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Abstract: In this study, the performance of the Multifractal Model of Asset Returns (MMAR) was
examined for stock index returns of four emerging markets. The MMAR, which takes into account
stylized facts of financial time series, such as long memory, fat tails and trading time, was developed
as an alternative to the ARCH family models. Empirical analysis of the study consists of two sections.
In the first section, we estimated the parameters of GARCH, EGARCH, FIGARCH, MRS-GARCH
and MMAR for the stock index returns of Croatia, Greece, Poland and Turkey. In the second section,
1000 paths were obtained for each model using Monte Carlo simulations. We then compared the
scaling function values of simulated and original time series for different q orders (1–5). According to
the obtained results, the MMAR is mostly superior to other models and presents the best replica
of the original time series. Another important finding is the achievement of the MRS-GARCH.
We found that for lower levels of persistency (long memory) of return series, the performance of the
MRS-GARCH excels, and for H = 0.5, it narrowly outperforms the MMAR.
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1. Introduction

Conventional finance theory was built on pioneering studies published in the 1950s and is based
on the random walk theory and the Efficient Market Hypothesis (EMH) of [1,2]. Random walk and
a normal distribution have been the assumptions of many subsequent theories that have come under
heavy criticism.

Mandelbrot [3,4], who exhaustively analyzed the fat tails that were introduced to the finance
literature by Vilfredo Pareto and Paul Levy, criticized conventional finance theory. He noticed that the
distribution of cotton price variability has thicker tails than the normal distribution. Besides the fat
tails of the return distributions, Mandelbrot and Wallis [5] demonstrated the long-range dependence
property of the financial time series inspired by the study of Hurst [6] and expressed this situation as
the “Joseph effect”, a references to the Bible. By means of the studies conducted by Mandelbrot, a new
door was opened in finance theory regarding fractals. As stated by Taqqu [7] “Benoit’s great gift was
his ability to recognize the hidden potential in certain mathematical objects”. Following Mandelbrot’s
innovation in finance theory, studies in the field of fractals gained momentum. For example, Peters [8]
made a great contribution to the construction of the theoretical framework of the Fractal Market
Hypothesis (FMH) as an alternative to the EMH. According to this new theory, when the markets
are stable, returns of financial assets present the same auto-covariance structure in different time
scales, such as daily, weekly and monthly. For instance, if the daily returns exhibit positive temporary
dependence, weekly and monthly returns show similar results.
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Loosely speaking, fractals can be defined as iteratively-produced structures based on the
self-affinity property and long memory features. Many simple fractals are self-affine geometric objects.
In general terms, regardless of the scale at which they are being viewed, fractals display identical
geometric patterns. An analog feature of the random geometric objects is the stochastic self-affinity.
As the stochastic self-affinity is integrated in stable increments, this property is instrumental to
the hyperbolic behavior of the spectral density and therefore will exhibit the long memory and
non-persistent concept. Hence, the existence of the fractals constitutes the basis for the explanation
of the long memory features of financial asset returns [9]. Self-affinity, the most important feature
of the fractals, can be explained as follows: a process tX ptq , t P Ru is self-affine for the index of
H ą 0 and any a ą 0. In that case, tX patq , t P Ru has the same finite-dimensional distribution
as

 

aHX ptq , t P R
(

. Therefore, there will be a scaling as seen in a fractal, and this process is
self-affine for 0 ă H ă 1 [7]. The self-similarity feature of any object displays its isotropic structure.
This feature is not held for the time series in which dependent (price or return) and independent (time)
variables are measured by different units. For these series, the self-affinity feature appears instead of
self-similarity [10]. In conjunction with a suitable rescaling transformation, the self-affine return series
displays a self-similarity feature. Self-affine series perform with the same distribution properties when
the returns are measured in any frequency and are stated as monofractal [11]. Hence, it can be said
that self-similarity is a special form of self-affinity.

Following the arguments about stylized facts seen in the financial time series, such as fat tails,
volatility clustering and leverage effects, Engle [12] filled a huge gap in financial econometrics when
he introduced the Autoregressive Conditional Heteroscedasticity (ARCH) model, which was based on
the specifying of conditional variance. Bollerslev [13] followed with the Generalized Autoregressive
Conditional Heteroscedasticity (GARCH) model, adding past values of the variance to the ARCH
model, which explains the variance as a linear model of past squared residuals. Studies concerning
GARCH-type models in the subsequent period led to the development of a great variety of alternative
models. The Fractionally Integrated Generalized Autoregressive Conditional Heteroscedasticity model
(FIGARCH) is considered another milestone among GARCH family models. As a matter of fact,
Mandelbrot et al. [14] regard the FIGARCH model as the most important development in the GARCH
literature because it considers the long memory property. According to them, the second important
development is Drost and Werker’s [15] continuous time GARCH model that examines the statistical
properties of different time scales. In fact, these two developments are the basis of the Multifractal
Model of Asset Returns (MMAR) introduced by Mandelbrot et al. [14].

As stated by Mandelbrot et al. [14], like the GARCH model, the FIGARCH model has the infinite
order ARCH presentation in the squared returns. In addition, the model can be viewed as a set of
infinite-dimensional restrictions upon its ARCH parameters. Returns are scale-inconsistent in the
FIGARCH model despite the fact that it combines the martingale property and long memory as such
in MMAR. This property is the most important difference between the MMAR and FIGARCH models.
The superiority of the MMAR in the modeling is due to its incorporation of three important stylized
facts of financial time series. These features can be summarized as follows: first, MMAR considers
fat tails of the return distributions; secondly, it has the long memory, since it uses fractal Brownian
motion; and lastly, it includes the trading time property. The attractive side of trading time is that it
models the relationship between observed clock time and unobserved natural time measurements of
the return process.

The remainder of the paper is structured as follows: Section 2 exhibits studies from the literature.
Section 3 gives methodological information regarding the concept that we analyzed. Section 4
represents our empirical findings under different models based on simulation studies for GARCH,
EGARCH, FIGARCH, MRS-GARCH and MMAR and compares the performance of these models
through the tau statistic analysis. Section 5 contains the conclusion.
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2. Literature Reviews

It was the study of Hurst [6] that inspired Mandelbrot to form the long memory concept and
set the ground for the rising of MMAR. Thus, Mandelbrot [16] introduced an efficient estimator of
long memory via the Rescaled Range (R{S) analysis and called it H in Hurst’s honor. In another
early study, Mandelbrot [4] pointed out the fat tails in the distribution of cotton price change and,
so, introduced a new stylized fact to the finance literature. Following the studies of Mandelbrot,
many alternative models were created as a measure of long memory, which endeavored to improve
the performance of the Hurst exponent H. One of these studies was the modified R{S analysis
presented by Lo [17]. Lo used the modified standard errors, unlike classical R{S analysis, and so
removed the short memory effect in the modeling. Soon thereafter, Peng et al. [18] introduced the
detrended fluctuation analysis, a different methodology for the calculation of the Hurst exponent H.
Throughout the 1990s, new methodologies and approaches were presented by different researchers.
For example, Taqqu et al. [19] proposed a variance type H estimator named the aggregated variance
method, and Taqqu and Teverovsky [20] compared the performance of the different types of estimators.
According to their findings, if the time series is long enough (N = 10,000), both aggregated Whittle
and local Whittle estimators give effective results. As for Abry and Veitch [21], they presented
an estimator based on the wavelet estimator. In parallel to these early studies concerning the estimation
of Hurst exponent H, some semi-parametric and parametric methods were proposed during this
period. For instance, Granger and Joyeux [22] and Hosking [23] introduced the Autoregressive
Fractionally Integrated Moving Average (ARFIMA) model, which allows for the differencing parameter
d having non-integer values between zero and one. By means of the semi-parametric log-periodogram
method, Geweke and Porter-Hudak [24] conducted the test of long memory parameter d. Later on,
in many studies, researchers presented modified versions of the GPH (Geweke and Porter-Hudak)
model, such as Robinson [25] and Phillips [26,27]. In these studies, Robinson developed the average
periodogram estimator, while Phillips examined the long memory estimator that was consistent with
d ą 1. Smith [28], on the other hand, presented a modified GPH model that takes structural breaks into
account. Shimotsu and Phillips [29] satisfied asymptotic normality and consistency for both stationary
and non-stationary δ using the exact local Whittle estimator. Likewise, Abadir et al. [30] proposed the
fully-extended local Whittle estimator for both stationary and non-stationary long memory time series.
Shimotsu [31] introduced two tests that considered structural breaks that were based on the certain
time domain properties of I pdq processes.

Apart from the studies mentioned, there is also another group of studies that analyzed long
memory features in variance. The first of these models is FIGARCH, introduced by Baillie et al. [32].
Afterwards, many derivatives of the FIGARCH model were presented in order to bring flexibility
to the FIGARCH model. For example, Bollerslev and Mikkelsen [33] extended the asymmetric
EGARCH model to long memory processes by means of FIEGARCH. As for Christensen et al. [34], they
introduced the filtered in-mean generalization version of the FIEGARCH-M model. This generalization
generates un-conditional skewness allowing volatility feedback or the risk-return relation effect of the
changing conditional volatility on conditional expected returns. In another recent study, Kilic [35] built
the smooth transition FIGARCH model in order to explain long memory and non-linear dynamics
in conditional variance. Non-linear dynamics in this model are revealed by a logistic transition
function. At the same time, a group of authors focused on the reasons for long memory. Davidson and
Sibbertsen [36] showed that a sub-group of nonlinear processes, which is defined by cross-sectional
aggregation, is observationally equal to the fractionally-integrated processes. Similarly, Andersen and
Bollerslev [37] and Zaffaroni [38] indicated that aggregation might cause the long memory feature.
Besides all of this, some authors demonstrated the relationship of long memory and structural breaks
in time series: Micosch and Starica [39], Diebold and Inoue [40], Balcilar [41] and Smith [28]. In one of
these studies, Baillie and Morana [42] introduced their adaptive-FIGARCH model that is quite robust
against structural breaks. In this model, the authors examined the long memory features in conditional
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changing variance by considering structural breaks, which is accomplished by letting the constant
term follow a slowly changing function.

By combining some stylized facts seen in financial time series, Mandelbrot et al. [14] presented
a theoretical framework of the MMAR model as an alternative to the FIGARCH, which was a substantial
innovation in finance theory. The authors incorporated the long memory, fat tails and trading time
properties into one unique model, the MMAR. Fisher et al. [43] examined the performance of the
MMAR through Deutschemark/U.S. Dollar currency exchange rates. Calvet and Fisher [44] analyzed
the multifractal structure of Deutsche Mark/U.S. Dollar exchange rates and several stock returns, and
using Monte Carlo simulations, they indicated that scaling features of the data are exhibited more
effectively by the MMAR model than previous alternative models, such as GARCH and FIGARCH.
Similarly, following the same procedure, Fillol [45] showed that MMAR replicates the scaling properties
of the French Stock Market (CAC40) Index returns better than other models. In another study,
Jamdee and Los [46,47] compared the performance of MMAR with GARCH, FIGARCH and geometric
Brownian motion simulations for the scaling properties of the U.S. Treasury rates and the Fed funds
rates. More recently, Batten et al. [48] analyzed the multifractal features of EUR/USD returns through
a modified version of the MMAR model and showed that MMAR outperformed both conditional and
unconditional coverage statistics.

3. Theory of the Econometric Model

3.1. Multiscaling Property

Before the examination of MMAR, following the definition of Mandelbrot et al. [14], we analyze
the multiscaling behavior. As stated before, the scaling property for the self-affine process can be
defined as follows:

X pctq d
“ cHX ptq (1)

Multifractal theory contains a broader set of conditions:

X pctq d
“ M pcqX ptq (2)

where X and M are independent random functions. Therefore, multifractality allows greater behavior
variety than a self-affine process. The random scaling factor, on the other hand, satisfies the following

property: M pabq d
“ M1 paqM2 pbq, where M1 and M2 are independent copies of M, which also satisfies

the scaling rule below:
E
`

|X ptq|q
˘

“ c pqq tτpqq`1 (3)

where c pqq and τ pqq are the deterministic functions of q. This scaling rule is the basic property of
the multifractality. τ pqq is also stated as a scaling function. A self-affine process with index H is
multifractal with the following scaling function: τ pqq “ Hq´ 1. Because of its linearity, the scaling
function is only determined by the slope coefficient and exhibits a uniscaling (unifractal) structure.
In spite of that, a concave scaling function exists in a multifractal process.

3.2. The Multifractal Model of Asset Returns

By using the definition of Calvet and Fisher [44], the acquisition process of MMAR can be
summarized as follows: the price of an asset P ptq is in a limited interval r0, Ts, and the logarithmic
price process is as below:

X ptq ” ln P ptq ´ ln P p0q (4)

By compounding a Brownian motion with the multifractal trading time, we can model the
X ptq process:
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Assumption 1. X ptq is a compounding process:

X ptq ” BH rθ ptqs (5)

where BH ptq is a fractional Brownian motion and θ ptq is stochastic trading time.

Assumption 2. Trading time θ ptq is the cdf of the multifractal measure µ defined on interval r0, Ts.

Assumption 3. BH ptq and θ ptq processes are independent.

As demonstrated by Fisher et al. [43] when dividing r0, Ts into N intervals of the length ∆t, the
partition functions will be as follows:

Sq pT, ∆tq ”
N´1
ÿ

i“0

|X pi∆t, ∆tq|q (6)

Despite the fact that there are temporary correlations, in conjunction with the stable increments
property of a multifractal process, addends are distributed identically. When the q-th moments exist,
if the X ptq is multifractal, the scaling law satisfies the condition below:

logE
“

Sq pT, ∆tq
‰

“ τ pqq log p∆tq ` c pqq logT (7)

At a later stage, graphs of the log Sq p∆tq versus log p∆tq are plotted for different q and ∆t. The slope
of the graph with related q orders is used to test the applicability of MMAR; in other words, the slope of
these lines obtained via the OLS method gives an estimation of the scaling function τ pqq. The estimated
scaling function can be easily converted to the estimated multifractal spectrum. As stated by Calvet
and Fisher [44], the first two parameters of four (H, α, λ, σ2), which compose the MMAR, can be
obtained using the features of the scaling function. Properties of the scaling function are as below:

τ p1{Hq “ 0 (8)

f pαq “ inf
q
rαq´ τ pqqs (9)

The first of these two equations gives the inverse (1{H) of the Hurst exponent H of the X ptq
process. As stated by Jamdee and Los [46], the same result can be obtained through the plot of partition
function, which is approximately parallel to the horizontal axis at a special q moment. As for the
second equation, multifractal spectrum f pαq is the Legendre transformation of the scaling function
τ pqq, that is the Legendre transformation enables the obtaining of the multifractal spectrum f pαq.
As demonstrated by Jamdee and Los [46], the first two parameters of the lognormal distribution are
attained through the following equations:

λ “
α0

H
(10)

σ2 “
2 pλ´ 1q

log 2
(11)

Equations (10) and (11) give the mean and variance of the lognormal distribution, respectively.
The measure that yields the trading time of MMAR can be attained using this closed form.

3.3. FIGARCH Model and Scaling

The FIGARCH model, which gives the fractional differencing parameter d, is a parametric
approximation of the long memory issue, unlike Mandelbrot’s R{S analysis, which models the long
memory via a non-parametric methodology and defines the memory level with the Hurst exponent H.
Therefore, the long memory property can be explained by these two methodologies: for a stable
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Gaussian process (Xi, i ě 1) with mean zero, the autocovariance function is γ pkq “ EXiXi`H , and γ

has the following property:
γ pkq „ k2H´2 f pkq as k Ñ8 (12)

where f p.q is a slowly changing function. Xi is a white noise process for H “ 0.5, while it has a long
memory property for 0.5 ă H ă 1 [19]. Similarly, long memory can be defined with d notation via
an autocovariance function, which decays hyperbolically:

γ pkq „ k2d´1 f pkq as k Ñ8 (13)

where d is the long memory parameter, and for 0 ă d ă 0.5, the process has long memory.
The relationship between d and H is as follows: d “ H ´ 0.5 [49]. Following Baillie et al. [32],
the FIGARCH (p, d, q) model can be defined as follows:

r1´ β pLqsσ2
t “ ω`

”

1´ β pLq ´ φ pLq p1´ Lqd
ı

ε2
t (14)

where 0 ă d ă 1, L denotes the lag operator and p1´ Lqd is the fractional differencing operator.
In Equation (14), all roots of φ pLq and [1´ β pLq] are outside of the unit circle.

4. Empirical Analysis

At this stage of the paper, we analyze the multifractal structure of the Croatian, Greek, Polish
and Turkish stock markets via the index series: CROBEX, WIG30, ATHEX and BIST100, respectively.
The purpose of the empirical investigation is to compare the performance of the GARCH, EGARCH,
FIGARCH, MRS-GARCH and MMAR and to determine which model best fits the data in the modeling
of stock market index returns. In similar studies, such as Calvet and Fisher [44], Fillol [45] and Jamdee
and Los [46], the authors limited the models to normal distributions and used only the GARCH,
FIGARCH and GBM in comparing the performance of models with MMAR. In this study, we added
the EGARCH and MRS-GARCH models to enhance the model diversity and also used different types
of distributions under the FIGARCH and MRS-GARCH models in order to obtain the most efficient
results. Our empirical analysis consists of two parts: in the first section, we conducted the parameter
estimations of the GARCH, EGARCH, FIGARCH, MRS-GARCH and MMAR models. All of these
models have different features. For instance, while the GARCH models the conditional variance and
considers the volatility clusterings, the EGARCH contains the asymmetrical structure of the volatility.
The FIGARCH, on the other hand, takes the long memory features of the volatility into account. As for
MRS-GARCH, it is superior to the previous uni-regime models when the data have different regime
properties due to the fact that it considers the multiple regimes in the data. As stated before, the
advantage of the MMAR model is its ability to model the most important stylized facts of the financial
time series, such as fat tails, long memory and trading time properties.

Following the estimation of the model parameters, scaling functions of the return series are
calculated for different q orders (q “ 1, 2, 3, 4, 5). The second section of the empirical analysis is allocated
to the simulation studies. In this section, using the parameters obtained via the model estimations,
simulated time series will be created, and scaling functions of the new series will be calculated.
Here, we seek to determine which simulated model’s scaling function results best match those of the
original data. The data range of the study consisted of the period of 4 January 2004–3 July 2014 with
a total of 3633 observations. Log-returns used in the study are calculated as follows:

Rt “

„

ln
ˆ

Pt

Pt´1

˙

(15)

The models estimated in the empirical analysis and related software/codes are listed in the
Table 1 below.
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Table 1. Used codes and software.

Models Model Parameters Model Simulation

GARCH, EGARCH, FIGARCH Ox-Metrics
Sheppard [50]

Matlab MFE Toolbox

MRS-GARCH
Marcucci [51] Chuffart [52]

MRS-GARCH MATLAB toolbox MRS-GARCH toolbox

MMAR
Ihlen [53] Wengert [54]

MF-DFA MATLAB toolbox MMAR MATLAB codes

Partition Function
Martineau [55] -
MATLAB codes

4.1. Descriptive Statistics

Before we evaluate the performance of MMAR and other models, first we determined the
descriptive statistics of the series to see the characteristic features of the variables. The result obtained
for descriptive statistics are represented in Table 2 below.

Table 2. Descriptive statistics of the original series.

Statistics Croatia Greece Poland Turkey

Mean 0.000104 ´0.00018 0.0000423 0.000178
SD 0.00581 0.007811 0.006685 0.009988

Skewness 0.097397 ´0.02117 ´0.13425 ´0.06851
Kurtosis 16.5597 7.639252 5.761347 9.77734

Jarque-Bera 27,838 *** 3258 *** 1165 *** 6956 ***

*** denotes significance at the 99% confidence level.

As can be seen from the results, all mean values are close to zero with only Greek stock market
returns having a negative mean value. According to the standard deviation statistic, which is the
most primitive way to measure risk, the highest volatility in the return series belongs to the Turkish
stock market, with the Greek stock market second. In addition to the mean and standard deviation,
we have seen that skewness and kurtosis values present deviations from the normal distribution of
asset returns. Except for Croatia, the series demonstrates a negative asymmetry by the left tail of the
distribution being longer than the right tail. The Jarque-Bera test statistic also displays that all of the
return series are quite far away from the normal distribution. Besides the statistical feature of the
return series, we have also represented the chart of all of them in Figure 1 below to see the way they
follow in the period of study.
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(´0.0199) (´0.0152) (´0.0201) (´0.0094)

Aggregated Variance 0.6294 *** 0.5878 *** 0.5435 *** 0.5084 ***
(0.0297) (0.0294) (0.0513) (0.0444)

*** denotes significance at the 99% confidence level.
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threshold value of 0.5. While it is slightly higher than 0.5 for Croatia and Greece, in the other
two variables, Poland and Turkey, it is lightly less than 0.5. In addition, the results of the aggregated
variance test are surprisingly close to the findings of MMAR analysis. In both models, the highest H
values are obtained for Croatia, Greece, Poland and Turkey, respectively. The aggregated variance
analysis Hurst exponent value for Turkey is equal to 0.5, which is the reference number of the market
efficiency. This result will be also obtained under MMAR analysis later on.

4.2. Parameter Estimations

As previously stated, the first section of the empirical analysis consists of the parameter
estimations. In accordance with this purpose, first, we estimated the GARCH (1.1) model. As seen
from Table 4, alpha and beta values of the GARCH (1.1), the sum of these statistics is close to
one. According to Engle and Bollerslev [58], this situation shows persistence in volatility in which
unconditional variance approaches zero very slowly, indicating the long memory property in the
variance of the return series.

In order to consider the asymmetry property of volatility, as a second model, in Table 5 below we
estimated EGARCH (1.1). EGARCH models the asymmetrical effects produced by past shocks in the
volatility. Therefore, changes occurring in the volatility against good and bad news are incorporated by
the model. Asymmetrical effects are caught by the parameter γ. As the results exhibit, the asymmetry
parameter γ in EGARCH (1.1) is statistically significant at a 95% confidence level for all stock markets.
This finding demonstrates the existence of a leverage effect, that is negative return shocks create higher
volatility than positive returns. According to the results in Table 5, the largest γ values belong to
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Turkey, Greece, Poland and Croatia, respectively. As a result, we can say that the highest effect in
volatility created by negative return shocks occurs in the Turkish stock market.

Table 4. GARCH (1.1) parameters of the log returns of the original series.

Countries ω α β

Croatia
0.292444 0.085159 ** 0.911678 **
(0.17881) (0.026237) (0.027485)

Greece
0.516918 * 0.090307 ** 0.905742 **
(0.23256) (0.01795) (0.019015)

Poland
0.380276 ** 0.061464 ** 0.930645 **
(0.12473) (0.0082957) (0.0089465)

Turkey 0.013341 * 0.103096 ** 0.886660 **
(0.0053819) (0.021269) (0.023662)

* and ** indicate the 95% and 99% confidence level, respectively.

Table 5. EGARCH (1.1) parameters of the log returns of the original series.

Countries ω α γ β

Croatia
´0.305014 ** 0.197241 ** ´0.008751 * 0.984521 **

(0.015919) (0.007293) (0.004147) (0.001323)

Greece
´0.273209 ** 0.163630 ** ´0.043302 ** 0.984898 **

(0.021986) (0.009035) (0.004873) (0.001950)

Poland
´0.227455 ** 0.125215 ** ´0.036094 ** 0.987054 **

(0.025928) (0.009624) (0.005910) (0.002256)

Turkey ´0.376273 ** 0.208343 ** ´0.052680 ** 0.977284 **
(0.027994) (0.010824) (0.006009) (0.002656)

* and ** indicate the 95% and 99% confidence level, respectively.

As the results of the GARCH (1.1) model indicate, there is a persistent or long range dependence
in volatility. At this stage, we continue the analysis with the FIGARCH, which takes the long memory
property in volatility into account. As seen in Table 6, Parameters of the FIGARCH model were
estimated under alternative unconditional distributions, such as normal, Student t, skewed Student
t and the Generalized Error Distribution (GED), and decisions were made through the best fitting
distribution type. In determining the best distribution type, we considered the Akaike Information
Criterion (AIC), Schwartz Information Criterion (SIC) and the log-likelihood statistics of the models.
According to the results, GED outperforms the alternative distributions for the index returns of the
Croatian, Greek and Polish stock markets. On the other hand, the skewed Student t distribution
is the best fitting distribution for the Turkish stock market index returns. Results demonstrate that
both asymmetry and tail statistics concerning the Student t distribution are statistically significant.
Likewise, the GED distribution test statistic is significant for the FIGARCH model of three countries.
The fractional differencing parameter d, which tests the long memory property of volatility, is
statistically significant at a 95% confidence level for all countries. The parameter in the range of
0 ă d ă 0.5 is evidence of long memory in volatility. Accordingly, except for Poland, all countries’
stock index returns have long memory features. As for Poland, it has a d value in the range of
0.5 ă d ă 1, meaning that it has non-stationary and mean-reverting long memory properties, that is
even shocks long passed may affect today’s return.



Int. J. Financial Stud. 2016, 4, 11 10 of 17

Table 6. FIGARCH (1.1) parameters of the log returns of the original series.

Countries ω d α β Asymmetry Tail GED

Croatia
0.5652 0.4498 ** 0.4124 ** 0.6391 ** - - 1.0075

(0.3075) (0.0712) (0.1262) (0.1314) (0.0441)

Greece
2.5724 ** 0.3566 ** 0.1015 0.3849 ** - - 1.2322
(0.7623) (0.0429) (0.0733) (0.0891) (0.0513)

Poland
0.5307 * 0.5753 ** 0.2108 ** 0.7476 ** - - 1.2948 **
(0.2361) (0.1134) (0.0488) (0.0756) (0.0489)

Turkey 3.6399 ** 0.3523 ** 0.1235 0.3802 ** ´0.0617 ** 7.7344 ** -
(1.3372) (0.0426) (0.0993) (0.1140) (0.0227) (0.9032)

* and ** indicate the 95% and 99% confidence level, respectively. GED: Generalized Error Distribution.

Parameter estimations of the MRS-GARCH model are exhibited in Table 7 below. Similar to the
FIGARCH model, in the MRS-GARCH model, we used different types of unconditional distributions,
and the most successful results were obtained through the GED for all of the index returns.

Table 7. MRS-GARCH parameters of the log returns of the original series.

Parameters Croatia Greece Poland Turkey

γL
0.4705 0.0554 0.0371 ´1.3797

(0.0619) (0.0234) (0.0201) (0.5813)

γH
0.0000 ´0.0425 ´1.9493 0.1519

(0.0082) (0.0408) (0.4761) (0.0294)

ωL
0.7287 0.0729 0.0338 0.9673

(0.4098) (0.0247) (0.0119) (0.4796)

ωH
0.0201 0.4484 0.0758 0.0633

(0.0061) (0.1344) (0.9568) (0.0213)

αL
0.2965 0.0742 0.0458 0.0470

(0.1782) (0.0187) (0.0107) (0.0394)

αH
0.0981 0.1037 0.0320 0.0677

(0.0151) (0.0225) (0.1764) (0.0118)

βL
0.1757 0.8627 0.9177 0.9497

(0.3783) (0.0326) (0.0114) (0.0735)

βH
0.8868 0.8002 0.9537 0.8861

(0.0139) (0.0419) (0.3109) (0.0122)

p 0.9341 0.9991 0.9916 0.7518
(0.0247) (0.0007) (0.0034) (0.0904)

q 0.9922 0.9995 0.6206 0.9839
(0.0034) (0.0006) (0.1313) (0.0069)

Results in Table 7 confirm the existence of two different regimes in the return volatility of every
country. Parameter ωi, which displays the long-term behavior of the volatility, acts quite differently
for every country under two regimes. As for α and β, they represent the short-term behavior of the
volatility. Accordingly, there is a high persistence in the second regime for the returns of Croatia,
whereas there is no persistence in the first regime. Likewise, the second regime in the Polish returns
has a higher persistence than the first. On the other hand, Greece and Turkey’s first regime’s volatility
is stronger than the second’s. It is noteworthy that all three countries’ volatility persistence is distinctly
high for both regimes. While transition probabilities are statistically significant for all countries, the
related statistic is relatively far from unity for Poland and Turkey.
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In order to determine whether the return series are monofractal or multifractal, we determined
the scaling function plot of all four indexes versus different q orders between ´5 and 5. As stated by
Mandelbrot et al. [14] the scaling function has a linear shape in monofractal time series, while it is
nonlinear for the multifractal time series. According to the results of Figure 2, scaling functions of all
index returns have a nonlinear and concave structure. In addition, the highest degree of non-linearity
is seen in the returns of Croatia and Turkey. Therefore, we can say that the highest multifractality
features belong to the returns of the Croatian and Turkish stock markets.
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Figure 2. Classical multifractal scaling exponent τ(q) versus q.

Figure 3 displays the partition functions of Croatian, Greek, Polish and Turkish stock markets,
respectively. Likewise, for the definition of MMAR established in Section 3, the partition function is
obtained by the following process using the interpretation of Calvet and Fisher [44]: logarithmic form
of the price series P ptq in time interval r0, Ts is X ptq ” lnP ptq ´ lnP p0q. By partitioning the r0, Ts into
N integer intervals of a length of ∆t, partitioning functions can be defined as follows:

Sq pT, ∆tq ”
N´1
ÿ

i“0

|X pi∆t` ∆tq ´ X pi∆tq|q (16)

In cases where any function has the scaling property, the logarithmic graph of the partition
function versus time increments should be approximately linear [46]. In addition, the q value, which
is parallel to the horizontal axis, presents the related Hurst exponent H value. On the other hand,
in order to calculate the exact value of the Hurst exponent H, we used the following relationship
τ pq “ 1{Hq “ 0, given in Equation (8).

According to the obtained q values in Table 8 for Croatia, Greece, Poland and Turkey, we
see that the partition functions have zero slope and a slight persistence with the following values.
Approximate results can be seen from Figure 3. Accordingly, it is clear that the partition functions of
all indexes’ returns are roughly parallel to the horizontal axis for q “ 2.

Table 8. Estimated q values of the log returns of the original series.

Croatia Greece Poland Turkey

q 1.6331 1.8368 1.8595 2.0000
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Figure 3. Partition functions of the log returns of the original series.

Table 9 below presents the results of the parameters required to construct the MMAR. As stated
by Jamdee and Los [46], in order to model the conditional variance property of the time series and to
take true scaling features into account, the MMAR requires four parameters: the Hurst exponent H
value of the return series, the most probable Hurst exponent value of the trading time (α0) and the first
and second moments of the lognormal distributions of multiplicative probability measures pλ and σ2q.
It is worth noting that only one Hurst exponent, that is a monofractal Hurst exponent, is calculated
in the construction of MMAR. After obtaining the H and α0 parameters, we calculated the first and
second moments (λ and σ2) of the lognormally-distributed multinomial measures.

Table 9. MMAR parameters of the original series.

Countries H α0 λ σ2

Croatia 0.6123 0.6392 1.0439 0.1268
Greece 0.5444 0.5522 1.0143 0.0411
Poland 0.5378 0.5524 1.0272 0.0783
Turkey 0.5000 0.5455 1.0910 0.2597

These results demonstrate that the highest persistence in the volatility of the index returns occurs
in Croatia concerning H values. On the other hand, the H value of Turkey is 0.50, which is the Hurst
exponent value of geometric Brownian motion. This result indicates that Turkish stock index returns
perform a random walk behavior as assumed by the efficient market hypothesis and do not possess
long memory features. In other words, Turkish stock market returns demonstrate a fully-stochastic
random behavior, and fluctuations follow white noise. Similar to the findings of Jamdee and Los [46],
another interesting result is that the first moment of the lognormal return distribution is larger than
one for all countries. In addition, the highest λ statistic is seen in the return distribution of Turkey,
which means that there is an indistinct relationship between the persistency level of the market and
the persistency level of information process in the Turkish stock market. Similarly, it is clear that the
variance level of Turkey σ2 is also higher than those of other countries. This demonstrates that the
Turkish stock market is affected by a wider variety of news events.



Int. J. Financial Stud. 2016, 4, 11 13 of 17

4.3. Simulations and Construction of the Models

Using the acquired parameters of the MMAR, GARCH, EGARCH, FIGARCH and MRS-GARCH
models, at this stage of the study, we produce 1000 different simulated time series for every model with
the Monte Carlo simulation method. The reason for using the Monte Carlo simulations is to assess the
replicability of the simulated time series in order to analyze the performance of the alternative models.
The purpose here is to compare scaling function values obtained using the original return series and
the simulated return series. The scaling function values of the original and simulated time series for
different q orders (q “ 1, 2, 3, 4, 5) are presented in Table 10 below. Since the simulation model that
has the closest scaling function values to the original series will be accepted as the best replica model,
we will consider it as the best alternative model that contains the same stylized facts in the original
series. It is also worth noting that unlike the original return series, the scaling function values of the
simulated models were attained through the mean values of τ of the 1000 simulated time series for
all countries and models. As for the scaling function values of empirical data, they were obtained by
means of the slopes of the partition functions.

Table 10. Scaling function values of the empirical and simulated series.

q
τ τ̂empirical MMAR τ GARCH (1.1) τ EGARCH (1.1) τ FIGARCH (1.1) τ MRS-GARCH τ

Simulation Results

C
ro

at
ia

1 ´0.39 ´0.38 ´0.48 ´0.49 ´0.48 ´0.53
2 0.21 0.20 ´0.01 ´0.01 ´0.01 ´0.09
3 0.76 0.76 0.40 0.42 0.41 0.32
4 1.27 1.28 0.76 0.81 0.79 0.71
5 1.74 1.77 1.09 1.18 1.13 1.08

G
re

ec
e

1 ´0.45 ´0.45 ´0.48 ´0.49 ´0.49 ´0.46
2 0.09 0.08 ´0.01 ´0.01 ´0.01 0.07
3 0.59 0.59 0.39 0.43 0.43 0.59
4 1.05 1.08 0.75 0.83 0.82 1.09
5 1.47 1.54 1.07 1.20 1.18 1.56

Po
la

nd

1 ´0.46 ´0.45 ´0.49 ´0.50 ´0.49 ´0.50
2 0.07 0.07 ´0.01 ´0.02 -0.01 ´0.01
3 0.57 0.57 0.44 0.44 0.42 0.46
4 1.04 1.05 0.85 0.86 0.81 0.92
5 1.48 1.51 1.23 1.26 1.17 1.36

Tu
rk

ey

1 ´0.47 ´0.47 ´0.48 ´0.49 ´0.49 ´0.48
2 0.00 0.00 ´0.01 ´0.02 ´0.02 ´0.01
3 0.42 0.42 0.40 0.42 0.42 0.41
4 0.80 0.81 0.76 0.82 0.81 0.78
5 1.14 1.16 1.09 1.18 1.17 1.13

The results of Table 10 demonstrate that q “ 1 values start as negative for all countries’ index
returns, and ultimately, q “ 5 ends in a value of around 1.5. In order to carry out a more thorough
evaluation about the results of Table 10, we present the standard deviations of the differences between
the original series’ scaling function values and those of the simulated series in Table 11. It is clear that
larger deviation figures mean inferior performance for the related models.

Table 11. Standard deviation of the scaling function values from τ̂empirical .

Countries MMAR τ GARCH (1.1) τ EGARCH (1.1) τ FIGARCH (1.1) τ MRS-GARCH τ

Croatia 0.0133 0.1995 0.1641 0.1838 0.1846
Greece 0.0327 0.1489 0.0918 0.0996 0.0453
Poland 0.0122 0.0871 0.0712 0.1127 0.0344
Turkey 0.0089 0.0182 0.0261 0.0212 0.0045
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When we look at the findings of the simulated Croatia, Greece and Poland series, we see that
among the simulated time series, the results that best match the original series are provided by the
MMAR. However, regarding Turkey, the situation differs slightly from the others. Despite the fact
that the MMAR and MRS-GARCH results are approximately equal in the Turkish stock market, the
MRS-GARCH model slightly outperforms the MMAR with a difference of 0.0044. On the other hand,
although the GARCH model catches the time-varying volatility, skewness and kurtosis features that
arise in the financial time series, it does not properly identify the empirical index return processes.
Because it also considers the different reaction property of variance against good and bad news, we
can see relatively better results in the EGARCH model when compared to GARCH. Besides, the
performance of the FIGARCH model, which takes long memory into account in analogy to MMAR, fell
short of our expectations, as well. In spite of that, the MRS-GARCH model produced the second most
successful results after MMAR. Not only does the MRS-GARCH model best fit the data of Turkey, it also
displays the second best performance for Greek and Polish index returns. If we pay attention, it is clear
that there is an obvious relationship between the Hurst exponent value and the performance of the
MRS-GARCH model. While the MRS-GARCH model performed poorly for Croatian returns with the
highest Hurst exponent value, the same model exhibits moderately successful results for Greece and
Poland, which have comparatively lower Hurst exponent values. Additionally, for the Turkish stock
returns, which have an H value of 0.5, indicating the absence of long memory or the existence of the
random walk, the MRS-GARCH is slightly more successful than the MMAR. Since there are no long
memory features in the return diffusion process of the Turkish stock market, the performances of the
MMAR and MRS-GARCH models appear quite close, the reasons for which are worthy of examination
in another study or dissertation. As a general assessment, we can say that the MMAR displays the best
replica performance against the alternative models in reflecting the stylized facts of original return
series. Upon deep inspection, we see that MMAR preserves the scaling properties of different stock
index returns especially for the first three moments, while fourth and fifth moments are slightly higher
than the empirical results.

Information concerning previous results can also be viewed in Figure 4. Loosely speaking, the
lowest deviations from the original series were obtained with the MMAR. The second best model is
the MRS-GARCH. Accordingly, we can say that MMAR is superior to the GARCH, EGARCH and
FIGARCH models in the modeling of the time-scaling properties of the stock index returns. The results
obtained from the empirical section of this study are generally consistent with the findings of Calvet
and Fisher [44], Fillol [45], Jamdee and Los [46]. Distinct from these studies, the most interesting result
in our analysis concerns MRS-GARCH’s performance. We saw that when the persistency decreases or
in the absence of long memory features, MRS-GARCH displays a high performance similar to MMAR.Int. J. Financial Stud. 2016, 4, 2 15 of 18 
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5. Conclusions

In this study, the performance of the multifractal model of asset returns was analyzed in
comparison to other popular models, such as GARCH, EGARCH, FIGARCH and MRS-GARCH
during the period of 4 January 2004–3 July 2014 for the stock index returns of Croatia, Greece, Poland
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and Turkey. According to the parameter estimations conducted in the first section of the empirical
analysis, the sum of the mean and variance parameters in the GARCH model have values very close to
unity as a result of high persistency. As for the other models, EGARCH exhibited asymmetrical effects;
FIGARCH demonstrated long memory; while MRS-GARCH showed the existence of different regimes
in the volatility. According to the parameter estimations of MMAR, the highest persistence in stock
index returns was seen in the Croatian, Greek, Polish and Turkish stock markets respectively. The most
interesting result concerning Hurst exponent H was obtained for Turkey. As distinct from the other
countries’ results, the Turkish stock market had an H value equal to 0.5, indicating the existence of the
random walk in the log returns. In the second section of empirical analysis, we simulated 1000 paths
for each model through Monte Carlo simulations using the previous parameters obtained in the first
section. Afterwards, scaling function values were calculated for both original and simulated time series
in different q orders (q “ 1, 2, 3, 4, 5). When we compare the results of the original and simulated time
series, the best fitting replication of the original series’ time-varying variance process was exhibited
by the MMAR. Other interesting results were the increasing performance of MRS-GARCH for the
lower values of H and its matching with the performance of MMAR for the random walk process.
Hence, for Turkey, which has an H value equal of 0.5, the performance of the MRS-GARCH model is
more successful than MMAR with a difference of 0.0044.
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Abbreviations

The following abbreviations are used in this manuscript:

MMAR Multifractal Model of Asset Returns
ARCH Autoregressive Conditional Heteroscedasticity
GARCH Generalized Autoregressive Conditional Heteroscedasticity
EGARCH Exponential Generalized Autoregressive Conditionally Heteroscedasticity
FIGARCH Fractionally Integrated Generalized Autoregressive Conditionally Heteroscedasticity
MRS-GARCH Markov Regime Switching Generalized Autoregressive Conditional Heteroscedasticity
EMH Efficient Market Hypothesis
FMH Fractal Market Hypothesis
ARFIMA Autoregressive Fractionally Integrated Moving Average
MF-DFA Multifractal Detrended Fluctuation Analysis
FIEGARCH Fractionally Integrated Exponential Generalized Autoregressive Conditionally Heteroskedasticity
FIEGARCH-M Fractionally Integrated Exponential Generalized Autoregressive Conditional

Heteroskedastic-in-mean
CAC40 Cotation Assistée en Continu 40
GBM Geometric Brownian Motion
DFA Detrended Fluctuation Analysis
GED Generalized Error Distribution
AIC Akaike Information Criterion
SIC Schwartz Information Criterion
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