
Citation: Li, W.; Li, W.; Cheng, L.;

Gong, S. Trajectory Optimization

with Complex Obstacle Avoidance

Constraints via Homotopy Network

Sequential Convex Programming.

Aerospace 2022, 9, 720. https://

doi.org/10.3390/aerospace9110720

Academic Editor: Konstantinos

Kontis

Received: 15 October 2022

Accepted: 14 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Trajectory Optimization with Complex Obstacle Avoidance
Constraints via Homotopy Network Sequential
Convex Programming
Wenbo Li 1 , Wentao Li 2 , Lin Cheng 2 and Shengping Gong 2,*

1 School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
2 School of Astronautics, Beihang University, Beijing 100191, China
* Correspondence: gongsp@buaa.edu.cn

Abstract: Space vehicles’ real-time trajectory optimization is the key to future automatic guidance.
Still, the current sequential convex programming (SCP) method suffers from a low convergence rate
and poor real-time performance when dealing with complex obstacle avoidance constraints (OACs).
Given the above challenges, this work combines homotopy and neural network techniques with SCP
to propose an innovative algorithm. Firstly, a neural network was used to fit the minimum signed
distance field at obstacles’ different “growth” states to represent the OACs. Then, the network was
embedded with the SCP framework, thus smoothly transforming the OACs from simple to complex.
Numerical simulations showed that the proposed algorithm can efficiently deal with trajectory
optimization under complex OACs such as a “maze”, and the algorithm has a high convergence rate
and flexible extensibility.

Keywords: real-time trajectory planning; sequential convex programming; homotopy technique;
deep neural network

1. Introduction

With the increasing complexity of aerospace missions, the autonomous online opera-
tion of the vehicle has become an essential part of advanced missions. Automatic guidance
methods aim to generate guidance commands in real-time to meet various constraints [1].
Automatic guidance methods represented by real-time trajectory optimization (RTO) have
attracted many scholars. For example, in the rocket recovery guidance problem, the RTO
method can effectively increase the feasible region of the initial states and realize a safe
landing [2]. In addition, due to the unknown environment of a wild quadrotor swarm
scenario, it is vital to obtain the control variables in real-time to avoid collisions between
quadrotors and obstacles [3]. RTO has become one of the most promising options for this
type of task.

In recent years, the sequential convex programming (SCP) algorithm has progressed
significantly as one of the RTO methods [4–6]. Liu first proposed SCP in [7,8]. It converts
nonconvex constraints into affine constraints by successive linearization, thus constructing a
series of second-order cone programming (SOCP) subproblems. The local optimal solutions
satisfying the primal nonconvex constraints can be obtained by successively solving the
subproblems. Since one can solve each subproblem in polynomial time using the mature
interior point method solver, SCP becomes an efficient method. On this basis, Mao [9] and
Bonalli [10] proposed the SCP algorithms Scvx and GuSTO, enjoying certain convergence
guarantees. Unfortunately, it has been suggested that when the convergent virtual control
is non-zero, the obtained solution is infeasible for the original problem [4,11].

In practical scenarios, spacecrafts and quadrotors will encounter a variety of complex
obstacle avoidance constraints (OACs) [12]. Augugliaro [13] and Morgan [14] simplified
the no-fly zone to a sphere, and then converted the OACs into a series of affine constraints

Aerospace 2022, 9, 720. https://doi.org/10.3390/aerospace9110720 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9110720
https://doi.org/10.3390/aerospace9110720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-3665-8691
https://orcid.org/0000-0003-4157-7474
https://doi.org/10.3390/aerospace9110720
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9110720?type=check_update&version=2

Aerospace 2022, 9, 720 2 of 23

by linearization. However, this method is limited to obstacles of simple shapes. Virgili-
Llop [15] proposed the concept of the minimum signed distance (MSD) field to deal with
obstacles of arbitrary shapes. Zhang [16] and Misra [17] decomposed the OACs into
the sum of a convex polynomial function and a concave polynomial function via the
convex–concave procedure algorithm, thus preserving the higher-order information of
OACs. Richards [18,19] modeled the problem as mixed-integer linear programming (MILP)
and introduced binary variables to deal with OACs. However, the MILP runtime varies
exponentially with the number of binary variables. Space vehicles’ hardware often finds it
hard to support such large-scale computations [11]. Szmuk [20] introduced the continuous
state-triggered constraint (CSTC), applied to the obstacle avoidance flight in the powered
landing phase of a 6-DOF rocket. Then, Szmuk extended the CSTC method to a compound
CSTC and applied it to quadrotor trajectory planning [21]. Unfortunately, the above SCP-
based algorithms still have many shortcomings. For example, the convergent solution
cannot be guaranteed to be feasible. It is even tricky for traditional SCP to obtain feasible
solutions under complex obstacles [22]. Besides, the selection of reference trajectories
significantly impacts the optimality and feasibility of the solutions [1].

In recent years, with the development of homotopy and neural network techniques,
many new methods and ideas have emerged in the field, providing new perspectives to
overcome such shortcomings:

1. The general idea of the homotopy technique is to solve a series of simple transition
problems so that the solution of the transition problem gradually approaches the
optimal solution of the primal problem. This method reduces the problem’s diffi-
culty, thereby significantly improving the success rate of trajectory planning [4,23–27].
Taheri [23,24] and Saranathan [25] first used the homotopy method to convert a multi-
point boundary value problem into an easier-to-solve two-point boundary value
problem, thereby dealing with multiple propulsion modes and dynamic environ-
ments. Malyuta [26] combined the homotopy method with the SCP algorithm to solve
trajectory planning in a rendezvous maneuver under the constraints of discrete logic.

2. As an auxiliary tool for trajectory optimization, the neural network can effectively
improve the performance of traditional algorithms [28–33]. Yin [28] proposed a tra-
jectory planning method based on a neural network, thus improving the indirect
method’s convergence rate. Tang [29] and Banerjee [31] used the neural network to fit
the initial reference trajectory offline. The SCP algorithm iterates from the reference
trajectory predicted by the network, which can effectively reduce the number of itera-
tions. Li [30] used a neural network predictor to estimate the optimal flight time. Only
one SOCP needs to be solved online, significantly improving real-time performance.

Unlike the above methods, we combined the homotopy and neural network techniques
synchronously and proposed an RTO algorithm, called the homotopy network sequential
convex programming algorithm (HNSCP), that can deal with general complex OACs.
First, a universal obstacle “growth” method, namely the obstacle interface regression (OIR)
approach, was proposed. Then, a homotopy neural network (HNN) was subsequently
proposed. The inputs of the HNN are the spatial position coordinates and the homotopy
parameter, and the output is the MSD. After that, Bayesian regularization was used to
train the HNN. Finally, the OACs represented by the HNN were embedded into the SCP
algorithm by successive linearization.

It is worth noting that, in past work, the STOMP [34] and CHOMP [35] algorithms
adopted the strategy of computing the signed distance field offline and then applying it
online without introducing a neural network. This strategy can theoretically be extended
and applied to this study, but there are some difficulties in practice.

The STOMP and CHOMP algorithms only compute the MSD field of a single map.
However, after introducing the homotopy technique, it needs to compute the MSD fields
under a series of homotopy parameters, which will greatly increase the storage burden.
In Example 2, the homotopy parameter increment selected was 0.02. This indicates that
the MSD field information of 51 maps will need to be stored successively, and the storage

Aerospace 2022, 9, 720 3 of 23

burden will increase dramatically. Therefore, it is advantageous to introduce the neural
network to fit the MSD field.

We still take Example 2 to illustrate. Assuming that the strategy of STOMP and
CHOMP is adopted to build a sign distance field with an accuracy of 2.5 m (rather rough)
offline, then the method needs to store 8× 106 parameters. On the contrary, the proposed
method only needs to store 3400 parameters. The amount of data stored is reduced to
0.0425%. Although the current algorithm only considers the three-dimensional position
space constraints, the algorithm can be extended to the six-dimensional state space con-
straints without much effort to address more general constraints. The traditional storage
strategy will lead to a sharp increase in the storage burden, and the advantage of the HNN
will be more significant.

Our work has two major innovations:

1. A universal obstacle regression method, namely OIR, is proposed. To the best of our
knowledge, this is the first attempt to apply OIR to the trajectory planning field.

2. The concept of the HNN is proposed for the first time. Compared with [28–33],
training the HNN does not require solving optimal control problems. Only the MSD
field is needed so that adequate samples can be generated efficiently and stably.

Our algorithm also has the following three major advantages:

1. After introducing OIR and the HNN, the algorithm supported the modeling of arbi-
trary complex OACs, thus greatly expanding the application scenarios of SCP.

2. The homotopy parameter can be flexibly updated by changing the input parameters
of the HNN, thereby realizing the smooth transition from simple obstacles to complex
ones. The convergence and optimality of the SCP algorithm were greatly improved.
Numerical simulations showed that the HNSCP algorithm converges well, even with
the most straightforward linear interpolated initial reference trajectory.

3. After introducing the HNN, MSD fields with different homotopy parameters could be
fitted with only a small amount of data. The data storage was significantly reduced,
which is vital for online applications.

The structure of this paper is as follows. Section 2 presents a mathematical description
of the optimal control problem. Section 3 proposes the HNSCP algorithm, which can
be divided into two procedures: online and offline. Section 4 describes the details of
the online procedure, including convexification and the successive iteration algorithm.
Section 5 introduces the details of the offline procedure, including the OIR and HNN
training. In Section 6, a simulation of two specific examples is conducted. The first
example compared the proposed algorithm with state-of-the-art algorithms, verifying
that the proposed algorithm had a better performance. The second example increased the
complexity of the obstacle. A complex “maze” was designed to demonstrate the algorithm’s
adaptability in complex environments. Section 7 presents the main conclusions.

2. Problem Statement

This work focuses on dealing with complex constraints, and therefore does not estab-
lish an accurate dynamic model of the vehicle and does not limit the type of the vehicle.
Readers may consider the “vehicle” as a rocket, quadrotor, or planetary lander in the fol-
lowing passage. First, a reference coordinate system was established, as shown in Figure 1.
The origin of this coordinate system is stationary relative to the ground. The y-axis points
to the zenith, and the x-axis and z-axis are parallel to the ground and form a right-handed
rectangular coordinate system, where the x-axis is in the drawing plane. The z-axis is
perpendicular to the drawing plane.

Aerospace 2022, 9, 720 4 of 23

Aerospace 2022, 9, x FOR PEER REVIEW 4 of 25

1. The origin of this coordinate system is stationary relative to the ground. The y-axis
points to the zenith, and the x-axis and z-axis are parallel to the ground and form a right-
handed rectangular coordinate system, where the x-axis is in the drawing plane. The z-
axis is perpendicular to the drawing plane.

Figure 1. Definition of the coordinate system for trajectory-planning problem.

Secondly, the dynamic equations are listed. The vehicle was regarded as a mass point
and only the thrust and gravity were considered. The 3-DOF dynamic equations are as
follows:

 =
 = +





p v
v u g

 (1)

where ++ → 3: R Rp represents the position vector of the vehicle, ++ → 3: R Rv represents

the velocity vector, and ++ → 3: R Ru represents the thrust acceleration vector, which was

also the control vector. ∈ 3Rg is the gravity acceleration vector and satisfies
= −[0, ,0]Tgg , where = 29.8065 m/sg . Although this work only considered the thrust

and gravity, the proposed method can be extended and is applicable to more accurate
dynamic models or 6-DOF models. This is beyond the scope of the study and will be left
to future publications.

Then, two kinds of process constraints were imposed.
(1) Due to the limitations of the vehicle’s own propulsion system, it was necessary to

impose limits on the magnitude of the thrust acceleration:

≤ ≤min maxu uu (2)

where u is the Euclidean norm of vector u , which represents the thrust acceleration

magnitude. In the following text, u will be abbreviated as u. minu and maxu are the
lower and upper bounds of the thrust acceleration, respectively, as shown in Figure 1.

(2) OACs were considered. For the convenience of description, we divided the re-
search region into two parts. The impenetrable obstacle was denoted by Ωo , as shown in
the blue part of Figure 1. The traversable cavity was represented by Ωv , as shown in the
white part of Figure 1. The boundary between the obstacle and the cavity was denoted by
∂Ω . The boundary between the research region and the outside region was denoted by
∂Ω . Then, the OACs can be written as:

∈Ωvp (3)

The necessary initial state constraints and terminal state constraints were imposed:

Figure 1. Definition of the coordinate system for trajectory-planning problem.

Secondly, the dynamic equations are listed. The vehicle was regarded as a mass
point and only the thrust and gravity were considered. The 3-DOF dynamic equations are
as follows: { .

p = v
.
v = u + g

(1)

where p : R++ → R3 represents the position vector of the vehicle, v : R++ → R3 represents
the velocity vector, and u : R++ → R3 represents the thrust acceleration vector, which was
also the control vector. g ∈ R3 is the gravity acceleration vector and satisfies g = [0,−g, 0]T ,
where g = 9.8065 m/s2. Although this work only considered the thrust and gravity, the
proposed method can be extended and is applicable to more accurate dynamic models or
6-DOF models. This is beyond the scope of the study and will be left to future publications.

Then, two kinds of process constraints were imposed.
(1) Due to the limitations of the vehicle’s own propulsion system, it was necessary to

impose limits on the magnitude of the thrust acceleration:

umin ≤ ‖u‖ ≤ umax (2)

where ‖u‖ is the Euclidean norm of vector u, which represents the thrust acceleration
magnitude. In the following text, ‖u‖ will be abbreviated as u. umin and umax are the lower
and upper bounds of the thrust acceleration, respectively, as shown in Figure 1.

(2) OACs were considered. For the convenience of description, we divided the research
region into two parts. The impenetrable obstacle was denoted by Ωo, as shown in the blue
part of Figure 1. The traversable cavity was represented by Ωv, as shown in the white part
of Figure 1. The boundary between the obstacle and the cavity was denoted by ∂Ω. The
boundary between the research region and the outside region was denoted by ∂Ω̃. Then,
the OACs can be written as:

p ∈ Ωv (3)

The necessary initial state constraints and terminal state constraints were imposed:
p(t0) = p0
p(tf) = pf
v(t0) = v0
v(tf) = vf

(4)

where t0 and tf represent the initial and terminal times, respectively. p0 and v0 are the
position and velocity vectors at the initial time, respectively. pf and vf are the position and
velocity vectors at the terminal time, respectively. tf is treated as an unknown variable,
indicating that the optimal control problem with free terminal time is solved.

Aerospace 2022, 9, 720 5 of 23

Finally, the velocity increment was selected as the cost function. Minimizing this
cost function can save the fuel consumption of a rocket or the energy consumption of
a quadrotor:

J =
tf∫

t0

u dt (5)

The mathematical description of the optimal control problem is shown in Problem 1.
Problem 1:
Cost function: minimize

tf,u(t)
(5)

Subject to: (1)~(4)

3. HNSCP Algorithm

Traditional sequential convex programming (TSCP) is widely used in [13–15]. Unfor-
tunately, the TSCP algorithm can only deal with obstacles with simple geometric shapes.
Reference [22] shows that when the shape of an obstacle is complex, sub-SOCP may be
infeasible, and the iteration will be interrupted. Eventually, the convergence rate of the
algorithm will drop significantly. The convergence rate of TSCP in the simulation of
reference [22] is only 50%, and Example 1 in Section 6 also shows that the convergence rate
is only 22%. Therefore, it is necessary to introduce a better method to deal with complex
obstacles.

A flow chart of the proposed HNSCP algorithm is shown in Figure 2.

Aerospace 2022, 9, x FOR PEER REVIEW 5 of 25

()
()
()
()

=

=

=







 =

0 0

f

0

f

0

f

f

t

t

t

t

p p

p p

v v

v v

 (4)

where 0t and ft represent the initial and terminal times, respectively. 0p and 0v are
the position and velocity vectors at the initial time, respectively. fp and fv are the posi-
tion and velocity vectors at the terminal time, respectively. ft is treated as an unknown
variable, indicating that the optimal control problem with free terminal time is solved.

Finally, the velocity increment was selected as the cost function. Minimizing this cost
function can save the fuel consumption of a rocket or the energy consumption of a quad-
rotor:

= 
f

0

 d
t

t

J u t (5)

The mathematical description of the optimal control problem is shown in Problem 1.
Problem 1:
Cost function:

f , ()
minimize

t tu
(5)

Subject to: (1)~(4)

3. HNSCP Algorithm
Traditional sequential convex programming (TSCP) is widely used in [13–15]. Unfor-

tunately, the TSCP algorithm can only deal with obstacles with simple geometric shapes.
Reference [22] shows that when the shape of an obstacle is complex, sub-SOCP may be
infeasible, and the iteration will be interrupted. Eventually, the convergence rate of the
algorithm will drop significantly. The convergence rate of TSCP in the simulation of ref-
erence [22] is only 50%, and Example 1 in Section 6 also shows that the convergence rate
is only 22%. Therefore, it is necessary to introduce a better method to deal with complex
obstacles.

A flow chart of the proposed HNSCP algorithm is shown in Figure 2.

Figure 2. Schematic diagram of proposed HNSCP algorithm.

For the convenience of explanation, Figure 2 takes the “maze” in Section 6 as an
example. First, mature modeling software (SolidWorks, Dassault Systemes, the United
States; AutoCAD, Autodesk, the United States) was used to build the maze and obtain two
boundaries, ∂Ω̃ and ∂Ω.

Given ∂Ω̃ and ∂Ω, the OIR approach proposed in Section 5 calculates the position
coordinates of the obstacle boundary in different “growth” states from ∂Ω̃ to ∂Ω with
a constant growth speed. We denoted the “growth” state of the obstacle with ε ∈ [0, 1],
also known as the homotopy parameter. The obstacle boundary, cavity, and obstacle at
homotopy parameter ε are denoted as ∂Ωε, Ωε

v, and Ωε
o, respectively. The OIR will output

∂Ωε, Ωε
v, and Ωε

o under a series of ε values. The schematic diagram is shown in the lower-

Aerospace 2022, 9, 720 6 of 23

left corner of Figure 2. The black lines are the contours of ε, representing the ∂Ωε when the
homotopy parameter is ε. Areas with a reddish color suggest that ε is close to 1. Areas with
a bluish color indicate that ε is close to 0.

Without a loss of generality, cavity Ωε
v is a nonconvex area. The MSD was defined

as dε.
dε = dε+ − dε− k = 1, 2, . . . , N
dε+ = inf{‖d‖|p + d ∈ Ωε

v }
dε− = inf{‖d‖|p + d /∈ Ωε

v }
(6)

The absolute value of dε is the shortest distance from the given position p to the
obstacle boundary. The MSD is negative if the coordinates are inside the cavity (p ∈ Ωε

v),
while the MSD is positive if the coordinates are inside the obstacle (p ∈ Ωε

o).
Subsequently, the HNN was trained using the sample generation and training method

proposed in Section 5. The inputs of HNN are the position coordinates and the homotopy
parameter ε, and the output is the estimated value of the MSD d̃ = Net(p, ε). The super-
script “~” indicates that the value is the prediction. The schematic diagram of the fitting
result is shown at the bottom of Figure 2. It is worth noting that Figure 2 only shows the
fitting result at ε = 1. The black line is the contour line that satisfies Net(p, 1) = 0, the
yellowish color indicates that the predicted d is larger, and the blue color indicates that the
predicted d is smaller. Finally, the neural network function Net(p, ε), which can predict the
MSD with any homotopy parameter, was obtained.

Then, the trained HNN was embedded into SCP, proposed in Section 4, as OACs. A
different ε was selected in the iteration to reduce the difficulty of solving and improve the
convergence. In the first iteration, ε was set to 0. ε increased linearly with a step size of ∆ε
as the number of iterations increased, until ε was equal to 1. The bottom-right corner of
Figure 2 shows the trajectory optimization results for different initial conditions.

4. Online Procedure
4.1. Discretization and Convexification
4.1.1. Discretization

The whole flight process was divided into N − 1 segments according to equal time
intervals; then, the discrete time step was as follows:

∆t =
tf − t0

N − 1
(7)

Without a loss of generality, take t0 = 0. Given the constant discrete number N, the
discrete step size ∆t is only related to the terminal time tf. To address the free final time
problem, ∆t was regarded as a decision variable in this study. The discrete state variables
and control variables with serial number k are defined as:

pk = p(k∆t− ∆t)
vk = v(k∆t− ∆t)
uk = u(k∆t− ∆t)
k = 1, 2, . . . , N

(8)

To avoid the “artificial infeasibility” in the first few iterations, the virtual control
variables avk ∈ R3 were augmented to control the variables [9]. Using the trapezoidal
discrete method, Equation (1) can be discretized and written as follows:

pk+1 − pk − 1
2 ∆t vk − 1

2 ∆t vk+1 = 0
vk+1 − vk − 1

2 ∆t uk − 1
2 ∆t uk+1 − 1

2 ∆t avk − 1
2 ∆t av(k+1) − ∆t g = 0

k = 1, 2, . . . , N − 1
(9)

Aerospace 2022, 9, 720 7 of 23

4.1.2. Convexification of Dynamical Equations

Equation (1) was converted into 6 (N− 1) algebraic equations. The linearized equations
can be obtained by taking the first-order approximation of the Taylor expansion. The
coefficient matrices can be simplified as follows:

Ak

[
pk

pk+1

]
+ Bk

[
vk

vk+1

]
+ Ck

[
uk

uk+1

]
+ Dk

[
avk

av(k+1)

]
+ Ek∆t = Fk k = 1, 2, . . . , N − 1

Ak =

[
−I3×3 I3×3
03×3 03×3

]
Bk =

[
− 1

2 ∆t̂ I3×3 − 1
2 ∆t̂ I3×3

−I3×3 I3×3

]
Ck =

[
03×3 03×3

− 1
2 ∆t̂ I3×3 − 1

2 ∆t̂ I3×3

]
Dk =

[
03×3 03×3

− 1
2 ∆t̂ I3×3 − 1

2 ∆t̂ I3×3

]

Ek =

[
− 1

2 (v̂k + v̂k+1)

− 1
2

(
ûk + ûk+1 + âvk + âv(k+1) + 2g

)]Fk =

[
− 1

2 (v̂k + v̂k+1)∆t̂
− 1

2

(
ûk + ûk+1 + âvk + âv(k+1)

)
∆t̂

]
(10)

where the variables with the superscript “ˆ” represent reference variables and are regarded
as known variables. All coefficient matrices in (10) are constant, and all constraints are
converted into affine constraints.

The transformation from (9) to (10) introduces linearized approximation. Trust region
constraints were added to ensure that the linearized constraints were still valid [9]. The
new variables σuk and σ∆t were introduced to represent the trust regions of the control
variables and the discrete time step, respectively:

‖uk − ûk‖ ≤ σuk k = 1, 2, . . . , N (11)

‖∆t− ∆t̂‖ ≤ σ∆t (12)

The above trust regions were augmented into the cost function in the form of penalty
terms. In addition, it is crucial to introduce the new variables σak and augment them to the
cost function in the form of penalty terms to constrain the magnitude of virtual control:

‖avk‖ ≤ σak k = 1, 2, . . . , N (13)

4.1.3. Convexification of Obstacle Avoidance Constraints

According to (6), the OACs are then denoted by nonlinear inequations:

dε
k ≤ 0 k = 1, 2, . . . , N (14)

where dε
k is only related to the position coordinate pk when cavity Ωε

v is determined.
Replacing dε

k with the HNN leads to the following inequality:

Net(pk, ε) ≤ 0 k = 1, 2, . . . , N (15)

Since the HNN is continuously differentiable, Equation (15) can be simplified by using
the Taylor expansion, and only the first-order linear terms are retained:[

∂

∂p̂T
k

Net(p̂k, ε)

]
pk ≤

[
∂

∂p̂T
k

Net(p̂k, ε)

]
p̂k −Net(p̂k, ε)− dmar k = 1, 2, . . . , N (16)

One can obtain p̂k from the result of the previous iteration. The collision safety
margin dmar ≥ 0 was embedded, which avoids the increased risk of collision due to fitting
errors of the HNN. The numerical finite difference method was adopted to approximate
the differential operation. It is worth noting that the method proposed in this study
cannot guarantee obstacle avoidance between discrete time steps. However, the numerical
simulation shows that in most cases, there were only finite isolated points on the trajectory
making the constraints (16) tight, and there is the possibility of violating the constraint

Aerospace 2022, 9, 720 8 of 23

near these isolated points. We addressed this problem by choosing the appropriate discrete
number N and safety margin dmar. For Example 1, the simulation shows that the OACs are
satisfied between discrete time steps when N ≥ 30 and dmar ≥ 3 m. For Example 2, it is
suitable to choose N ≥ 100 and dmar ≥ 5 m.

4.1.4. Convexification of Control Magnitude Constraints

When the lower bound of the thrust acceleration umin is non-zero, the feasible set of
the thrust acceleration is non-convex. New slack variables were introduced to transform
the thrust magnitude constraints (2) in the primal problem into convex ones:

‖uk‖ ≤ Γk (17)

umin ≤ Γk ≤ umax (18)

where Γk represents the slack variable. Reference [36] and a large number of numerical
simulations show that although the feasible region of the problem has changed after
relaxation, the optimal solutions are equivalent.

4.1.5. Convexification of Cost Function

After augmenting the penalty terms, the modified linear cost function is listed as follows:

J =
N

∑
k=1

(
Γ̂k∆t + ∆t̂ Γk + ωaσak + ωuσuk

)
+ ω∆tσ∆t (19)

where ωa, ωu, and ω∆t are fixed penalty coefficients that can be set manually by users. The
selection of these parameters follows two principles. First, ωa needs to be a large positive
number to ensure that the magnitude of the virtual control variable converges to zero.
Second, ωu and ω∆t need to be selected as small positive numbers to ensure the convergent
solution is near the reference one.

The convexified problem is summarized in Problem 2. Problem 2 is an SOCP and can
be solved efficiently using the prime-dual interior point method.

Problem 2:
Cost function: minimize

∆t,pk ,vk ,uk ,avk ,σuk ,σak ,σ∆t ,Γk
(19)

Subject to: (4), (10–13), (16–18) with given ε
Table 1 lists the number of variables, affine equations, affine inequalities, and second-

order cones.

Table 1. Variables and constraints in Problem 2.

Category Item Number Dimension of the
Cone Total Number

Variables to be optimized

Time step ∆t 1

- 15 N + 2

Position pk 3 N
Velocity vk 3 N
Control uk 3 N
Virtual control avk 3 N
Control trust regions σuk N
Virtual control magnitude relaxation variables σak N
Time trust region σ∆t 1
Control magnitude relaxation variables Γk N

Affine equality constraints Boundary value conditions, Equation (4) 12 - 6 N + 6Dynamic constraints, Equation (10) 6 (N − 1)

Affine inequality constraints OACs, Equation (16) N - 3 NControl magnitude constraints, Equation (18) 2 N

Second order cone constraints

Control trust region constraints, Equation (11) N 4

3 N + 1
Time trust region constraint, Equation (12) 1 2
Virtual control constraints, Equation (13) N 4
Control magnitude constraints, Equation (17) N 4

Assume N = 100. According to Table 1, there are 1502 variables, 606 affine equations, 300 affine inequations, and
301 s-order cones. Therefore, Problem 2 is a medium-scale SOCP with thousands of variables.

Aerospace 2022, 9, 720 9 of 23

4.2. Successive Iterative Algorithm

The successive iterative algorithm solving the primal problem is shown below.
Algorithm 1 required an initial reference trajectory. Unfortunately, it is difficult to

generate high-quality initial reference trajectories in real time due to the complexity and
variability of the problem [1]. In this work, Algorithm 2 was adopted to generate rough
initial reference trajectories efficiently.

Algorithm 1: Online Procedure of Homotopy Network Sequential Convex Programming (HNSCP)

Step 1: Algorithm initialization. Set the maximum number of iterations imax. Set the penalty coefficient ωa , ωu and ω∆t . Set
the iteration convergence criterion εmax,u , εmax,t , εmax,a . Set the increment step of the homotopy variable ∆ε. Set the
homotopy variable ε = 0;
Step 2: Set initial reference variables, ∆t̂(0) , p̂k

(0) , v̂k
(0) , ûk

(0) , âvk
(0) , according to Algorithm 2;

For i = 0: imax
If ε < 1.0

ε = ε + ∆ε
Else

ε = 1.0
End

Step 3: Solve Problem 2, and the obtained solution is used to update the reference variables ∆t̂(i+1) , p̂k
(i+1) , v̂k

(i+1) , ûk
(i+1) ,

âvk
(i+1) ;

If
N
∑

k=1
σuk

(i) ≤ εmax,u , σ∆t
(i) ≤ εmax,t ,

N
∑

k=1
σak

(i) ≤ εmax,a and ε = 1.0

A convergent solution ∆t̂(i) , p̂k
(i) , v̂k

(i) , ûk
(i) , âvk

(i) is obtained;
Return;

End
End
Step 4: Fail to converge;
Return;

Algorithm 2: Initialization of HNSCP’s Reference Variables

Step 1: Obtain the initial states and the terminal states p0, v0, pf, vf
Step 2: Set the reference speed constant vref;
Step 3: Set the linear reference variables;
∆t̂(0) = ‖pf − p0‖/vref;
For k = 1: N

p̂k
(0) = p0 + (k− 1)(pf − p0)/(N − 1); v̂k

(0) = (pf − p0)/∆t̂(0) ; ûk
(0) = [0, umax, 0]T ;

âvk
(0) = [0, 0, 0]T ;

End
Return;

5. Offline Procedure
5.1. Obstacle Interface Regression Approach

The eikonal equation, a typical hyperbolic partial differential equation, was first
applied to wave propagation. The position of the wavefront at different time steps can be
obtained by solving the partial differential equation. Inspired by this, this section extends
the method to describe the growth and construction of obstacles and proposes a universal
method to address this issue. There are mature methods and commercial software for
solving boundary value problems of partial differential equations. Therefore, the proposed
method enjoys simple programming and strong universality. Consequently, it is more
competitive than other methods.

5.1.1. Basic Principles

The obstacle’s “growth” process is a kind of interface regression phenomenon. This
phenomenon has been extensively studied in optics [37], combustion [38,39], and image
processing [40]. Sethian [41,42] proposed the level-set method and the fast marching
method. These two methods solve the initial value problem of the level-set equation and
the boundary value problem of the eikonal equation, respectively. The solution describes
the interface at the given regression state. Although these two methods have been widely
used, there are still many difficulties in solving hyperbolic partial differential equations.
Mokrý [37] and Li [39] proposed a method to solve an ellipse-form eikonal equation, which

Aerospace 2022, 9, 720 10 of 23

can be directly embedded in the finite element software. The original eikonal equation is
as follows:

∇T(p) · ∇T(p) =
1

r(p)2 (20)

where T is a scalar field. Its physical meaning is the moment when the interface propagates
to the given position, so T’s contour line is the interface. r is the regression speed.

It is hard to obtain a reliable solution for (20) by using existing numerical methods, so
(20) needs to be approximated to an ellipse form:

αr∇2T = r2∇T · ∇T − 1 (21)

where α, a small-enough positive number, is the diffusion term coefficient set manually by
users. It is worth noting that (21) degenerates into (20) if α = 0.

Equation (21) is a nonlinear Poisson equation. Solving (21) requires a series of bound-
ary conditions. The initial interface adopts the Dirichlet condition T = 0, and the rest
of the boundaries adopt the “zero flux” condition. The nonlinear Poisson equation can
then be transformed into sparse quadratic equations using a finite element method. The
system of algebraic equations can be efficiently solved using the Newton–Raphson method.
Powerful commercial finite element software (COMSOL Multiphysics, Comsol Inc, Zürich,
Switzerland; ANSYS, Ansys Inc, Champaign, IL, USA) can be used for mesh generation,
equation resolving, and post-processing.

It is worth noting that the proposed method can only solve the approximate solution.
The value of α determines the performance of the algorithm. If α is large, the approximate
error of (21) is large, which will eventually lead to a large error in the regression result. If
α is small, it will be difficult for the Newton–Raphson method to converge. To take into
account the convergence and error, with the aid of a large number of numerical simulations,
a reasonable range of α was concluded [39]:

α ∈ [0.1h, 0.5h] (22)

where h is the scale of the local mesh element.

5.1.2. Implementation

Firstly, the Dirichlet boundary condition was set as:

T(p) = 0, p ∈ ∂Ω̃ (23)

The regression speed r was used to describe spatial distribution of the obstacle:

r(p) =
{

κr0 p /∈ Ωo
r0 p ∈ Ωo

(24)

where κ is a number much less than 1 and r0 is the unit regression speed, which can be
taken as 1 m/s. Its practical implication is as follows: the regression speed of the interface
in the obstacle Ωo is r0, while the regression speed in the cavity Ωv is so small that it can be
ignored numerically. Since the interface will preferentially pass through the obstacle region
Ωo, the T contours describe the “growth” boundaries of the obstacle from ∂Ω̃ to the given
∂Ω, as shown in Figure 3.

Aerospace 2022, 9, 720 11 of 23

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 25

it can be ignored numerically. Since the interface will preferentially pass through the ob-
stacle region Ωo , the T contours describe the “growth” boundaries of the obstacle from
∂Ω to the given ∂Ω , as shown in Figure 3.

Figure 3. Schematic diagram of obstacle interface regression.

The normalized scalar field ε was defined as:

()ε =
2

2

max

Tr
Tr

 (25)

The subscript “max” means obtaining the maximum value of the whole field, and the
ε field is a scalar field ranging between 0 and 1. The ε field’s contours represent the
obstacles’ boundaries in different “growth” states. For example, the contour line ε = 0
indicates no obstacles, the contour line ε = 0.45 suggests that the obstacle has grown to
45%, and the contour line ε = 1 indicates that the obstacle has been restored to Ωo .

Figure 4 shows the flow charts and results for the two examples in Section 6, respec-
tively. First, finite element software or CAD software was used to model the obstacle; the
blue area represents the cavity, and the yellow area represents the obstacle. Then, the in-
terface regression speed was set according to (24), and the boundary conditions were set
according to (23). After dividing the uniform triangular second-order element or the tet-
rahedral second-order element, the Newton iteration method was used to solve (21) to
obtain the T field. Finally, the ε field was obtained according to (25). The method can
return the “growth” boundary coordinates for a given ε , laying the foundation for the
sample generation of the HNN in the next section.

Figure 4. OIR flow charts of two examples in Section 6.

5.2. Homotopy Neural Network
5.2.1. Structure

The feedforward neural network (FNN) was the first artificial neural network in-
vented. The units in each layer can receive signals from the units in the previous layer and
transmit signals to the next layer. According to the universal approximation theorem, for

Figure 3. Schematic diagram of obstacle interface regression.

The normalized scalar field ε was defined as:

ε =
Tr2

(Tr2)max
(25)

The subscript “max” means obtaining the maximum value of the whole field, and
the ε field is a scalar field ranging between 0 and 1. The ε field’s contours represent the
obstacles’ boundaries in different “growth” states. For example, the contour line ε = 0
indicates no obstacles, the contour line ε = 0.45 suggests that the obstacle has grown to
45%, and the contour line ε = 1 indicates that the obstacle has been restored to Ωo.

Figure 4 shows the flow charts and results for the two examples in Section 6, respec-
tively. First, finite element software or CAD software was used to model the obstacle;
the blue area represents the cavity, and the yellow area represents the obstacle. Then, the
interface regression speed was set according to (24), and the boundary conditions were
set according to (23). After dividing the uniform triangular second-order element or the
tetrahedral second-order element, the Newton iteration method was used to solve (21) to
obtain the T field. Finally, the ε field was obtained according to (25). The method can return
the “growth” boundary coordinates for a given ε, laying the foundation for the sample
generation of the HNN in the next section.

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 25

it can be ignored numerically. Since the interface will preferentially pass through the ob-
stacle region Ωo , the T contours describe the “growth” boundaries of the obstacle from
∂Ω to the given ∂Ω , as shown in Figure 3.

Figure 3. Schematic diagram of obstacle interface regression.

The normalized scalar field ε was defined as:

()ε =
2

2

max

Tr
Tr

 (25)

The subscript “max” means obtaining the maximum value of the whole field, and the
ε field is a scalar field ranging between 0 and 1. The ε field’s contours represent the
obstacles’ boundaries in different “growth” states. For example, the contour line ε = 0
indicates no obstacles, the contour line ε = 0.45 suggests that the obstacle has grown to
45%, and the contour line ε = 1 indicates that the obstacle has been restored to Ωo .

Figure 4 shows the flow charts and results for the two examples in Section 6, respec-
tively. First, finite element software or CAD software was used to model the obstacle; the
blue area represents the cavity, and the yellow area represents the obstacle. Then, the in-
terface regression speed was set according to (24), and the boundary conditions were set
according to (23). After dividing the uniform triangular second-order element or the tet-
rahedral second-order element, the Newton iteration method was used to solve (21) to
obtain the T field. Finally, the ε field was obtained according to (25). The method can
return the “growth” boundary coordinates for a given ε , laying the foundation for the
sample generation of the HNN in the next section.

Figure 4. OIR flow charts of two examples in Section 6.

5.2. Homotopy Neural Network
5.2.1. Structure

The feedforward neural network (FNN) was the first artificial neural network in-
vented. The units in each layer can receive signals from the units in the previous layer and
transmit signals to the next layer. According to the universal approximation theorem, for

Figure 4. OIR flow charts of two examples in Section 6.

5.2. Homotopy Neural Network
5.2.1. Structure

The feedforward neural network (FNN) was the first artificial neural network invented.
The units in each layer can receive signals from the units in the previous layer and transmit
signals to the next layer. According to the universal approximation theorem, for an FNN
with a linear output layer and at least one hidden layer using a nonlinear activation
function, as long as the number of units in the hidden layer is large enough, the FNN can
approximate any real function defined in a bounded closed set [43,44].

Considering the training time cost and fitting accuracy, an FNN composed of three
hidden layers was used to predict the MSD field. The input layer was denoted as layer 0,

Aerospace 2022, 9, 720 12 of 23

the hidden layers were denoted as layers 1 to 3, and the output layer was denoted as layer
4. Table 2 gives the relevant notation used in this section.

Table 2. The meaning of the associated notation.

Notation Explanation

Ml Number of units in layer l
fl(·) Activation function of the units in layer l
W(l) ∈ RMl×Ml−1 Weight matrix from layer l − 1 to layer l
b(l) ∈ RMl Bias vector from layer l − 1 to layer l
z(l) ∈ RMl Net input (net activation) of units in layer l
a(l) ∈ RMl Output (activation) of units in layer l

Setting the input of the neural network as the position coordinates and homotopy
parameters, the following equation exists:

a(0) =
(

pT , ε
)T

=
(

px, py, pz, ε
)T (26)

Then, the output of the other layers can be calculated using the following propagation
formula:

z(l) = W(l)a(l−1) + b(l)

a(l) = fl(z(l))
l = 1, 2, 3, 4 (27)

The neural network will recursively obtain the output according to the following
process. First, the net activation of layer l − 1 is calculated from the activation of layer l − 1
and the weight matrix and bias vector of layer l. The nonlinear activation function is used
to calculate the activation of the l layer. This process is repeated until reaching the output
layer. The activation of the output layer satisfies the following equation:

a(4) = d̃ (28)

where d represents the MSD and its superscript “~” indicates that the value is the prediction.
The schematic diagram of the HNN’s structure is shown in Figure 5.

Aerospace 2022, 9, x FOR PEER REVIEW 13 of 25

an FNN with a linear output layer and at least one hidden layer using a nonlinear activa-
tion function, as long as the number of units in the hidden layer is large enough, the FNN
can approximate any real function defined in a bounded closed set [43,44].

Considering the training time cost and fitting accuracy, an FNN composed of three
hidden layers was used to predict the MSD field. The input layer was denoted as layer 0,
the hidden layers were denoted as layers 1 to 3, and the output layer was denoted as layer
4. Table 2 gives the relevant notation used in this section.

Table 2. The meaning of the associated notation.

Notation Explanation
lM Number of units in layer l
⋅()lf Activation function of the units in layer l

−×∈ 1() l lM Ml RW Weight matrix from layer l − 1 to layer l
∈() lMl Rb Bias vector from layer l − 1 to layer l
∈() lMl Rz Net input (net activation) of units in layer l
∈() lMl Ra Output (activation) of units in layer l

Setting the input of the neural network as the position coordinates and homotopy
parameters, the following equation exists:

() ()ε ε= =(0) , , , ,
TTT

x y zp p pa p (26)

Then, the output of the other layers can be calculated using the following propaga-
tion formula:

−= +
=

=

() () (1) ()

() ()
1,2,3,4

()

l l l l

l l
l

l
f

z W a b
a z

 (27)

The neural network will recursively obtain the output according to the following
process. First, the net activation of layer l − 1 is calculated from the activation of layer l −
1 and the weight matrix and bias vector of layer l. The nonlinear activation function is
used to calculate the activation of the l layer. This process is repeated until reaching the
output layer. The activation of the output layer satisfies the following equation:

= (4) da (28)

where d represents the MSD and its superscript “~” indicates that the value is the predic-
tion. The schematic diagram of the HNN’s structure is shown in Figure 5.

Figure 5. Structure diagram of the HNN.

Generally speaking, to reduce the fitting error, the number of units in each layer
should be appropriately increased if the obstacles are more complex. The two examples
in Section 6 used different unit scales to obtain better performance, and the specific pa-
rameters are shown in Table 3. It is worth noting that the activation function was selected

Figure 5. Structure diagram of the HNN.

Generally speaking, to reduce the fitting error, the number of units in each layer should
be appropriately increased if the obstacles are more complex. The two examples in Section 6
used different unit scales to obtain better performance, and the specific parameters are
shown in Table 3. It is worth noting that the activation function was selected similarly. The
hidden layers adopted the sigmoid activation function, and the output layer adopted the
linear activation function.

Aerospace 2022, 9, 720 13 of 23

Table 3. Selection of the HNN structure in different examples.

Parameter Example 1 Example 2

M0 4 4
M1 10 40
M2 20 40
M3 10 40
M4 1 1

5.2.2. Sample Generation

The traditional method of fitting control variables and trajectories using supervised
learning requires many samples [28–33], and the only way to obtain samples is to solve
complex optimal control problems. Therefore, acquiring a large number of samples has
become a challenge in neural network training. Training the HNN proposed in this study
only required calculating the MSD. Therefore, a large number of samples can be generated
efficiently. The specific algorithm is given below.

5.2.3. Training

First, a loss function called the mean square error (MSE) was defined to evaluate the
fitting accuracy of the HNN:

σMSE =

n
∑

i=1

(
di − d̃i

)2

n max
(
d2

i
) =

n
∑

i=1

[
di −Net

(
pT

i , εi
)]2

nmax
(
d2

i
) (29)

where n is the total number of samples, di is the target value generated by Algorithm 3, and
di is the estimated value of the HNN. A total of 85% of the data set was used for training
and 15% was used for test. The Bayesian regularization training method [45] was used
to train the HNN. This method can effectively avoid overfitting and has a better fitting
performance for complex problems. The training results of the two examples in Section 6
are shown in Table 4.

Algorithm 3: Sample Generation

Step 1: Obtain the output of the OIR algorithm: ∂Ωε, Ωε
v and Ωε

o.
Step 2: Generate n random samples (pT

i , εi)
T , where pi ∈ ∂Ωε ∪Ωε

v ∪Ωε
o and εi ∈ [0, 1];

For i = 1: n
Step 3: Compute the MSD according to (6);
Step 4: Store the data in the sample set;

End
Return;

Table 4. Statistics of training results.

Parameter Example 1 Example 2

Number of samples n 54,270 77,920
Mean square error (MSE) 9.0688× 10−6 3.0411× 10−5

MSE of the training set 8.9248× 10−6 2.9356× 10−5

MSE of the test set 9.8816× 10−6 3.6390× 10−5

Training time 30 min 14 s 3 h 21 min 10 s

The MSE of the training set and the sample set in the two examples were close, which
indicates that the training did not overfit. In addition, all test set errors were at a small
level, showing that the HNN had an excellent fitting performance.

Aerospace 2022, 9, 720 14 of 23

6. Numerical Examples

This section presents the application of the algorithm in two scenarios with complex
obstacles. It is worth noting that although a 3-DOF dynamic model was established, only
the trajectory in the x − y plane was drawn in the results for the convenience of display. All
numerical simulations were performed on a PC with an Intel Core i7-11700k at 3.5 GHz and
16 GB of RAM. We adopted ECOS [46] as the interior point solver, and the programming
language was C.

6.1. Example 1: Comparison with State-of-Art Algorithms

This section compares the results between HNSCP and two other advanced SCP-
based algorithms (continuous state-triggered constraint (CSTC) method [21] and homotopy
(HOMO) method [4]). The comparison items included real-time, convergence, and optimal-
ity performance.

First, the obstacle and cavity were manually set. Then, the OIR method was used to
compute the “growth” of the obstacle boundary, and Algorithm 3 was used to generate a
large number of samples for HNN training. The fitting performance of the trained HNN is
shown in Figure 6. Ultimately, Algorithm 1 and Algorithm 2 can be used to generate the
optimal trajectory in real-time.

Figure 6 shows the prediction results of the HNN when the homotopy parameter
ε increased from small to large. It can be seen that with an increase in ε, the MSD field
predicted by the HNN changed from simple to complex and gradually approached the
MSD field of the primal problem. When ε = 1 (see Figure 6d), the recovery of the MSD
field was complete. The vehicle’s initial and terminal states were set, and then the HNSCP,
HOMO, CSTC, and TSCP algorithms were adopted to solve the optimal trajectory. The
specific parameter settings of the algorithm are shown in Table 5, and the results are shown
in Table 6 and Figure 7.

It can be seen from Table 6 that under the same parameter settings, HNSCP, HOMO,
and CSTC could all obtain the local optimal solution. Among them, the performance
index obtained by HNSCP was the smallest, the number of iterations was the smallest, and
the elapsed time was also the shortest. Therefore, under these boundary conditions, the
HNSCP algorithm was better. It is worth noting that the subproblem was infeasible after
six iterations using the TSCP algorithm.

Figure 7a shows the iterative details of the HNSCP algorithm. It was found that
in the first few iterations, the trajectory traversed the obstacle. As the number of itera-
tions increased, the trajectory gradually avoided obstacles and converged to a feasible
solution. Figure 7b compares the trajectories solved by different algorithms. The CSTC
results were quite different from those of the other two algorithms, and the trajectory
was more curved, which significantly increased the consumption of fuel. Figure 7c shows
the thrust acceleration profile in the “bang-bang” form, which is also the basic feature of
the fuel-optimal trajectory. In order to compare the performance of different algorithms
more comprehensively, a Monte Carlo simulation was conducted with 100 samples under
different discrete number conditions. Given the discrete number, the initial positions of the
vehicle were randomly selected to solve the optimal trajectories. The statistical results are
shown in Table 7. The optimality performance was evaluated with Iopt, and its expression
is as follows:

Iopt =
m

∑
i=1

J∗

mJ∗HNSCP
(30)

where m is the number of Monte Carlo test samples. J∗ is the velocity increment solved by
the algorithm to be evaluated, and J∗HNSCP is the velocity increment solved by HNSCP.

Aerospace 2022, 9, 720 15 of 23

Aerospace 2022, 9, x FOR PEER REVIEW 15 of 25

The MSE of the training set and the sample set in the two examples were close, which
indicates that the training did not overfit. In addition, all test set errors were at a small
level, showing that the HNN had an excellent fitting performance.

6. Numerical Examples
This section presents the application of the algorithm in two scenarios with complex

obstacles. It is worth noting that although a 3-DOF dynamic model was established, only
the trajectory in the x – y plane was drawn in the results for the convenience of display.
All numerical simulations were performed on a PC with an Intel Core i7-11700k at 3.5
GHz and 16GB of RAM. We adopted ECOS [46] as the interior point solver, and the pro-
gramming language was C.

6.1. Example 1: Comparison with State-of-Art Algorithms
This section compares the results between HNSCP and two other advanced SCP-

based algorithms (continuous state-triggered constraint (CSTC) method [21] and ho-
motopy (HOMO) method [4]). The comparison items included real-time, convergence,
and optimality performance.

First, the obstacle and cavity were manually set. Then, the OIR method was used to
compute the “growth” of the obstacle boundary, and Algorithm 3 was used to generate a
large number of samples for HNN training. The fitting performance of the trained HNN
is shown in Figure 6. Ultimately, Algorithm 1 and Algorithm 2 can be used to generate
the optimal trajectory in real-time.

Figure 6 shows the prediction results of the HNN when the homotopy parameter ε
increased from small to large. It can be seen that with an increase in ε , the MSD field
predicted by the HNN changed from simple to complex and gradually approached the
MSD field of the primal problem. When ε = 1 (see Figure 6d), the recovery of the MSD
field was complete. The vehicle’s initial and terminal states were set, and then the HNSCP,
HOMO, CSTC, and TSCP algorithms were adopted to solve the optimal trajectory. The
specific parameter settings of the algorithm are shown in Table 5, and the results are
shown in Table 6 and Figure 7.

It can be seen from Table 6 that under the same parameter settings, HNSCP, HOMO,
and CSTC could all obtain the local optimal solution. Among them, the performance index
obtained by HNSCP was the smallest, the number of iterations was the smallest, and the
elapsed time was also the shortest. Therefore, under these boundary conditions, the
HNSCP algorithm was better. It is worth noting that the subproblem was infeasible after
six iterations using the TSCP algorithm.

(a) (b)

Aerospace 2022, 9, x FOR PEER REVIEW 16 of 25

(c) (d)

Figure 6. Example 1′s MSD fields with different homotopy parameters. (a) ε = 0.0 , (b) ε = 0.33 , (c)
ε = 0.67 , and (d) ε = 1.0 .

(a) (b)

(c) (d)

Figure 6. Example 1′s MSD fields with different homotopy parameters. (a) ε = 0.0, (b) ε = 0.33,
(c) ε = 0.67, and (d) ε = 1.0.

Table 5. Parameter setting of Example 1.

Parameter Value Parameter Value

p0 [50, 10, 0]T m ωa 100,000.0
v0 [0, 0, 0]T m/s ωu 0.1
pf [950, 10, 0]T m ω∆t 0.1
vf [0, 0, 0]T m/s ∆ε 0.2
umax 20 m/s2 vref 30 m/s
umin 5 m/s2 dmar 5 m

Table 6. Comparison between different SCP-based algorithms (N = 100).

Algorithm Velocity
Increment (m/s)

Number of
SCP Iterations

Elapsed
Time (s)

Terminal
Time (s)

HNSCP 490.80 (Best) 19 (Best) 0.487 (Best) 44.93
HOMO 509.07 19 (Best) 1.710 47.80
CSTC 609.48 29 0.920 56.35
TSCP - Infeasible after 6 - -

Aerospace 2022, 9, 720 16 of 23

Aerospace 2022, 9, x FOR PEER REVIEW 16 of 25

(c) (d)

Figure 6. Example 1′s MSD fields with different homotopy parameters. (a) ε = 0.0 , (b) ε = 0.33 , (c)
ε = 0.67 , and (d) ε = 1.0 .

(a) (b)

(c) (d)

Aerospace 2022, 9, x FOR PEER REVIEW 17 of 25

(e) (f)

Figure 7. The results of Example 1. (a) Trajectories obtained by HNSCP algorithm with different
iteration numbers. (b) Optimal trajectories solved by different algorithms, namely HNSCP, HOMO,
and CSTC. (c) Profiles of thrust acceleration magnitude. (d) Profiles of thrust acceleration compo-
nents. (e) Profiles of velocity components. (f) Profiles of position components.

Table 5. Parameter setting of Example 1.

Parameter Value Parameter Value
0p [50,10,0]T m ω a 100,000.0

0v [0,0,0]T m/s ωu 0.1

fp [950,10,0]T m ω Δ t 0.1

fv [0,0,0]T m/s εΔ 0.2
maxu 20 m/s2

refv 30 m/s
minu 5 m/s2 mard 5 m

Table 6. Comparison between different SCP-based algorithms (N = 100).

Algorithm Velocity Increment (m/s)
Number of SCP Itera-

tions
Elapsed
Time (s)

Terminal
Time (s)

HNSCP 490.80 (Best) 19 (Best) 0.487 (Best) 44.93
HOMO 509.07 19 (Best) 1.710 47.80
CSTC 609.48 29 0.920 56.35
TSCP -- Infeasible after 6 -- --

Figure 7a shows the iterative details of the HNSCP algorithm. It was found that in
the first few iterations, the trajectory traversed the obstacle. As the number of iterations
increased, the trajectory gradually avoided obstacles and converged to a feasible solution.
Figure 7b compares the trajectories solved by different algorithms. The CSTC results were
quite different from those of the other two algorithms, and the trajectory was more curved,
which significantly increased the consumption of fuel. Figure 7c shows the thrust acceler-
ation profile in the “bang-bang” form, which is also the basic feature of the fuel-optimal
trajectory. In order to compare the performance of different algorithms more comprehen-
sively, a Monte Carlo simulation was conducted with 100 samples under different discrete
number conditions. Given the discrete number, the initial positions of the vehicle were
randomly selected to solve the optimal trajectories. The statistical results are shown in
Table 7. The optimality performance was evaluated with optI , and its expression is as
follows:

Figure 7. The results of Example 1. (a) Trajectories obtained by HNSCP algorithm with different
iteration numbers. (b) Optimal trajectories solved by different algorithms, namely HNSCP, HOMO,
and CSTC. (c) Profiles of thrust acceleration magnitude. (d) Profiles of thrust acceleration components.
(e) Profiles of velocity components. (f) Profiles of position components.

For the convergence rate, the HNSCP algorithm could achieve 100% convergence,
which was slightly higher than that of the HOMO and CSTC algorithms and much higher
than that of the TSCP algorithm. Therefore, HNSCP has certain advantages in ensuring
the safe and reliable flight of the vehicle. For real-time performance, HNSCP’s and TSCP’s
elapsed times were relatively short. The CSTC algorithm needed more iterations. Therefore,
the real-time performance was slightly inferior. The HOMO algorithm introduced more
auxiliary variables and auxiliary cone constraints, making each iteration longer. Therefore,
the real-time performance was the worst. In fact, assuming that the cavity is composed of a

Aerospace 2022, 9, 720 17 of 23

union of nss cuboid spaces, the HOMO algorithm needs nssN extra auxiliary variables. As
the number of obstacles increases, the scale of the problem will expand dramatically. The
relationship between the elapsed time and the discrete number is shown in Figure 8. For
optimality, HNSCP, HOMO, and TSCP were similar, while the trajectory planned by the
CSTC algorithm was more curved, and the performance index was usually 1.1–1.25 times
larger than that of the other algorithms.

Table 7. Monte Carlo simulation of Example 1.

Algorithm N Convergence
Rate

Average Elapsed
Time (s)

Solver’s Average
Consumed Time (s)

Optimality
Performance

Can it be Extended
to Exp. 2

HNSCP

30 100% 0.1087 0.0950 1.0

Easy60 100% 0.2546 0.2129 1.0
100 100% 0.5249 0.4124 1.0
150 100% 1.0450 0.7658 1.0

HOMO
(Poor real-time
performance)

30 96% 0.3218 0.2782 0.9912

Hard
60 98% 0.7077 0.5451 1.0001
100 100% 1.6043 1.1096 1.0058
150 100% 3.6225 2.0957 1.0153

CSTC
(Poor
optimality
performance)

30 99% 0.1175 0.1050 1.1052

Hard
60 99% 0.3441 0.2980 1.1559
100 100% 0.8270 0.6561 1.2239
150 98% 1.6957 1.2685 1.2217

TSCP
(Poor
convergence
performance)

30 22% 0.1093 0.0968 1.0234

Easy60 18% 0.2488 0.2117 1.0001
100 18% 0.4781 0.3856 1.0001
150 18% 0.8242 0.6172 1.0000

Aerospace 2022, 9, x FOR PEER REVIEW 19 of 25

.

Figure 8. The relationship between elapsed time and discrete number.

6.2. Example 2: Application in a Complex Maze
This section increases the obstacles’ complexity and verifies the HNSCP algorithm’s

adaptability. First, a flat “maze” was constructed using modeling software. Then, the steps
in Figure 2 were followed to solve the optimal trajectory. The fitting performance of the
trained HNN is shown in Figure 9. As the homotopy parameter increased, the signed dis-
tance field predicted by the HNN gradually recovered the primal one.

(a) (b) (c)

Figure 8. The relationship between elapsed time and discrete number.

In summary, each algorithm had some shortcomings. HOMO had poor real-time
performance, the CSTC algorithm had a poor performance index, and the TSCP algorithm
had poor convergence. However, the HNSCP algorithm could balance various evaluation
indicators, and its performance was relatively good. In addition, CSTC and HOMO
were also limited because the cavity must be abstracted as a union of multiple cuboids,
which cannot well-simulate real and complex environments and has poor extendibility.
Conversely, HNSCP can be applied to a wide range of scenarios, which will be shown in
Example 2.

Aerospace 2022, 9, 720 18 of 23

6.2. Example 2: Application in a Complex Maze

This section increases the obstacles’ complexity and verifies the HNSCP algorithm’s
adaptability. First, a flat “maze” was constructed using modeling software. Then, the steps
in Figure 2 were followed to solve the optimal trajectory. The fitting performance of the
trained HNN is shown in Figure 9. As the homotopy parameter increased, the signed
distance field predicted by the HNN gradually recovered the primal one.

Aerospace 2022, 9, x FOR PEER REVIEW 19 of 25

.

Figure 8. The relationship between elapsed time and discrete number.

6.2. Example 2: Application in a Complex Maze
This section increases the obstacles’ complexity and verifies the HNSCP algorithm’s

adaptability. First, a flat “maze” was constructed using modeling software. Then, the steps
in Figure 2 were followed to solve the optimal trajectory. The fitting performance of the
trained HNN is shown in Figure 9. As the homotopy parameter increased, the signed dis-
tance field predicted by the HNN gradually recovered the primal one.

(a) (b) (c)

Aerospace 2022, 9, x FOR PEER REVIEW 20 of 25

(d) (e) (f)

Figure 9. Example 2′s MSD field with different homotopy parameters. (a) ε = 0.0 , (b) ε = 0.2 , (c)
ε = 0.4 , (d) ε = 0.6 , (e) ε = 0.8 , and (f) ε = 1.0 .

The test was divided into a single test and a Monte Carlo test. The settings of the
algorithm parameters in a single test were slightly different from those in Table 5. The
initial position coordinate was set to [90,80,0]T , the terminal coordinate was [970,80,0]T

, and εΔ = 0.02 . The other parameters were the same as those in Table 5. The Monte Carlo
test was still randomly selecting the initial position coordinates to solve the trajectories.
The results obtained for both tests are shown in Table 8 and Figure 10.

We chose a small εΔ to ensure that the algorithm had better convergence (100%).
This adjustment significantly increased the number of iterations and, thus, the elapsed
time. However, it can be seen from Table 8 that the algorithm could still converge within
2 s and had the potential for online applications. It was noted that in the single test, the
TSCP algorithm was interrupted after the 24th iteration and failed to find a feasible solu-
tion.

Figure 9. Example 2′s MSD field with different homotopy parameters. (a) ε = 0.0, (b) ε = 0.2,
(c) ε = 0.4, (d) ε = 0.6, (e) ε = 0.8, and (f) ε = 1.0.

The test was divided into a single test and a Monte Carlo test. The settings of the
algorithm parameters in a single test were slightly different from those in Table 5. The
initial position coordinate was set to [90, 80, 0]T , the terminal coordinate was [970, 80, 0]T ,
and ∆ε = 0.02. The other parameters were the same as those in Table 5. The Monte Carlo
test was still randomly selecting the initial position coordinates to solve the trajectories.
The results obtained for both tests are shown in Table 8 and Figure 10.

Aerospace 2022, 9, 720 19 of 23

Table 8. The result of Example 2.

Single Test Velocity increment (m/s) Number of Iterations Elapsed Time (s) Terminal Time (s)
Results 751.21 59 1.728 60.179

Monte Carlo Test Sample Quantity Convergence Rate Average Elapsed Time (s) Solver’s Average
Consumed Time (s)

Results 100 100% 1.945 1.487
Aerospace 2022, 9, x FOR PEER REVIEW 21 of 25

(a) (b)

(c) (d)

(e) (f)

Figure 10. Cont.

Aerospace 2022, 9, 720 20 of 23Aerospace 2022, 9, x FOR PEER REVIEW 22 of 25

(g) (h)

Figure 10. The results of Example 2. (a) Optimal trajectory solved by HNSCP, where the blue boxes
indicate the full thrust arcs (12 arcs in total). (b) Optimal trajectory solved by HNSCP, where the red
circles indicate the events when the vehicle appeared close to the obstacle boundary (14 events in
total). (c) Trajectories obtained by HNSCP algorithm with different iteration numbers. (d) Monte
Carlo random test trajectories. (e) Profiles of thrust acceleration magnitude, where the full thrust
arcs have been marked with numbers. (f) Profiles of thrust direction. (g) Profiles of velocity compo-
nents. (h) Profiles of position components.

Table 8. The result of Example 2.

Single Test
Velocity increment

(m/s) Number of Iterations Elapsed Time (s) Terminal Time (s)

Results 751.21 59 1.728 60.179

Monte Carlo Test Sample Quantity Convergence Rate
Average Elapsed Time

(s)
Solver’s Average Con-

sumed Time (s)
Results 100 100% 1.945 1.487

From Figure 10a,e, it can be seen that the thrust acceleration profile calculated by
HNSCP was the “bang-bang” form, and a total number of 12 maximum thrust arcs were
found. Figure 10b shows the trajectory details, where the planned trajectory approached
the constraint boundary 14 times (see from A to N), but none violated the constraint. The
above results show that the algorithm had a strong adaptability and could still find a lo-
cally optimal feasible solution even in an extremely complex environment. Figure 10c
shows the iterative details of the HNSCP algorithm. In the first few iterations, the trajec-
tory traversed the obstacle. As the number of iterations increased, the trajectory gradually
avoided all obstacles and converged to a feasible solution. Figure 10d shows the Monte
Carlo test results. Starting from different positions, the HNSCP algorithm could find op-
timal feasible trajectories from the linear interpolation reference trajectory.

Due to the fitting error of the HNN, there may be the possibility of collision with real
obstacles. Three strategies can be adopted to avoid such phenomena:
1. Set and increase the safety margin mard (adopted in this work);
2. Increase the scale of the neural network to improve the fitting accuracy;
3. Take the HNSCP result as the initial value, and use the TSCP algorithm to refine the

solution.

Figure 10. The results of Example 2. (a) Optimal trajectory solved by HNSCP, where the blue boxes
indicate the full thrust arcs (12 arcs in total). (b) Optimal trajectory solved by HNSCP, where the red
circles indicate the events when the vehicle appeared close to the obstacle boundary (14 events in
total). (c) Trajectories obtained by HNSCP algorithm with different iteration numbers. (d) Monte
Carlo random test trajectories. (e) Profiles of thrust acceleration magnitude, where the full thrust arcs
have been marked with numbers. (f) Profiles of thrust direction. (g) Profiles of velocity components.
(h) Profiles of position components.

We chose a small ∆ε to ensure that the algorithm had better convergence (100%). This
adjustment significantly increased the number of iterations and, thus, the elapsed time.
However, it can be seen from Table 8 that the algorithm could still converge within 2 s
and had the potential for online applications. It was noted that in the single test, the TSCP
algorithm was interrupted after the 24th iteration and failed to find a feasible solution.

From Figure 10a,e, it can be seen that the thrust acceleration profile calculated by
HNSCP was the “bang-bang” form, and a total number of 12 maximum thrust arcs were
found. Figure 10b shows the trajectory details, where the planned trajectory approached
the constraint boundary 14 times (see from A to N), but none violated the constraint. The
above results show that the algorithm had a strong adaptability and could still find a locally
optimal feasible solution even in an extremely complex environment. Figure 10c shows the
iterative details of the HNSCP algorithm. In the first few iterations, the trajectory traversed
the obstacle. As the number of iterations increased, the trajectory gradually avoided all
obstacles and converged to a feasible solution. Figure 10d shows the Monte Carlo test
results. Starting from different positions, the HNSCP algorithm could find optimal feasible
trajectories from the linear interpolation reference trajectory.

Due to the fitting error of the HNN, there may be the possibility of collision with real
obstacles. Three strategies can be adopted to avoid such phenomena:

1. Set and increase the safety margin dmar (adopted in this work);
2. Increase the scale of the neural network to improve the fitting accuracy;
3. Take the HNSCP result as the initial value, and use the TSCP algorithm to refine

the solution.

7. Conclusions

This work combines the sequential convex optimization algorithm with homotopy and
neural network techniques. Compared with traditional methods, the proposed algorithm
can deal with much more complex OACs and has significant advantages in convergence,
real-time, and optimality. Numerical simulations show that for complex “maze” obsta-
cle constraints, the proposed algorithm can achieve 100% convergence and find the local
optimal solution within 2 s (N = 100). Consequently, it has the potential for onboard
applications. Adding homotopy and neural network technologies has dramatically im-

Aerospace 2022, 9, 720 21 of 23

proved convergence in practice, but lacks theoretical explanation. Future work will address
this issue.

Author Contributions: Conceptualization, W.L. (Wenbo Li) and S.G.; methodology, W.L. (Wenbo Li)
and W.L. (Wentao Li); software, W.L. (Wenbo Li) and W.L. (Wentao Li); validation, W.L. (Wenbo Li),
S.G. and L.C.; formal analysis, W.L. (Wenbo Li); investigation, W.L. (Wenbo Li) and S.G.; resources,
S.G. and L.C.; data curation, W.L. (Wenbo Li); writing—original draft preparation, W.L. (Wenbo Li)
and W.L. (Wentao Li); writing—review and editing, S.G.; visualization, W.L. (Wenbo Li); supervision,
S.G.; project administration, S.G.; funding acquisition, S.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China, grant
numbers 11822205 and 11772167.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Song, Z.Y.; Wang, C.; Theil, S.; Seelbinder, D.; Sagliano, M.; Liu, X.F.; Shao, Z.J. Survey of autonomous guidance methods for

powered planetary landing. Front. Inf. Technol. Electron. Eng. 2020, 21, 652–674. [CrossRef]
2. Ploen, S.R.; Acikmese, A.B.; Wolf, A. A comparison of powered descent guidance laws for Mars pinpoint landing. In Proceedings

of the Collection of Technical Papers—AIAA/AAS Astrodynamics Specialist Conference 2006, Keystone, CO, USA, 21–24 August
2006; pp. 1724–1739.

3. Zhou, X.; Wen, X.; Wang, Z.; Gao, Y.; Li, H.; Wang, Q.; Yang, T.; Lu, H.; Cao, Y.; Xu, C.; et al. Swarm of micro flying robots in the
wild. Sci. Robot. 2022, 7, eabm5954. [CrossRef] [PubMed]

4. Malyuta, D.; Reynolds, T.P.; Szmuk, M.; Lew, T.; Bonalli, R.; Pavone, M.; Acikmese, B. Convex Optimization for Trajectory
Generation: A Tutorial on Generating Dynamically Feasible Trajectories Reliably and Efficiently. IEEE Control. Syst. 2021, 42,
40–113. [CrossRef]

5. Zhang, Z.; Zhao, D.; Li, X.; Kong, C.; Su, M. Convex Optimization for Rendezvous and Proximity Operation via Birkhoff
Pseudospectral Method. Aerospace 2022, 9, 505. [CrossRef]

6. Oumer, A.M.; Kim, D.-K. Real-Time Fuel Optimization and Guidance for Spacecraft Rendezvous and Docking. Aerospace 2022, 9,
276. [CrossRef]

7. Liu, X.; Lu, P.; Pan, B. Survey of convex optimization for aerospace applications. Astrodynamics 2017, 1, 23–40. [CrossRef]
8. Liu, X. Autonomous Trajectory Planning by Convex Optimization. Doctoral Dissertation, Iowa State University, Ames, IA,

USA, 2013.
9. Mao, Y.; Szmuk, M.; Acikmese, B. Successive convexification of non-convex optimal control problems and its convergence

properties. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control, CDC 2016, Las Vegas, NV, USA, 12–14
December 2016; pp. 3636–3641.

10. Bonalli, R.; Cauligi, A.; Bylard, A.; Pavone, M. GuSTO: Guaranteed sequential trajectory optimization via sequential convex
programming. In Proceedings of the IEEE International Conference on Robotics and Automation 2019, Montreal, QC, Canada,
20–24 May 2019; pp. 6741–6747.

11. Malyuta, D.; Yu, Y.; Elango, P.; Açıkmeşe, B. Advances in trajectory optimization for space vehicle control. Annu. Rev. Control
2021, 52, 282–315. [CrossRef]

12. Long, J.; Cui, P.; Zhu, S. Vector Trajectory Method for Obstacle Avoidance Constrained Planetary Landing Trajectory Optimization.
IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2996–3010. [CrossRef]

13. Augugliaro, F.; Schoellig, A.P.; D’Andrea, R. Generation of collision-free trajectories for a quadrocopter fleet: A sequential
convex programming approach. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems 2012,
Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1917–1922.

14. Morgan, D.; Chung, S.J.; Hadaegh, F.Y. Model predictive control of swarms of spacecraft using sequential convex programming. J.
Guid. Control Dyn. 2014, 37, 1725–1740. [CrossRef]

15. Virgili-Llop, J.; Zagaris, C.; Zappulla, R.; Bradstreet, A.; Romano, M. Convex optimization for proximity maneuvering of a
spacecraft with a robotic manipulator. In Proceedings of the 27th AAS/AIAA Spaceflight Mechanics Meeting, San Antonio, TX,
USA, 6–9 February 2017; Advances in the Astronautical Sciences. pp. 1059–1078.

16. Zhang, Z.; Li, J.; Wang, J. Sequential convex programming for nonlinear optimal control problems in UAV path planning. Aerosp.
Sci. Technol. 2018, 76, 280–290. [CrossRef]

http://doi.org/10.1631/FITEE.1900458
http://doi.org/10.1126/scirobotics.abm5954
http://www.ncbi.nlm.nih.gov/pubmed/35507682
http://doi.org/10.1109/MCS.2022.3187542
http://doi.org/10.3390/aerospace9090505
http://doi.org/10.3390/aerospace9050276
http://doi.org/10.1007/s42064-017-0003-8
http://doi.org/10.1016/j.arcontrol.2021.04.013
http://doi.org/10.1109/TAES.2022.3143086
http://doi.org/10.2514/1.G000218
http://doi.org/10.1016/j.ast.2018.01.040

Aerospace 2022, 9, 720 22 of 23

17. Misra, G.; Bai, X. Iteratively feasible optimal spacecraft guidance with non-convex path constraints using convex optimization. In
Proceedings of the AIAA Scitech 2020 Forum 2020, Orlando, FL, USA, 6–10 January 2020; pp. 1–18.

18. Richards, A.; How, J.; Schouwenaars, T.; Feron, E. Plume avoidance maneuver planning using mixed integer linear programming.
In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, QC, Canada, 6–9 August 2001.

19. Richards, A.; Schouwenaars, T.; How, J.P.; Feron, E. Spacecraft trajectory planning with avoidance constraints using mixed-integer
linear programming. J. Guid. Control Dyn. 2002, 25, 755–764. [CrossRef]

20. Szmuk, M.; Reynolds, T.P.; Açıkmeşe, B. Successive convexification for real-time six-degree-of-freedom powered descent guidance
with state-triggered constraints. J. Guid. Control Dyn. 2020, 43, 1399–1413. [CrossRef]

21. Szmuk, M.; Malyuta, D.; Reynolds, T.P.; McEowen, M.S.; Acikmese, B. Real-Time Quad-Rotor Path Planning Using Convex
Optimization and Compound State-Triggered Constraints. In Proceedings of the IEEE International Conference on Intelligent
Robots and Systems 2019, Macau, China, 3–8 November 2019; pp. 7666–7673.

22. Zhao, Z.; Shang, H.; Wei, B. Tackling Nonconvex Collision Avoidance Constraints for Optimal Trajectory Planning Using
Saturation Functions. J. Guid. Control Dyn. 2022, 45, 1002–1016. [CrossRef]

23. Taheri, E.; Junkins, J.L.; Kolmanovsky, I.; Girard, A. A novel approach for optimal trajectory design with multiple operation
modes of propulsion system, part 1. Acta Astronaut. 2020, 172, 151–165. [CrossRef]

24. Taheri, E.; Junkins, J.L.; Kolmanovsky, I.; Girard, A. A novel approach for optimal trajectory design with multiple operation
modes of propulsion system, part 2. Acta Astronaut. 2020, 172, 166–179. [CrossRef]

25. Saranathan, H.; Grant, M.J. Relaxed autonomously switched hybrid system approach to indirect multiphase aerospace trajectory
optimization. J. Spacecr. Rocket. 2018, 55, 611–621. [CrossRef]

26. Malyuta, D.; Acikmese, B. Fast Homotopy for Spacecraft Rendezvous Trajectory Optimization with Discrete Logic. arXiv 2021,
arXiv:2107.07001.

27. Ma, L.; Wang, K.; Xu, Z.; Shao, Z.; Song, Z.; Biegler, L.T. Trajectory optimization for lunar rover performing vertical takeoff
vertical landing maneuvers in the presence of terrain. Acta Astronaut. 2018, 146, 289–299. [CrossRef]

28. Yin, S.; Li, J.; Cheng, L. Low-thrust spacecraft trajectory optimization via a DNN-based method. Adv. Space Res. 2020, 66,
1635–1646. [CrossRef]

29. Tang, G.; Sun, W.; Hauser, K. Learning Trajectories for Real-Time Optimal Control of Quadrotors. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems 2018, Madrid, Spain, 1–5 October 2018; pp. 3620–3625.

30. Li, W.; Gong, S. Free Final-Time Fuel-Optimal Powered Landing Guidance Algorithm Combing Lossless Convex Optimization
with Deep Neural Network Predictor. Appl. Sci. 2022, 12, 3383. [CrossRef]

31. Banerjee, S.; Lew, T.; Bonalli, R.; Alfaadhel, A.; Alomar, I.A.; Shageer, H.M.; Pavone, M. Learning-based Warm-Starting for Fast
Sequential Convex Programming and Trajectory Optimization. In Proceedings of the IEEE Aerospace Conference Proceedings,
Big Sky, MT, USA, 7–14 March 2020.

32. Shi, J.; Wang, J.; Su, L.; Ma, Z.; Chen, H. A Neural Network Warm-Started Indirect Trajectory Optimization Method. Aerospace
2022, 9, 435. [CrossRef]

33. Jiang, B.; Li, B.; Zhou, W.; Lo, L.-Y.; Chen, C.-K.; Wen, C.-Y. Neural Network Based Model Predictive Control for a Quadrotor
UAV. Aerospace 2022, 9, 460. [CrossRef]

34. Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; Schaal, S. STOMP: Stochastic trajectory optimization for motion planning.
In Proceedings of the IEEE International Conference on Robotics and Automation 2011, Shanghai, China, 9–13 May 2011;
pp. 4569–4574.

35. Ratliff, N.; Zucker, M.; Bagnell, J.A.; Srinivasa, S. CHOMP: Gradient optimization techniques for efficient motion planning. In
Proceedings of the IEEE International Conference on Robotics and Automation 2009, Kobe, Japan, 12–17 May 2009; pp. 489–494.

36. Açikmeşe, B.; Ploen, S.R. Convex programming approach to powered descent guidance for mars landing. J. Guid. Control. Dyn.
2007, 30, 1353–1366. [CrossRef]

37. Mokrý, P. Iterative method for solving the eikonal equation. In Proceedings of the SPIE—The International Society for Optical
Engineering, Liberec, Czech Republic, 11 November 2016.

38. Atilgan, T.K.; Tuǧrul, T.H.; Haluk, A.M. Three-dimensional internal ballistic analysis by fast marching method applied to
propellant grain burn-back. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
Tucson, Arizona, 10–13 July 2005.

39. Li, W.; Li, W.; He, Y.; Liang, G. Reverse Design of Solid Propellant Grain for a Performance-Matching Goal: Shape Optimization
via Evolutionary Neural Network. Aerospace 2022, 9, 552. [CrossRef]

40. Crane, K.; Weischedel, C.; Wardetzky, M. Geodesics in heat: A new approach to computing distance based on heat flow. ACM
Trans. Graphics. 2013, 32, 1–11. [CrossRef]

41. Sethian, J.A. Curvature and the evolution of fronts. Commun. Math. Phys. 1985, 101, 487–499. [CrossRef]
42. Sethian, J.A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer

Vision, and Materials Science; Cambridge University Press: Cambridge, UK, 1999.
43. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [CrossRef]
44. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2,

359–366. [CrossRef]

http://doi.org/10.2514/2.4943
http://doi.org/10.2514/1.G004549
http://doi.org/10.2514/1.G005052
http://doi.org/10.1016/j.actaastro.2020.02.042
http://doi.org/10.1016/j.actaastro.2020.02.047
http://doi.org/10.2514/1.A34012
http://doi.org/10.1016/j.actaastro.2018.03.013
http://doi.org/10.1016/j.asr.2020.05.046
http://doi.org/10.3390/app12073383
http://doi.org/10.3390/aerospace9080435
http://doi.org/10.3390/aerospace9080460
http://doi.org/10.2514/1.27553
http://doi.org/10.3390/aerospace9100552
http://doi.org/10.1145/2516971.2516977
http://doi.org/10.1007/BF01210742
http://doi.org/10.1007/BF02551274
http://doi.org/10.1016/0893-6080(89)90020-8

Aerospace 2022, 9, 720 23 of 23

45. Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to bayesian learning. In Proceedings of the IEEE International
Conference on Neural Networks—Conference Proceedings 1997, Houston, TX, USA, 12 June 1997; pp. 1930–1935.

46. Domahidi, A.; Chu, E.; Boyd, S. ECOS: An SOCP solver for embedded systems. In Proceedings of the 2013 European Control
Conference, ECC 2013, Zurich, Switzerland, 17–19 July 2013; pp. 3071–3076.

	Introduction
	Problem Statement
	HNSCP Algorithm
	Online Procedure
	Discretization and Convexification
	Discretization
	Convexification of Dynamical Equations
	Convexification of Obstacle Avoidance Constraints
	Convexification of Control Magnitude Constraints
	Convexification of Cost Function

	Successive Iterative Algorithm

	Offline Procedure
	Obstacle Interface Regression Approach
	Basic Principles
	Implementation

	Homotopy Neural Network
	Structure
	Sample Generation
	Training

	Numerical Examples
	Example 1: Comparison with State-of-Art Algorithms
	Example 2: Application in a Complex Maze

	Conclusions
	References

