (1997), were obtained through conditional expectations of ST with
respect to the current information at time t, where S is the spot price process. This process was linked
to futures prices through additional, possibly stochastic, quantities such as convenience yield and
interest rates. The approach has several drawbacks such as the difficulty of observing or estimating
those quantities and the problem of fitting the initial curve F(0, T).

Hence, a second generation of models was proposed to directly describe the futures curve,
using multi-factor log-normal dynamics. For instance, Clewlow and Strickland (1999b) proposes a
one-factor model for the futures curve; this was then extended by Clewlow and Strickland (1999a) to a
multi-factor setting. A two-factor version of this model can be expressed as

dF(t, T)
F(t, T)

= e−λ(T−t)σSTdWS
t + σLTdWL

t ,

where λ, σST and σLT are positive constants, and WS and WL are two correlated Brownian motions.
This model has the advantage of exactly fitting the initial futures curve, and the dependence of
the volatility on the maturity parameter, i.e., it is of term-structure type; however it does not
take into account the essential seasonality feature. Note that this model is an adaptation of the
well-known Gabillon (1991) model, originally proposed for spot prices. A second approach, adopted
by Warin (2012) is to model the entire term structure. The author considers a n-factor log-normal
dynamics for the futures curve:

dF(t, T)
F(t, T)

=
n

∑
i=1

σi(t)e−ai(T−t)dZi
t, (13)

and assumes that the spot process is the limit of the futures contract price as time to maturity goes to
zero; we would have St = lim

T↓t
F(t, T). and by continuity the spot is given by St = F(t, t). This allows

the author to give formulae for the sensitivities of storage value with respect to futures contracts,
and to provide a hedging strategy based on futures in parallel to the spot optimal trading strategy.

Unfortunately, this assumption does not conform to reality, since the spot price correspond to gas
delivered the next day, while the futures is settled by rated delivery over an entire calendar month.

To summarize, the available research on storage valuation is based on models for the price
processes that either do not capture important features of the spot process, or assume a convergence
of the futures to the spot price that does not conform to reality. In contrast, we present next a joint,
multi-factor model for the futures curve and the spot process. It captures the seasonality of the natural
gas futures prices and the correlation between the spot and prompt prices. It also accounts for the
presence of spikes in the spot price.

3. Modeling Framework for the Price Process

In order to motivate our model, we first present some stylized facts about the prices of natural
gas, then present the model formulation and its estimation.

3.1. Natural Gas Stylized Facts

In this section, we highlight important stylized facts about natural gas markets that may influence
the value of a storage unit. These properties are related to the demand and use of natural gas. In fact,
the demand for natural gas for heating in cold periods of the year produces a seasonal price pattern,
while unpredictable changes in weather can cause sudden shifts in gas prices. These facts are the two
main sources of value for a gas storage unit, since the ownership of a storage facility enables one to
take advantage of seasonality and price spikes.
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As for all other commodities, the price of natural gas (NG) is influenced by its point of delivery.
In this study, we will be interested in the United States market, specifically in a storage location near
Henry Hub (Louisiana), which justifies the use of gas daily spot prices and the NYMEX natural gas
futures as hedge instruments. One can buy natural gas in the spot market for next-day delivery,
or in the futures market for rated delivery over a future period of one calendar month. The NYMEX
futures market provides quotes for the next 72 monthly futures contracts, but only the first 24 or so are
actively traded.

In what follows, St will denote the spot price of natural gas at date t, and (F(t, Ti))i represent
the futures contracts prices at t, for a set {Ti} of maturities. We consider monthly spaced maturities,
so every futures contract is related to a delivery month. Also, we denote by Pt the price of prompt
contract, i.e., the futures contract with the closest maturity to current time t. Natural gas prices are
quoted in U.S. dollars per million British thermal units (MMBtu).

As mentioned above, the first main feature of natural gas prices is constituted by the presence of a
seasonal component. We plot the NG futures curve for several dates in Figure 1 and observe a periodic
winter increase in price, which are clearly due to the demand for heating during cold periods of the
year. In addition to this traditional seasonal feature, the use of natural gas for electricity generation
has created a second smaller increase during the summer period, related to the increasing demand
for cooling. These expected patterns in natural gas prices are the first source of value for a storage
unit, and have inspired the intrinsic strategy described in Section 1: buy gas for summer delivery and
simultaneously sell gas for winter delivery. Store it in between, and you have locked a certain profit
which is the summer-winter spread less the storage cost.

Figure 1. Futures curve for NYMEX NG at different observation dates.

The second important aspect of natural gas prices is the presence of sudden moves due to
unexpected imbalances between supply and demand, caused by such factors as unpredicted weather
changes, disruptions in the supply chain, or poor anticipations of the global amount of gas in storage.
Such events are almost instantaneously reflected in the spot dynamics, resulting in large price swings
that are rapidly absorbed, however, by the storage capacities available in the market. These large
and quickly absorbed jumps, commonly called spikes, can be viewed in Figure 2, which shows many
sudden dislocations between spot and prompt prices.1 For example, we can notice a large spike in

1 We use a 1997–2013 historical data of spot and prompt price, published by the U.S. Energy Information Administration
(http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm).

http://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm
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the spot price during late February 2003, when the natural gas price jumped by almost 78.00% and
54.26% in two successive days, then went down by −43.34% and −19.58% during the two following
days. As noted by the US Federal Energy Regulatory Commission (FERC 2003), this spike in gas price
was due to “physical market conditions leading to low supply and high demand for a short time.”
The author also observed that “similar natural gas price spikes are possible when episodes of cold
weather occur at times when storage inventories are limited”.

Figure 2. Spot and prompt historical prices.

In our study, we detect spikes by identifying the outliers from the time series (xt) of the spread
between the spot price St and the prompt price Pt given by xt := St−Pt

Pt
; we study separately the

positive and negative spikes, since they reflect different market conditions. Positive spikes are often
caused by unpredicted weather changes, such as a cold front or a heat wave. On the other hand,
negative spikes are generally due to a poor anticipation of market-wide gas storage levels. In Figure 3
we plot the number of occurrences of negative and positive spikes during each month. We remark
that the distribution of spikes is clearly dependent on their sign: most of the positive spikes happen
during the winter months of January and February and the summer month of June, which can be
explained by the occurrence of an unpredicted cold front or heat wave. On the other hand, negative
spikes appear during the Fall. One plausible explanation is given by Mastrangelo (2007), which states:
“October is the last month of the refill season. There may be increased competition from storage
facilities looking to meet end-of-season refill goals as well as increased anticipation regarding the
upcoming heating season”.

In order to take into account the stylized facts mentioned above, our futures model incorporates
seasonality in the futures curve, and the spot model describes the existence of spikes and takes into
account the correlation between spot and futures prices, through the prompt contract. To the best of
our knowledge, these two facts have not yet been taken into account in the literature related to gas
storage valuation, although, in our opinion, they constitute the two main sources of storage value.
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Figure 3. Occurrences of spikes.

In Section 3.1 we discussed the main stylized facts of natural gas prices, which are seasonality
and spikes. We believe that the incorporation of these two features is essential in order to monetize
these two sources of value. Also, we emphasize that it is crucial to use a modeling framework that
combines spot and futures curve dynamics, and that accounts for the presence of a basis between the
spot and prompt prices.

In Section 3.2, we introduce a two-factors model for the futures curve, with a seasonal component
for instantaneous volatility. This parsimonious model has easy-to-interpret parameters and can be
efficiently calibrated using futures curve historical data.

In Section 3.3, we discuss the spot price model: we consider two formulations, with a clear relation
to the prompt contract. We also include spikes by means of a fast-reverting jump process, similar to a
model by Hambly et al. (2009), which was applied to the electricity market.

3.2. Modeling the Futures Curve

Our framework slightly modifies Gabillon’s model, adding a seasonality component and
introducing parameters that have an economical significance.

We will call it the Seasonal Gabillon two-factor model. It is formulated as

dF(t, T)
F(t, T)

= e−λ(T−t)φ(t)σSdWS
t + (1− e−λ(T−t))σLdWL

t , (14)

where WS and WL are two correlated Brownian motions, with d〈WL, WS〉t = ρdt. The letters L and
S stand respectively for Long term and Short term; λ, σS and σL are positive constants. The function
φ(t) = 1 + µ1 cos(2π(t− t1)) + µ2 cos(4π(t− t2)) weights instantaneous volatility with a periodic
behavior. It takes into account the winter seasonal peaks (resp. the secondary summer peak) by taking
for example t1 equal to January (resp. t2 equal to August). There exist alternative ways to model
price seasonality, e.g., in Nowotarski et al. (2013), in the context of electricity markets. The coefficients
µ1 and µ2 quantify the winter and summer seasonal contribution to volatility: we expect the winter
parameter µ1 to be larger, in absolute value, than the summer parameter µ2.

This model constitutes an efficient framework, whose parameters are economically meaningful.
Indeed, the parameters σL and σS can be interpreted as ‘long-term’ and ‘short term’ volatility. Note that
even if the model is expressed with a continuous set of maturities, in the real world we only have
access to a finite number of maturities, for example, monthly spaced futures contracts.

In the next section we give more details about the meaning of each parameter and their estimation,
using historical data of futures prices.
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Model Estimation

Initial Estimate. Many of the model parameters are almost observable, if we have sufficient
historical data of futures curves at hand. In fact, σS and σL could be approximated by the volatility of
short and long-dated continuous futures contracts, and ρ by their empirical correlation.

For T → ∞, we can formally write
dF(t, T)
F(t, T)

' σLdWL
t , so a good approximation for the long-term

volatility is

σ2
L '

1
m− 1

m

∑
i=1

(
zL

ti√
∆ti
− µ̄L)2,

where zL
t is the log-return of a constant maturity long-dated contract, four years for example, and

µ̄L =
1
m

m
∑

i=1

zL
ti√
∆ti

.

Similarly, for small times to maturity, i.e., (T− t)→ 0, we can ignore the long-term noise effect,

and write
dF(t, T)
F(t, T)

' σSdWS
t , so that a good proxy for the spot volatility is the volatility of the rolling

prompt contract, i.e., the contract with the nearest maturity

σ2
S '

1
m− 1

m

∑
i=1

(
zP

ti√
∆ti
− µ̄P)2,

where zP
t is the log-return of a prompt futures contracts and µ̄P =

1
m

m
∑

i=1

zP
ti√
∆ti

.

We can also give an initial estimate for the correlation parameter ρ as

ρ ' 1
m− 1

m
∑

i=1
(

zP
ti√
∆ti
− µ̄P)(

zL
ti√
∆ti
− µ̄L)

σSσL
.

We use these rough estimates as initial values for a more rigorous statistical estimation procedure
which is described next.

Maximum Likelihood Estimation. We use a time series over dates t1, . . . , tm of futures prices
maturing at T1, . . . , Tn. Let zt, t = ti, i ∈ {0, . . . , tm−1} be the vector of price returns, ∆t being the
corresponding step ti+1− ti and θ the vector of the model parameters: θ = (λ, µ1, µ2, σS, σL, ρ). We have

zt =



∆F(t, T1)

F(t, T1)
.
.
.

∆F(t, Tn)

F(t, Tn)


, Ht =

√
∆t


e−λ(T1−t)φ(t)σS, (1− e−λ(T1−t))σL

. .

. .

. .
e−λ(Tn−t)φ(t)σS, (1− e−λ(Tn−t))σL

 ,

where ∆F(t, T1) = F(t + ∆t, T1)− F(t, T1). An Euler discretization of the SDE (14) gives the equation

zt = Htxt, t ∈ {t1, . . . , tm},

where (xti ) are independents Gaussian 2-d vectors such that

xti ∼ N (0, Σ), 1 ≤ i ≤ m,
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where

Σ =

(
1 ρ

ρ 1

)
.

The likelihood maximization can then be written as the minimization of the function

L(xt1 , xt2 , . . . , xtm |θ) =
1
m

m

∑
i=1

log(det(Σ)) + xT
ti

Σ−1xti ,

and the xt, t ∈ {t1, . . . , tm} are given by zt = Htxt, i.e.,

xt = (HT
t Ht)

−1HT
t zt.

To summarize, the maximum likelihood estimate is obtained by solving min L(xt1 , xt2 , . . . , xtm |θ) = log(det(Σ)) +
1
m

m

∑
i=1

xT
ti

Σ−1xti

θ = (λ, µ1, µ2, σS, σL, ρ).
(15)

To illustrate, we apply this estimation procedure, using daily futures curves from 1997 to 2007.
As mentioned, the estimation problem (15) is solved using an optimization algorithm, with the rough
estimates of σS, σL and ρ as initial point for the algorithm. We report in Table 2 the estimated parameters
of the futures curve model.

Table 2. Parameter estimates and 95% confidence intervals for the Seasonal Gabillon model (14), using
1997–2007 futures curves history.

Parameter Value Confidence Interval

σS 0.4580 [0.4462, 0.4698]
σL 0.1655 [0.1617, 0.1694]
λ 0.7896 [0.7518, 0.8274]
µ1 0.0246 [−0.0015, 0.0507]
µ2 0.0038 [−0.0218, 0.0294]
ρ 0.4113 [0.3737, 0.4488]

As expected, the short-term volatility is larger than the long-term volatility, which is a common
feature in energy futures curve dynamics, and the winter contribution µ1 in the seasonality component
is larger than summer contribution µ2.

3.3. Modeling Spot Price

We have argued in Section 3.1 that the spot price should be considered as a separate stochastic
process correlated to the prompt price. It is, however, understood that the spot price is not the limit of
the prompt price when time to maturity tends to 0:

St 6= lim
T→t

F(t, T).

A model in that sense was proposed by Gray and Palamarchuk (2010), where the logarithm of the
spot is a mean reverting process, whose mean-reversion level is a stochastic process equal to the prompt
price. For a family of maturities (Ti)i, the futures contract F(t, Ti) is a log-normal process fulfilling

dF(t, Ti)

F(t, Ti)
= σ(t, Ti)dWt
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and the spot price St evolves according to

d log(St) = (θt + a log(Pt)− a log(St))MT + σS
t dBt, (16)

where B and W are two correlated Brownian motions, and for the current date t, Pt denotes the prompt
price, i.e.,

Pt = F(t, Ti) for Ti−1 ≤ t < Ti.

In our opinion it is crucial to incorporate futures curve dynamics into the modeling of the spot
prices, for instance a dynamics relating the spot and prompt futures price. Indeed, as shown by the
historical paths of spot and prompt prices in Figure 2, the two processes are closely related. In fact
they seem to move very often in the same direction, with some occasional dislocations of spot and
prompt prices.

In what follows we will study two spot models, connected to our futures curve model. They will
be stated in discrete time.

3.3.1. Spot Model 1

Our first spot model is similar to (16), which was introduced by Gray and Palamarchuk (2010).
Its dynamics, based on the spot log-return yt = log(St/St−1), is given by

log(St/St−1) = a1 + a2 log(Pt−1/St−1) + a3 log(Pt/Pt−1) + εt (17)

where (εt) is a GARCH (p, q) process and again P is the prompt price.
Recall that a GARCH (p, q) process ε verifies an autoregressive moving-average equation for its

conditional variance σ:

εt = σtzt , where

σ2
t = κ +

p

∑
i=1

γiσ
2
t−i +

q

∑
i=1

αiε
2
t−i (18)

where zt is a white noise.
This model captures both the heteroscedasticity of the natural gas spot price and the correlation

between the spot price and the prompt futures price. Similarly to (16), the spot price dynamics
described by (17) is mean reverting around a stochastic level equal to the prompt price. In addition,
the prompt log return is a supplementary explanatory variable of the spot log return. Recall that our
futures model (14) incorporates seasonality in the futures curve dynamics; this implies that the spot
dynamics itself follows a seasonal pattern, transmitted by the prompt price.

3.3.2. Spot Model 2

As an alternative, we model the spot process by modeling the return of the spot to prompt spread:
yt =

St−Pt
Pt

, using the so-called front-back spread as independent variable.
This alternate model is:

St − Pt

Pt
= a1 + a2

St−1 − Pt−1

Pt−1
+ a3

Pt−1 − Bt−1

Bt−1
+ εt, (19)

where Bt is the price of the second nearby futures (also known as the back contract) and ε is a
GARCH(p, q) process. This model has the advantage of directly handling the spread between the spot
and the prompt price, which is a key variable in gas storage management. Intuitively, a large positive
spread value will generally induce the decision to withdraw gas, while the reverse is likely to motivate
a gas injection. Also, as we pointed out in the introduction, the narrowing of the seasonal spread in the
futures curve during last years has diminished the intrinsic value of gas storage units. Consequently,
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almost all the storage value is now concentrated in the extrinsic value, which is heavily dependent on
the spot-prompt spread.

3.3.3. Spikes Modeling

In Section 3.1, we showed that natural gas prices have two distinct characteristics: seasonality and
presence of spikes. The first feature (seasonality), is captured by the seasonal factor in the futures curve
dynamics (14). This seasonal pattern is transferred to the spot process by means of models that include
the prompt and/or the back contract price as explanatory variables. There is no need to include a
separate seasonal element in the spot dynamics.

Price spikes are another matter. These large and rapidly absorbed jumps are an essential feature
of the spot process, since they can be source of value for gas storage and can be monetized if
injection/withdrawal rates are high enough.

They are mostly observed in the spot market, and we account for them by including a fast
mean-reverting jump process in the spot model, in the same spirit as the electricity price model of
Hambly et al. (2009).

These authors propose a spot model for the power price that incorporates spikes via a process Y,
which is the solution of the equation

dYt = −βYt−dt + dZt, Y0 = 0, (20)

where Z is a compound Poisson process of the type Zt =
Nt
∑

i=1
Ji, (Nt) is a Poisson process with intensity

λ and (Ji)i∈N is a family of independent identically distributed (iid) variables representing the jump
size. Furthermore (Nt) and (Ji) are supposed to be mutually independent. The process Y can be written
explicitly as

Yt = Y0e−βt +
Nt

∑
i=1

e−β(t−τi) Ji. (21)

We recall that the spot model is directly expressed as a discrete time process, indexed on the grid
(ti) introduced in Section 2.1.1. For that reason Y will be restricted to the same time grid.

Choosing a high value for the mean-reversion parameter β forces the jump process Y to revert
very quickly to zero after the jump times τi, which constitutes a desired feature for natural gas spikes.
In practice, the jumps in natural gas spot prices are rapidly absorbed, precisely thanks to the existence
of storage facilities.

Models (17) and (19) alone do not take into account the possibility of sudden spikes in the spot
price. In order to add a jump component, the dynamics in (17) and (19) are multiplied by the process
exp(Yt):

S̃t = exp(Yt)St.

As noted in Section 3.1, the natural gas spikes are clearly distinguished by their signs. Positive
spikes, due to unpredicted weather changes, occur exclusively during the winter and summer months.
Conversely, negative spikes, generally caused by a poor market anticipation of the storage situation,
happen mostly during ‘shoulder months’ such as October and November. This motivates a separate
modeling for these two categories of spikes. We will consider two processes Y+ and Y− for positive
and negative spikes, each one verifying a slightly modified version of Equation (21):

Y+
t =

Nt

∑
i=1

e−β(t−τi) Ji1τi∈I+ , (22)

where I+ (resp. I−) represents the time period where positive (resp. negative) spikes are observed, i.e.,
winter and summer (resp. shoulder months), as we observed in Section 3.1.
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Putting the pieces together, the spot process that we consider for our gas storage valuation is

S̃t = exp(Y+
t + Y−t )St. (23)

This formulation possesses all the desired properties: it includes seasonality in both futures and
spot prices, and it features positive and negative spikes in the spot process, each one generated by a
separate jump process Y+ and Y−.

Model Estimation

As for the futures model, we estimate the spot models with historical data for spot and futures
prices. The parameters estimation for the two spot dynamics (17), (19) is based on regression techniques
and the classic estimation procedure for GARCH processes. Following Hambly et al. (2009), we use
the likelihood method to estimate the spike process parameters, after filtering the underlying time
series to extract the jumps. Note that the coefficient β is heuristically fixed.

An analysis of the spot and futures historical data shows that a GARCH(1, 1) process is adequate.
As mentioned before, we use a large value for the spike reversion parameter β.

To illustrate, the estimation of spot model 1, using a GARCH(1, 1) process and a historical data
from 1997 to 2007, yields the parameters summarized in Table 3.

Table 3. Parameter estimates and 95% confidence intervals for Spot model 1, using data from 1997 to 2007.

Regression Parameters Value C.I.

a1 −0.0054 [−0.0082, −0.0026]
a2 0.2937 [0.2542, 0.3333]
a3 0.4606 [0.3920, 0.5293]

Garch(1, 1) Parameters Value C.I.

κ 2.5936 ×10-5 [1.512 ×10-5, 3.675 ×10-5]
γ1 0.8458 [0.8225, 0.8691]
α1 0.1452 [0.1180, 0.1724]

Spike Process Y+ Value C.I.

β 300
λ 0.249905 [0.11691, 0.3829]

Jump Law N (µ = 0.2499, σ = 0.1169) µ:[0.1824, 0.3174]
σ:[0.0848, 0.1884]

Spike Process Y− Value C.I.

β 300
λ 1.2131 [0.70655, 1.71965]

Jump Law N (µ = −0.2295, σ = 0.1124) µ:[−0.3010, −0.1581]
σ:[0.0797, 0.1909]

4. Numerical Results

In this section we use our futures-spot models to value various storage contracts, and compare
our results to the intrinsic value of storage units. We consider two types of storage units, characterized
by their maximum injection/withdrawal rates. A fast gas storage can be filled in, say, one month,
but it often has limited capacity: salt caverns are a common example of high deliverability storage
units. Depleted oil/gas fields, or aquifers can also be used as storage facilities. They have very large
capacities, but they suffer from low injection/withdrawal rates.
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We will consider fast and slow storage units whose characteristics are described in Table 4.
For simplicity, all the quantities are expressed in 106 MMBtu2, while the storage values are expressed
in million of US dollars. This means that the fast storage unit can be filled in 25 days, and emptied in
17 days. The slow storage unit needs 125 days to be completely filled and 83 days to be completely
emptied. In all calculations, we ignore transaction costs.

Table 4. Gas storage characteristics (fast and slow units).

Characteristic Fast Storage Slow Storage

Total capacity 100 100
Injection rate 4 per day 0.8 per day

Withdrawal rate 6 per day 1.2 per day
Initial gas volume 0 0
Final gas volume 0 0
Lease duration 1 year 1 year

The experiments were run using the Matlab software, version 7 (Mathworks, Natick, MA, USA).
We use 5000 simulations for the Monte Carlo method, with independent paths for the backward
and forward phases of the Longstaff and Schwartz algorithm: First, we simulate a set of spot and
futures paths, then we apply the dynamic programming algorithm (5) to estimate the optimal spot
strategy; in parallel we evaluate the hedging strategy, based on futures contracts, according either
to (8) or (9). We then re-simulate a new set of spot and futures paths, independent from the paths used
in the preceding backward phase, and we apply the estimated optimal spot strategy, combined
with the futures hedging strategy, to the new trajectories. We store the cumulative cash flows
Wealthspot+futures(u?) resulting from these physical and financial operations for each sample path,
and we compute the empirical mean and standard deviations of those cash flows. The mean of the
cumulative wealth gives an estimate of the extrinsic value J? of the gas storage unit, given in (5),
while the standard deviation is an indicator of the dispersion of the realized cash flows around the
extrinsic value. We emphasize that the empirical mean estimates the cash flow generated by the optimal
strategy, while the empirical standard deviation gives an indicator of the variance reduction obtained
through the financial hedging strategy. A lower standard deviation means that the manager will face
less uncertainty on a single realization of the spot and futures prices. Numerical results confirm that
the hedging strategy provides a significant reduction in the variance of the cumulative cash flows.
Sample outputs from this valuation procedure are presented in Figures 4 (fast storage) and 5 (slow
storage). In these figures, different colors correspond to different simulated spot trajectories.

Note also that the analysis described above depends on the choice of the model, because the
backward and forward phases are executed on the sample paths generated by the model itself. In order
to make the comparison less model-dependent, we calculate the cumulative cash flows of the estimated
optimal strategy, based on spot and futures historical paths. For this reason, we will consider a series of
spot and futures curve data from 2003 to 2012, and split it into periods of one year: the storage lease
contracts specified in Table 4 start in April of each year, for a one-year period. We run the optimal
strategy obtained in the backward phase (for the corresponding storage duration) on the spot and
futures historical paths for the related period.

This constitutes a real case test for the optimal strategy and corroborates the relevance of the spot
modeling, since it provides the profit that would have been accumulated by the storage manager in a
realized path.

2 This energy unit can be naturally converted into a volume, under standard conditions for temperature and pressure.
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Figures 6 and 7 represent the historical spot path realized during the contract period (for both slow
and fast units) from April 2007 to April 2008, and the natural gas volumes resulting from the optimal
strategy computed on simulated paths (see Figures 4 and 5 for examples of these simulated paths).

Figure 4. Valuation of a fast storage unit. For each simulated path (bottom panel), we display (top
panel) the storage level corresponding to the optimal policy. Because of the fast injection/withdrawal
speed, the storage level reacts quickly to changing market conditions.

Figure 5. Valuation of a slow storage unit. For each simulated path (bottom panel), we display (top
panel) the storage level corresponding to the optimal policy. Because of the slow injection/withdrawal
rate, there is only one storage cycle per year, and the storage value is essentially function of the
summer-winter spread.
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Figure 6. Historical spot path and optimal volumes (fast storage). bottom panel: historical path,
top panel: the optimal storage level on the historical path.

Figure 7. Historical spot path and optimal volumes (slow storage). bottom panel: historical path,
top panel: the optimal storage level on the historical path.

We summarize the results of the valuation algorithm for each period in Tables 5 and 6, for the fast
and slow storage units, when the spot paths are generated according to spot model 2 (19). The tables
report, for each period, the intrinsic value (IV) computed according to (3), the estimated extrinsic value
(EV) computed by applying the optimal trading strategy (5) to simulated paths, and finally the actual
cumulative cash flow obtained by applying the optimal strategy to the actual historical path. The last
two columns show the standard deviation of the cumulative cash flows, computed on simulated paths
under the optimal strategy.

We expect that the extrinsic spot-based strategy will give a larger value than the intrinsic physical
futures-based strategy, while our financial hedging strategy is supposed to reduce the uncertainty of
gas storage cash flows. For example, the fast storage contract starting in April 2007 has an intrinsic
value of $222.9689 × 106 while the spot-based strategy gives an extrinsic value of $697.0003 × 106.
As expected, the extrinsic strategy allows better financial exploitation of the rights (without obligation)
of injection/withdrawal natural gas compared to the conservative intrinsic strategy. In other words,
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the extrinsic strategy allows better extraction of the optionality of storage. We also note that the
hedging strategy yields a significant empirical variance reduction of the cumulative cash flows from
$340.2193 × 106 to $190.8546 × 106. On the other hand, the intrinsic value of slow storage is equal to
$195.5517 × 106, while the spot-based strategy captures a larger optionality value of $251.0064 × 106.
Similarly to fast storage, the financial hedging strategy allows an important reduction in variance,
from $232.7825 × 106 to $28.0414 × 106.

Table 5. Fast gas storage valuation (under spot model 2 (19)), in million of US dollars.

Simulated Paths Test Historical Path Test Standard Deviation

Starting Date IV EV IV EV Without Hedge With Hedge

2003-April 39.9542 337.7276 42.6441 184.1178 189.5820 119.3606
2004-April 63.0335 395.6198 63.6000 347.2736 213.1796 126.3763
2005-April 115.2008 592.0854 112.0473 528.6510 306.3232 179.4792
2006-April 371.1724 860.9714 416.3992 616.2357 390.0864 194.9693
2007-April 222.9689 697.0003 241.8000 399.7347 340.2193 190.8546
2008-April 119.5200 674.6745 129.6000 427.9652 359.7650 210.6817
2009-April 204.6539 459.5531 205.9000 302.6958 203.2847 100.9753
2010-April 144.1958 420.2250 153.7000 259.1776 202.1802 112.6989
2011-April 86.5488 352.7785 92.9000 134.7794 190.0749 102.9312
2012-April 125.8968 272.5376 130.2000 215.9591 118.0606 55.4645

Table 6. Slow gas storage valuation (under spot model 2 (19)), in million of US dollars.

Simulated Paths Test Historical Path Test Standard Deviation

Starting Date IV EV IV EV Without Hedge With Hedge

2003-April 24.6556 67.5795 26.0563 16.7890 83.9382 18.5218
2004-April 45.2183 91.1053 44.6833 53.8389 119.8064 20.1098
2005-April 93.6136 157.9486 92.2304 146.3097 189.6219 28.0376
2006-April 333.1988 386.4656 333.1972 356.0564 282.2993 29.6749
2007-April 195.5517 251.0064 195.3024 221.4466 232.7825 28.0414
2008-April 96.8824 169.6740 98.5936 141.5038 216.1477 32.6633
2009-April 180.5010 206.6439 180.4980 210.8117 148.3145 14.6222
2010-April 122.4013 152.9924 122.3784 128.1330 140.5389 16.5936
2011-April 68.5264 104.2509 68.1356 72.3083 118.2672 18.8294
2012-April 107.4493 122.5703 107.3928 110.0214 86.2897 8.4167

Previous observations about year 2007 remain valid for the other test periods; indeed the extrinsic
spot-based strategy always out-performs the intrinsic futures-based strategy, along both simulated and
historical paths. The historical back testing over the period 2003–2012 shows that the extrinsic strategy
allows for better extraction of storage unit optionality, with a ratio of extrinsic value to intrinsic value as
high as 500% for a fast storage unit. This performance of the extrinsic strategy is less significant in the
case of slow storage unit, with a ratio up to 100%. This is due to limitations in the deliverability of slow
storage. The optimal strategy is not able to fully benefit from gas price volatility, and cannot respond
rapidly to favorable price movements. In all cases, hedging with financial instruments provides a
significant reduction in the cumulative cash flows uncertainty. The last two columns of Tables 5 and 6
show a standard deviation reduction factor of up to 10, with better performance for slow storage.
This gives the storage manager more insurance to recover a large percentage of the value of the storage
contract. Similar conclusions on the advantages of a dynamic hedging with futures are stated by
De Jong (2015) in his back tests.

Remark 2. 1. In Section 2.1.2, we presented two heuristic hedging strategies, (8) and (9), based on financial
futures contracts. The numerical tests that we have conducted show that the hedging strategy defined by (9)
gives better results in the variance reduction of the simulated cash flows under the optimal strategy; in addition,
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in the historical back testing, (9) yields a better cumulative wealth performance than (8). We emphasize that
we have only reported about the better performing hedging strategy (9). 2. We also note that the historical
intrinsic value of the gas storage attains a peak in 2006, and shows a clear decline afterwards. This can be
intuitively explained by observing the futures curve samples in Figure 1: in 2006, the seasonal spreads were very
pronounced, but have been shrinking steadily ever since.

We conclude from the numerical results presented above that the joint modeling of the natural
gas spot price and futures curve is a pertinent framework for the gas storage valuation and hedging
problem. It allows the unit manager to better exploit storage optionality by monetizing the spot price
volatility and seasonality. Indeed, the historical back testing shows that the extrinsic value under this
modeling always outperforms the classical intrinsic value, even in the case of slow storage. A joint
model for the futures curve with its own risk factors is a more realistic framework for spot and futures
markets, since it takes into account the seasonality of the futures curve and the non-convergence of the
futures price to the spot price, an unrealistic hypothesis that is often made in the literature. This also
allows for a more relevant hedging strategy based on futures contracts, and better tracking of the
extrinsic value of gas storage in real market conditions.

5. Model Risk

As previously mentioned, seasonal spreads have become narrower these last years, which means
that the bulk of a gas storage value is extrinsic, and needs to be extracted by trading the spread between
the spot price and prompt. It is, therefore, important to look closely into the spot modeling and its
effect on storage valuation and hedging. We believe that the uncertainty surrounding storage value
is primarily due to the modeling of the spot process, since it is the evolution of the spot process
((17) and (19)) that by and large determine the optimal trading strategy. In turn, the futures model
mostly affects the quality of the hedge or variance reduction, not the expected value of the storage
unit. At least another author (Bjerksund et al. 2011) reaches a similar conclusion while using the rolling
intrinsic valuation method.

The purpose of this section is to quantify these statements in the formal framework of model risk
measurement, and the section is divided in two parts: we first compare the performances of the two
spot models proposed in Section 3.3, using historical data. We focus on the effect of various modeling
hypotheses, and on the sensitivity of the storage estimated value with respect to the model parameters.
We next define a model risk measure to quantify these uncertainties, following Cont (2006).

5.1. Spot Modeling

In Section 3.3, we proposed two discrete models for the spot price dynamics. The first model,
defined in (17), is a discrete version of a mean-reverting model, with a stochastic mean-reversion level
equal to the prompt price. The second model (19), directly captures the spread between the spot and
the prompt prices, which is a key variable in the optimal management of a storage unit: one tends
to buy and store gas when the spot-prompt spread is negative and withdraw it in the opposite case.
Since the seasonality of gas prices has been getting weaker in recent years, the principal source of value
for the storage unit is the spot-prompt spread rather than the winter-summer spread, so we expect the
second model (19) to give good results in recent years.

We run the valuation procedure explained in Section 4, using the two spot models, over a testing
period starting in 2003 till 2012. For each year, we compute the actual performance of each model;
in particular, we report in Figures 8 and 9 the cumulative cash flows using the optimal spot strategy
for historical spot and futures trajectories.

In the fast storage case, Figure 8 shows that the spot-prompt spread model (model 2) yields
slightly better results than the spot model (model 1) in all but one the test cases (year 2004).

In the slow storage case (Figure 9), the two spot models give comparable results for all periods.
In the fast storage case, other tests, not reported in this article, show that spot model 2 yields a lower
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standard deviation of the cumulative cash flows. This reinforces the observation that spot model 2 is
globally better suited for our purpose.

Figure 8. Historical cash flows for spot models 1 and 2 (fast storage).

Figure 9. Historical cash flows for spot models 1 and 2 (slow storage).

Effect of Spikes Modeling

The presence of spikes in natural gas prices is an essential feature of the dynamics of spot prices.
As noted in Section 3.1, these jumps are sudden dislocations between the cash and futures markets
due to unexpected imbalances between supply and demand, caused by such factors as unpredicted
weather changes, disruptions in the supply chain, or poor anticipations of the global amount of gas
in storage.

These spikes can be a source of value for the storage manager, since a large gap between spot and
prompt prices can be monetized by buying gas (and selling the corresponding quantity in the futures
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market) during a negative spike, while doing the opposite trade during a positive spike. Since these
are rapidly absorbed by the market, the value can only be captured by fast storage units.

Figure 10 represents the expected cumulative cash flows of a fast storage unit, on simulated paths
under spot model (19). All the test periods show that modeling the spikes in the spot dynamics gives a
larger extrinsic value for the storage unit, but at the same time it introduces a larger standard deviation
for the cumulative cash flows, as illustrated in Figure 11.

A final test of the effect of the spikes modeling is performed on historical spot paths for each test
period, and results are shown in Figure 12. The graph shows that modeling the spikes does not make
a significant contribution to realized optimal value. This accords with the fact that the models with
spikes produce a large standard deviation. In conclusion, and contrary to intuition, this historical back
test does not support the need for incorporating spikes in the spot model.

Figure 10. Expected cash flows on simulated paths.

Figure 11. Standard deviation of cash flows on simulated paths.
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Figure 12. Cash flows on historical paths.

5.2. Model Risk Measure

In order to quantify the modeling uncertainty, we use the approach introduced by Cont (2006) for
measuring the model risk inherent in the pricing of exotic derivative products. The approach may be
summarized as follows: Given a set of benchmark quotes for vanilla options (or bid/ask intervals),
model uncertainty for an exotic payoff H, is quantified by computing the range of prices of this exotic
product, using a set of risk neutral models Γ calibrated to the benchmark vanilla prices, i.e.,

π(H) = max
Q∈Γ

EQ[H]−min
Q∈Γ

EQ[H]. (24)

For our gas storage valuation problem, we will adapt this risk measure by using as “calibration”
data the historical prices of the futures and spot contracts. The constraint of calibration on vanilla
prices is replaced by the success of suitable statistical tests and closeness to the optimal likelihood
objective function value of the model.

The family Γ consists of a set of spot models, (17) or (19), which pass the statistical tests imposed by
the modeling hypothesis for the noise (εt), which is assumed to be GARCH(1,1). Moreover, the family
Γ is restricted to the models that have a likelihood function value close to the optimal one found during
the model estimation.

This methodology for the generating the set Γ is broadly similar to the one proposed by Dumont
and Lunven (2006), and applied to multi-asset options. In their study, the authors calibrate a
multi-assets model to single-asset vanilla options, then build the set Γ by perturbation of the correlation
matrix. This yields a family of models that price the benchmark vanilla options perfectly, but differ by
their correlation matrix.

In our case, the statistical estimation of the spot model parameters, in (17) or (19), is obtained by
classical maximum likelihood methods. The estimation procedure solves:

max
θ={a1,a2,a3,κ,γ1,α1}

L(θ),

where L(θ) is the likelihood function associated with the spot model (17) or (19). This maximization
yields an optimal parameters vector θ? = {a?1 , a?2 , a?3 , κ?, γ?

1 , α?1}, an optimal likelihood function value
L(θ?), and an empirical covariance matrix Σ? of the parameter estimates, from which confidence
intervals can be computed.
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In order to generate the family of spot models, we perturb the optimal parameters θ? by adding a
Gaussian noise with the specified covariance matrix Σ? to θ?. This yields a set of perturbed parameters
{θi}i∈I , from which we only retain those that satisfy two constraints: first, the inferred GARCH white
noise z(θi) in (18) must pass a statistical test for normality;3 second, the corresponding likelihood
function value L(θi) has to be close to the optimal value L(θ?): L(θi) > (1− ε)L(θ?), where ε is a
small constant.

In the following discussion, Γ will be the set {θi, i ∈ I}, fulfilling the two conditions above. We can
now define the associated model risk. The analogue risk measure to (24) can be expressed using (5),
with the value function now writtenJ?(θ) to emphasize the dependence of this value function on the
parameters θ. The normalized risk measure is given by:

π1 =
maxθi∈Γ J?(θi)−minθi∈Γ J?(θi)

J?(θ?)
. (25)

In this risk measure evaluation, each J?(θi), is calculated using spot and futures paths simulated
under the perturbed model θi.

Moreover, we propose a second model risk measure based on the performance on realized
historical spot and futures paths. For this we define

π2 =
maxθi∈Γ Wealthspot+futures(θi)−minθi∈Γ Wealthspot+futures(θi)

Wealthspot+futures(θ?)
, (26)

where Wealthspot+futures represents the cumulative cash flows, computed on the historical path,
as defined in (6).

The two risk measures π1 and π2 are computed for each of the test periods from 2003 to 2012,
under the two spot models 1 and 2, using a set of 30 perturbed models. The results reported in Table 7
again show a better performance for spot model 2. In fact, this model seems to be less subject to model
risk, since it gives a smaller range of prices, compared to spot model 1.

Table 7. Model risk measure for spot models 1 and 2. All figures are in million $.

Risk Measure π1 Risk Measure π2

Starting Date Spot Model 1 Spot Model 2 Spot Model 1 Spot Model 2

2003-April 51.33% 44.8085% 70.8465% 39.3852%
2004-April 25.4987% 23.6942% 26.5597% 22.3195%
2005-April 26.0388% 27.0318% 50.7306% 38.352%
2006-April 14.9666% 15.9873% 10.6853% 6.6954%
2007-April 93.8336% 14.7645% 29.4626% 18.6143%
2008-April 37.9839% 13.8195% 16.6811% 8.6166%
2009-April 20.7969% 10.1216% 15.1415% 8.1936%
2010-April 26.7845% 12.8976% 33.0669% 7.5285%
2011-April 25.9442% 12.3857% 35.8704% 30.9282%
2012-April 16.7783% 9.1489% 13.1014% 7.1694%

One observation that follows clearly from Table 7 is that the range of prices induced by the model
uncertainty and measured by π1 and π2 represents a large fraction of the storage value. This shows
that the dependence of gas storage valuation on spot modeling is quite significant. While the literature
has concentrated its efforts until now on the specification of an optimal valuation strategy, we believe
that one should pay more attention to the choice of the spot-futures modeling framework. Referring
again to Table 7, model 2 appears to be less sensitive to the change of parameters and is therefore

3 We use a Kolmogorov-Smirnov test for the normality test of the inferred noise z.
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more robust. Fortunately, this is in concordance with the better performance of spot model 2 already
observed in Section 5.1. Table 7 shows that the spot-futures valuation framework is subject to a large
model risk (average: 25%). For comparison, the model risk for a basket option has been evaluated to
3% (see Dumont and Lunven (2006)).

6. Conclusions

In this paper we have considered the problem of gas storage valuation and hedging, and
specifically investigated the implications of switching from an intrinsic to an extrinsic method of
valuation and risk management.

To this end, we have set up an experimental framework which includes a new model for the joint
dynamics of the futures curve and the spot price, a back testing engine for pricing storage units and
measuring the effectiveness of various hedging strategies, and a method for measuring model risk.

We have then conducted extensive back testing using historical data of futures and spot prices
over a period of 10 years.

The numerical tests have confirmed, as expected, that the extrinsic method extracts, on average,
more value from the storage units than the traditional intrinsic method.

In order to quantify the stability of our valuation estimates with respect to model uncertainty,
we have next defined two model risk measures, inspired by the work of Cont (2006). Our context was
however different from Cont’s, in the sense that our models have been estimated on historical data,
and not on market data. This motivated a redefinition of the notion of “benchmark data”.

Using those risk measures, we have observed the great sensitivity of gas storage value to modeling
assumptions. In fact the model uncertainty, as measured by the size of price range, represents a large
proportion of the storage value. This puts into perspective the concentration of effort in the literature
on the specification of an optimal valuation strategy. Much more attention should probably be devoted
to the discussion of modeling assumptions.

The use of the term extrinsic to qualify the valuation based of stochastic optimization and
dynamic hedging should even be questioned. It is borrowed from the theory of financial options,
where the extrinsic, or time value of an option can be extracted by owning the option and conducting a
self-financed hedging strategy. In our case, the self-funded hedging strategy is the dynamic hedging
protocol with futures contract. The parallel stops here however, because this hedging strategy leaves a
significant residual risk, and the so-called extrinsic value of storage cannot be safely extracted.

Therefore, the expected discounted cash flow computed by an extrinsic method should not be
constructed as a “price”, but as some market index, from which a market price could be derived,
probably at a significant discount. Here again, our model risk measurement framework could be of
interest, since it provides a distribution of possible values for the storage units.
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