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Abstract: A dynamic model that considers both linear and complex nonlinear effects extensively
benefits the model-based controller development. However, predicting a detailed aerodynamic model
with good accuracy for unmanned aerial vehicles (UAVs) is challenging due to their irregular shape
and low Reynolds number behavior. This work proposes an approach to model the full translational
dynamics of a quadrotor UAV by a feedforward neural network, which is adopted as the prediction
model in a model predictive controller (MPC) for precise position control. The raw flight data are
collected by tracking various pre-designed trajectories with PX4 autopilot. The neural network model
is trained to predict the linear accelerations from the flight log. The neural network-based model
predictive controller is then implemented with the automatic control and dynamic optimization
toolkit (ACADO) to achieve real-time online optimization. Software in the loop (SITL) simulation and

check for

updates indoor flight experiments are conducted to verify the controller performance. The results indicate that
Citation: Jiang, B.; Li, B.; Zhou, W,; the proposed controller leads to a 40% reduction in the average trajectory tracking error compared to
Lo, L-Y.; Chen, C.-K.; Wen, C.-Y. the traditional PID controller.

Neural Network Based Model
Predictive Control for a Quadrotor
UAV. Aerospace 2022, 9, 460.

Keywords: feedforward neural network; model predictive control; UAV; trajectory tracking; position

control
https://doi.org/10.3390/
aerospace9080460
Academic Editors: David Anderson,
Javaan Chahl and Michael Wing 1. Introduction

Recently, unmanned aerial vehicles (UAVs), especially multi-rotors, are developing
fast due to the advanced microcontroller and sensing technologies. Small UAVs are widely
used for infrastructure inspection, land surveying, and search and rescue [1,2]. Precise
trajectory tracking is a crucial requirement for UAVs operating under various conditions to
ensure a safe and efficient mission. Versatile methods have been proposed to improve the
position tracking accuracy of quadrotor UAV subject to input delay, model uncertainties,
and wind disturbances [3-5]. Many researchers proposed using the model predictive
control (MPC) for UAVs to achieve precise trajectory tracking performance [6-8]. MPC is

a feedback optimal control method that takes the system model into account based on a
receding horizon principle. The general working principle of MPC is using a system model
to predict the future behavior of a process and calculate the optimal control inputs under
actuator constraints. The optimizer obtains an optimal control sequence, and only the first
This article is an open access article ~ Value is applied to the system. This online optimization process is conducted repeatedly
distributed under the terms and  at each timestep. MPC has been widely used in the process industry due to its ability
conditions of the Creative Commons  t0 handle multi-input multi-output (MIMO) systems with constraints [9-11]. Another
Attribution (CC BY) license (https://  advantage of MPC is the preview feature. The traditional PID controller corrects the states
creativecommons.org/ licenses/by / based on tracking error, which inevitably results in a tracking delay. MPC is able to consider
40/). the reference trajectory and predicted system response in the prediction horizon.
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Model-based control algorithms, such as MPC, extensively benefit from an accurate
system model. A mathematical model which describes the dominant mechanical dynamics
of a quadrotor is established based on the Newton—Euler formalism. However, measuring
the model parameters ,such as the moment of inertia and propeller lift coefficient through
experiments, could be challenging. In this condition, system transfer functions and state-
space models can be identified using input and output data. This process, known as system
identification, is widely used for UAVs because of its simplicity and effectiveness [8,12,13].
The limitation of this approach is that the identified result is confined by the state-space model
and transfer function, which make it hard to model the complicated nonlinear aerodynamic
effects. Hoffmann et al. [14] and Fay [15] studied the aerodynamic effects of a quadrotor,
such as hub force, rolling moment effect, and blade flapping. These effects introduce extra
forces and moments to quadrotor dynamics but are usually too complicated to be identified
by both linear and nonlinear models.

Lately, learning-based methods have been studied to model quadrotor dynamics and
improve controller performance. Bansal et al. [16] modeled quadrotor dynamics by a feed-
forward neural network (FFNN) known as rectified-linear unit (ReLU) and then employed
the network in the LQR controller. Torrente et al. [17] used Gaussian processes to comple-
ment the nominal dynamics of the quadrotor in an MPC pipeline. Bauersfeld et al. [18]
model the quadrotor with blade-element-momentum theory and compensate the residual
dynamics with temporal-convolutional (TCN) encoders. These works show that learning-
based methods have good potential to model the complicated aerodynamic effects of the
quadrotor. Because the neural network is developed as the MPC prediction model, the com-
plexity is confined by controller sample time and platform computational capability. A deep
RNN is capable of learning explicit system behaviors, such as motor delay and complex
aerodynamics. However, such a network is hard to be deployed for real-time calculation or
used in optimal control problems (OCP). To achieve a trade-off between model accuracy
and simplicity, FENN is adopted instead of RNN in the current study.

By using learning-based methods, the traditional UAV modeling processes such as
wind tunnel experiments, computational fluid dynamics (CFD) simulation, and derivation
of dynamic equations can be extensively simplified. In this article, a neural network-based
MPC (NNMPCQ) is developed for quadrotor position tracking. Without prior knowledge of
quadrotor dynamic equations, the proposed method models full translational dynamics of
the quadrotor purely from flight data. The NNMPC is implemented with the automatic
control and dynamic optimization (ACADO) toolbox for real-time online computation.
The tracking performance is evaluated with new trajectories different from the training
samples. Both simulation and experiment are conducted and the results from different
controllers are compared. The main contributions of this article include:

*  Learning the full translational dynamics of a quadrotor purely from flight data without
prior knowledge of quadrotor dynamic equations. The proposed model balances the
trade-off between model accuracy and simplicity.

*  Synthesizing the proposed FENN with the MPC scheme for the real-time position
control of a quadrotor.

¢ Demonstrating the validity and control performance in simulation and real-world
flight experiments by comparison with the PID controller and nonlinear MPC (NMPC).

The rest of this article is organized as follows. In Section 2, the governing equations
of quadrotor dynamics are reviewed and a neural network modeling method is proposed.
In Section 3, NNMPC is formulated based on the network prediction model. In Section 4
and Section 5, the controller performance is tested in simulation and flight experiments,
respectively, followed by the conclusion in Section 6.

2. Neural Network Model of Quadrotor UAV

This section introduces the general quadrotor dynamic equations, which describe the
dominant forces and moments experienced by the UAV during flight and help us to choose
eligible inputs of the network model. Then, we present a neural network architecture to
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model the quadrotor dynamics. A shallow feedforward network scheme is adopted due to
its accurate prediction and simple structure.

2.1. Quadrotor Dynamic Model

The quadrotor UAYV is usually assumed to be a rigid body with six degrees of freedom.
The system state vector is definedas X = [x yzuvw ¢ 0 ¢ p g 7] T where x, y,zand u, v,
w denotes position and velocity in the North-East-Down inertial frame I';. ¢, 0, i denotes
Euler angles in roll, pitch, and yaw axes, respectively, and p, g, r denotes angular velocities

in the body frame I'g, respectively. Figure 1 shows the quadrotor coordinate systems.

1V

Y; (East) ; l
X; (North) Z,(Down)

Figure 1. The quadrotor sketch with inertial frame I'; and body frame I'p.

The system is controlled by four control inputs U = [Uj, Uy, U3, Uy], where Uj is
the thrust force along the Zg direction, and Uy, U3, Uy are rolling, pitching, and yawing
moments in I'g, respectively. Quadrotor nonlinear dynamic model is constructed based on
the Newton—-Euler formalism [19]:

X=u
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L

where m is the mass of the quadrotor, g is the gravitational acceleration, and Ix, Iy, Iz are
quadrotor moment of inertia around three axes.

The nonlinear model in (1) is widely used as the prediction model in the MPC scheme.
Note that this model only takes gravitational force and control inputs into consideration
and neglects influences from other sources, such as air drag, the gyroscope effect, and the



Aerospace 2022, 9, 460

40f16

hub force. Because the MPC performance relies on a high accuracy prediction model,
we aim to develop a neural network model to identify full translational dynamics of the
quadrotor UAV, including all the aerodynamic effects.

2.2. Neural Network Structure

In recent years, the spectrum of machine learning has significantly advanced thanks to
the development of computing technologies. As a subfield of machine learning, supervised
learning is proven to be effective for tasks such as object detection and natural language
processing. The key feature of supervised learning is that the desired output is available
during the training process. After learning from the examples, the network is expected
to approximate the system behavior and predict system outputs by the input data that it
has not been trained with. Motivated by the universal approximation feature of the neural
network, we trained an FFNN with the supervised learning approach to predict system
states in the future.

In FFNN, there is no recurrent feedback loop. Therefore, a well-trained FFNN has
fixed weights and biases, representing a static mapping from inputs to outputs. Apart from
FFNN, RNN is another potential candidate for modeling dynamic systems. The output
signal of RNN is connected back to the input ports with a tapped delay line (TDL). This im-
plies that the output of RNN depends both on its input and previous output. The recursive
structure enables RNN to learn complex system dynamics with input delay. The archi-
tectures of FFNN and RNN are presented in Figure 2. We chose FFNN instead of RNN
for two main reasons. First, the prediction model in MPC is written in state-space form,
which predicts the state derivative of the next step based on the current state and control
input. FFNN is capable of predicting such a system with good accuracy. Furthermore,
the training procedure of RNN is much more complex and time consuming than that of
FENN because issues such as gradient explosion and state initialization greatly influence
training results [20,21].

Hidden Layer Output Layer

Output

Feed-forward Neural Network (FFNN)

Hidden Layer Output Layer

Output
—>

Recurrent Neural Network (RNN)

Figure 2. Comparison of neural network architecture between FFNN and RNN.

Our network model is a two-layer FFNN with one hidden layer and one output layer,
where sigmoid and pure linear transfer functions are used, respectively. The network
model can be expressed as:

0 =w'e (WT,B n B) +b, )

where 3 represents network input, which consists of states and control inputs. The weight
matrices are denoted by W and w whereas the bias vectors are denoted by B and b, where
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uppercase is for the hidden layer and lowercase is for the output layer. ¢ is the sigmoid
activation function in the hidden layer. The pure linear activation function is adopted in
the output layer.

Then, we chose the input and output data for the network. Because this work focuses
on developing the outer loop position controller for a quadrotor, only translational dy-
namics is required to be identified. In other words, the translational acceleration of three
axes will be modeled by the network using current states as inputs. We used thrust, Euler
angles, and linear velocities as inputs to the network. Based on (1), the acceleration 1, 7,
and @ are mainly dependent on thrust and Euler angles. Taking velocities as input enables
the network to identify the air drag model as drag is considered to be proportional to
velocity [8]. To simplify the network model, position and angular velocity are not used as
input because they are not directly related to translational dynamics. The final network
model has seven inputs and three outputs, which can be written as:

[inn ONN WNN] = fan (w0, w, ¢,0,9, Uy ) ©))

where 1NN, OnN, and Wy represent predicted accelerations and fy represents the neural
network transfer function.

The training objective is to determine the weights and biases that minimize the mean
squared error (MSE) between predicted acceleration h= [tinn ONN WNN| and observed
acceleration h = [11 9 W] subject to (2):

N PN
mink;;] h—th. @)

Once the training process is complete, the weights and biases will be fixed, and the
network can be deployed to predict system dynamics from new inputs. The details of the
neural network training process will be discussed in Sections 4 and 5.

3. Model Predictive Controller Design

Two main components in MPC are the prediction model and the online optimizer.
The system behavior under certain control inputs is calculated by the prediction model,
which in our work is an FFNN. The optimizer solves the quadratic programming (QP)
problem, formulated as:

min [ [0, () e o

+[[A(x(T)) = yn e |Gt
st X = f(x(t),u(t)) (5)
u(t)y el
x(t) e X
x(0) = x(to),

where u(t) and x(t) denotes control input and state at timestep ¢, T denotes the number
of timesteps that the model predicts, which is also known as prediction horizon, y.r
and yy, s denotes reference state for prediction horizon and terminal timestep, Q and
Qn denotes weighting matrices for states and terminal states, f(-) and h(-) denote the
prediction function and system output function, I/ and X represents input constraint and
state constraint, respectively.

The OCP in (5) is solved by the multiple shooting method. The system is discretized
from f to t7 and a boundary value problem (BVP) is formulated at each time interval with
variable constraints imposed. The BVP is solved with the sequential quadratic program-
ming (SQP) technique by the active set method using the qpOASES solver [8,22]. MPC is a
receding horizon control technique which means that only the first value of the optimized
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control sequence is applied to the system whereas the rest of it is regarded as an initial
guess for the OCP in the next iteration.

The quadrotor controller is usually implemented in the cascaded loop scheme. The outer
loop controller tracks position reference with thrust and Euler angle commands whereas the
inner loop controller tracks attitude reference with moments in the corresponding axis. This
work focuses on the development of the outer loop position controller, which is an MPC using
FFNN as the prediction model. A standard PID controller is adopted for inner loop attitude
control. The cascaded control structure adopted in this work is shown in Figure 3.

Flight Data

FFNN Model

U

Position N
Reference MPC "1 Quadrotor
Position Controller| Dynamics
Demd Attitude U.
A /) Controller 2
emd U3
Yemd x U,

State Estimator

Figure 3. Cascaded loop control structure for quadrotor UAV.

The prediction model of the position MPC controller is formulated as:

X=1u
y=v0
Z=w
1t =NNyx
TJINNY (6)
w= NNy
¢:¢cmd_¢
Tp
g:w
Ty

where NNy, NNy, and NN are linear accelerations in the respective axes predicted by the
neural network. Each acceleration prediction will be integrated to obtain the corresponding
velocity and integrated again to the position. Because the error accumulates through the
integration process, an accurate prediction of acceleration is required for position tracking.

Note that prediction model in (6) linearizes the inner loop dynamics by first-order
transfer functions, where 7y and 1y are time constants of roll and pitch control, ¢.,,; and
cma are roll and pitch commands sent to inner loop attitude control. The values of 7
and Ty can be derived with flight data by the system identification technique. The yaw
angle is assumed to be zero during the entire flight so that the yaw angle is excluded from
MPC states.

4. Simulation Results

To validate the algorithm, we carry out software in the loop (SITL) simulations by the
PX4 open-source flight control platform [23], using an Iris quadrotor model in the Gazebo
robot simulator shown in Figure 4. The simulated quadrotor communicates with PX4 using
MAVLink API, which defines a set of messages to supply sensor data from the simulated
world to PX4 and return motor and actuator values applied to the simulated vehicle [24].
For a qualitative evaluation of NNMPC developed in this work, we simulated the same
tracking flight using PID, NMPC, and NNMPC controllers.
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Figure 4. Iris quadrotor UAV model in Gazebo simulator.

4.1. Data Collection

A good training dataset should contain enough training samples and cover as many
operating conditions of the quadrotor as possible. Therefore, several training trajectories,
such as random sinusoidal waves, a step reference, and a circular path, were used to
generate training data. The designed trajectory was tracked by the PID controller provided
by PX4 autopilot. Note that the yaw angle command ,,; was set to be zero throughout
the flight so that the x and y position references were tracked by pitch and roll movements,
respectively. High precision tracking is not required during this process because we aim to
collect the raw control input and state output samples, which are not related to the outer
loop control scheme. The quadrotor states were logged at 100 Hz and synchronized at 10 Hz
before network training. The training flight log contains 600 s of flight data, corresponding
to 6000 data samples.

4.2. Neural Network Training

An FFNN was trained to learn the linear acceleration in all three axes with the collected
flight data by minimizing the MSE between target and predicted accelerations. We used
current velocities, Euler angles, and thrust as input and current linear accelerations as target
outputs. The flight data were filtered and normalized prior to network training. A low pass
filter was applied to the data to remove high-frequency noises, which are usually observed
in thrust data. The training inputs and targets were scaled so that each channel has a zero
mean and a unity standard deviation. This guarantees that the network equally weights all
inputs and targets during the training process. Seventy percent of the collected data was
used for training, 15% was used for validation, and the remaining 15% was used for testing.

We invoke the MATLAB Deep Learning Toolbox [25] to train the network by the
Levenberg-Marquardt backpropagation algorithm. The minimum gradient, number of
hidden layers, number of neurons in hidden layers, and maximum epochs were set at 0, 1,
10, and 1000, respectively. The training process of such a shallow neural network with few
neurons took several minutes, depending on the size of the training data. The network was
trained with random initial weights and the best normalized MSE obtained was 0.00491.
Once the training was complete, the network model could be expressed by substituting
weights and bias in (2). Figure 5 compares the neural network model prediction outputs
with the measured accelerations on the test data which were not used for training. The result
indicates that the neural network model is able to predict current accelerations with given
inputs to good accuracy. However, the results in X; and Y7 directions are generally better
than those in the Z; direction. The reason is that the collected thrust data contains high-
frequency noise and data integrity could be violated during the filtering process. Because
thrust is the dominant input for Zj acceleration prediction, the result in Z; direction is
affected most by inaccurate thrust training data. For X; and Y7 directions, on the other
hand, the dominant inputs are the Euler angles so that the results are not affected as much.
We further found out that X; and Y] accelerations can be accurately predicted only using
velocities and Euler angles as inputs.
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Figure 5. Comparison of neural network model prediction output and measured data for linear
accelerations from Gazebo Iris quadrotor UAV.

4.3. MPC Implement

We next developed NMPC and NNMPC for quadrotor position tracking. The nonlinear
prediction model in NMPC is formulated as:

X=u
=0
Z=w

= —(Cos¢sin9cos¢+sin¢sin1p)%

0= —(cos¢sinfcosyp — singbcostp)%

@)

W= —(coscpcos@)% +g

P (Pcmd_(P

(Pfi
Tp

9': Gcmd_e
To

where Ty and Ty share the same values as in (6). The MPC runs at 20 Hz with 15 (20 x 0.05s)
prediction horizon. The roll angle and pitch angle were constrained in the range of [—20, 20]
degrees. Both NMPC and NNMPC controllers used the same parameters, so the tracking
results were only influenced by the different acceleration prediction models.

MPC solves OCP at each timestep and usually involves extra computational load.
To achieve real-time calculation, both NMPC and NNMPC were implemented using the
ACADO toolbox to generate a fast C-code solver [26]. ACADO has a MATLAB interface
that exports the solver as a MEX file, which is combined with the MAVLink subscriber and
publisher in the Simulink environment. The neural network model function was generated
by MATLAB genFunction syntax and used in NNMPC as the prediction model.
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4.4. Trajectory Tracking Results

Next, we conducted the SITL simulation to compare the tracking performance of differ-
ent control algorithms. Two trajectories were designed to compare the control performance
of PID, NMPC, and NNMPC controllers. The first trajectory consists of a two-meter step
reference in both X; and Y] directions and a one-meter step reference in the Z; direction.
The second trajectory consists of sinusoidal waves with increasing frequency in the range
of [0.5,0.85] Hz. The yaw angle reference was set to be zero throughout the flight and the
inner attitude control loop was handled by a PID controller.

The step trajectory tracking results of PID, NMPC, and NNMPC are compared in
Figure 6. Generally speaking, MPCs are superior to the PID controller because of less
tracking delay. The preview feature of MPCs enables them to respond to references in
advance. The MPCs have a prediction horizon of 1 s so that they actuate the quadrotor
about 0.5 s before the step reference and thus result in an early step response with less
tracking error.

Step Response

X Position (m)

Y Position (m)

E
c
9
k7]
o
o
N
0 5 10 15 20 25 30 35 40 45 50
Time (s)

Figure 6. Step trajectory Tracking results for PID, NMPC, and NNMPC controllers in three axes
from simulation.

By comparing the results of NMPC and NNMPC, we found out that the NNMPC has
faster transient response in X; and Y; directions. Because NMPC and NNMPC are using
the same parameters, the improved performance results from the more accurate neural
network prediction model. However, in the Z; direction, there is no obvious difference
between NMPC and NNMPC results. It is probably because the nonlinear prediction
model already describes the system dynamics to a quite accurate extent. Furthermore,
a minor coupling between lateral and vertical movement is noticed in the Z; direction
for NNMPC. Because we predicted accelerations in all axes with one neural network,
such coupling cannot be completely eliminated but is attenuated to an acceptable degree.
Table 1 summarizes the Root Mean Square Error (RMSE) for all controllers tracking results.
For step trajectory, NNMPC improves the RMSE of NMPC by 30% and 25% in X; and Y;
directions, respectively.

Figure 7 depicts the sinusoidal trajectory tracking result of PID, NMPC, and NNMPC.
The results indicate that the PID controller has around 1 s of tracking delay whereas that of
MPCs is almost invisible. The sinusoidal trajectory presents a more obvious comparison
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between NMPC and NNMPC. Figure 8 shows the trajectory tracking results of NMPC and
NNMPC plotted in 3D view. Because the PID results in 2 s of tracking delay; its trajectory
is not plotted here. With increasing velocity, the trajectory of NMPC deviates from the
reference path and results in a circular trajectory with a smaller radius compared with the
NNMPC trajectory. According to the tracking result RMSE in Table 1, NNMPC reduces
the RMSE of NMPC by 49% and 65% in X and Y] directions, respectively. The simulation
results thus validated that the neural network-based model predicted system dynamics
well and improved the MPC performance.

Sinusoidal Trajectory

N

----- Reference
A F[——PD
——NMPC
NNMPC

X Position (m)
o

Y Position (m)

Z Position (m)

Time (s)

Figure 7. Sinusoidal trajectory tracking result for PID, NMPC, and NNMPC controllers in three axes
from simulation.

Table 1. RMSE of Trajectory Tracking from Simulation Result.

Trajectory Type Direction PID (m) NMPC (m) NNMPC (m)
X 0.597 0.344 0.240
Step Y 0.595 0.326 0.245
V4 0.164 0.087 0.086
X 1.340 0.634 0.324
Sinusoidal Y 1.354 0.642 0.225
V4 0.347 0.138 0.092
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—— NNMPC
—— NMPC
- -~ - Reference

y [m] 2 -2 x[m]

Figure 8. 3D view of the sinusoidal trajectory tracking result for NMPC and NNMPC in simulation.

5. Flight Experiments
5.1. Neural Network Modeling

After the improved performance of NNMPC was validated by simulation, we further
collected the training data with an F330 quadrotor UAV shown in Figure 9. The training
trajectories were identical to those used in the previous simulations. The Robot Operating
System (ROS) framework was adopted for communication between the quadrotor and the
ground station.

Figure 9. F330 quadrotor UAV used for flight experiments.

UAV states were logged by IMU running at 250 Hz and an external motion capture
system VICON running at 100 Hz. The recorded flight data from different sensors were
synchronized at 10 Hz. The duration of training flight data was 600 s, which corresponds
to 6000 input and target data samples for the neural network.

The network was trained by the same method as Section IV.B. Figure 10 shows the pre-
diction result of the trained network with an MSE of 0.0279. We discovered that compared
to the Gazebo simulation, the real-world flight log contains more noise, which results in
the training MSE being about five times higher than simulation training results.
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Figure 10. Comparison of neural network model prediction output and measured data for linear
accelerations from the F330 quadrotor UAV.

In the MPC optimization process, the predicted accelerations are integrated through
the prediction horizon, which indicates that the error of predicted acceleration could lead to
a significant position error given a period. Because the logs from flight experiments include
more noise from sensors, the training network was modified to eight hidden neurons to
avoid overfitting and maintain good prediction results.

The network was also trained by different learning algorithms, training parameters,
or datasets, such as cos and sin values. However, as the network has a relatively simple
structure, the training scheme contributes little to the prediction results. Collecting high-quality
training data is the crucial step and a long flight log that covers more operating conditions with
a lower noise level will extensively improve NNMPC controller performance.

5.2. Trajectory Tracking Results

The NMPC and NNMPC controllers were implemented on a ThinkPad X1 Carbon laptop
computer (Intel i5-7200U @ 2.50GHz) for flight experiments. Because ACADO transformed
the control algorithm in C-code, the computational load is relatively low. For the 20 Hz
update frequency and 20 x 0.05 s prediction horizon, both MPCs result in solver time less
than 5 ms and the maximum CPU load recorded during the flight is 30%. The details of the
computation complexity of the proposed NNMPC are summarized in Table 2. Note that the
OCP time is the average solving time recorded during the experiment. The reference values
for velocity are calculated by the time derivative of position reference and the Euler angle
references are set to be zero to achieve a stable flight.We test the control performance with the
same testing trajectory as in simulation. A video showing the experiment results is available at:
https:/ /youtu.be/KYH02a_53fs (accessed on 19 August 2022).
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Table 2. Proposed NNMPC Parameters and OCP Performance.

Prediction horizon 20
Sample time (s) 0.05
Q [12124111112001010]
(O)N; [1212411111]
OCP time (ms) 4

The trajectory tracking results of PID, NMPC, and NNMPC for the step response are
shown in Figure 11. Similar to the simulation results, PID control results have apparent
position tracking delays whereas two MPC methods eliminate the delay with the preview
feature. In addition, NNMPC outperforms NMPC and PID with the shortest delay and rise
time due to its accurate neural network-based prediction model. According to the RMES
results summarized in Table 3, NNMPC improved 15% and 12% in X; and Y; directions
compared with NMPC results.

Step Response

N
a N

o

X Position (m)
o [9)] -

-
o N

o

Y Position (m)
o [9)] -

Z Position (m)

Time (s)

Figure 11. Step trajectory tracking results for PID, NMPC, and NNMPC controllers in three axes from
the flight experiment.

The sinusoidal trajectory tracking results of PID, NMPC, and NNMPC are compared
in Figure 12. In general, the controller performances in the flight experiment are quite
similar to the result from the simulation. However, in the flight experiment, the difference
between NMPC and NNMPC is attenuated. NNMPC still outperforms NMPC in X; and
Y} directions but in the Z; direction the performance is almost identical. In the experiment,
the neural network model accuracy is compromised by the more noisy training data and
thus the NNMPC performance is slightly influenced. Figure 13 shows the trajectory tracking
results of NMPC and NNMPC plotted in 3D view. Because the PID results in 2 s of tracking
delay, its trajectory is not plotted here. The figure shows that at relatively low velocity, both
NMPC and NNMPC track the reference with good accuracy. However, with increasing
velocity, the nonlinear model fails to predict the system states precisely and leads to larger
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tracking error of NMPC, whereas the NNMPC trajectory is closer to the reference. Table 3
shows that NNMPC reduces the RMSE of NMPC by 47% and 39% in X and Y; directions.

Sinusoidal Trajectory
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-

o

----- Reference
—PID
——NMPC
NNMPC

L

X Position (m)

0 5 10 15 20 25 30 35 40 45 50

Y Position (m)

E
c
k)
‘@
o
o
N
Il Il L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
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Figure 12. Sinusoidal trajectory tracking result for PID, NMPC, and NNMPC controllers in three axes

from real-world experiment.

—— NNMPC
—— NMPC
- - - - Reference

Figure 13. 3D view of the sinusoidal trajectory tracking result for NMPC and NNMPC in flight experiment.
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Table 3. RMSE of Trajectory Tracking from Simulation Result.
Trajectory Type Direction PID (m) NMPC (m) NNMPC (m)

X 0.525 0.208 0.176

Step Y 0.542 0.204 0.193

V4 0.173 0.092 0.010

X 1.177 0.312 0.164

Sinusoidal Y 1.179 0.320 0.196

z 0.341 0.088 0.087

Both the Gazebo simulation and flight experiment results demonstrate improved
control performance for the NNMPC controller, indicating that:

¢ FFNN is able to predict the UAV dynamics beyond the training data. The network
learned a dynamic model from training data and extrapolated it with good accuracy.

®  The shallow network structure with one hidden layer and around eight neurons is
simple enough to be implemented in MPC for real-time OCP calculation and yet
accurate enough to predict the system dynamics.

*  MPC benefits from a neural network prediction model trained by flight logs. By adopt-
ing a network model instead of a nonlinear model, the average tracking error is
attenuated by around 40%.

6. Conclusions

In this work, FFNN was used to predict full translational dynamics and integrated
with the MPC framework for a quadrotor UAV. Based on the obtained flight data, FFNN
learns the dynamic equations and enhances the MPC performance. The simulation and ex-
periment results show that the neural network-based model predictive controller improves
position tracking performance. Furthermore, the proposed approach is fully based on flight
data and no mathematical dynamic equations are involved. For non-conventional UAV
configurations with substantial aerodynamic contribution, such as tail-sitter and tilt-rotor
vertical takeoff and landing UAVs, the proposed neural network-based MPC would be
more applicable than traditional methods because the nonlinear aerodynamic terms at
different flight conditions (hovering, level flight, and transition phase) for those UAVs are
hard to build.

Future work could include modeling the system with different types of neural net-
works to improve the prediction performance and training the prediction model online to
adapt to varying conditions, such as a battery voltage drop or different wind disturbances.
In addition, the proposed method could be applied to other UAV configurations with more
complicated aerodynamic effects.
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