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Abstract: A hybrid anti-/de-icing system combining a superhydrophobic coating and an electrother-
mal heater is an area of active research for aircraft icing prevention. The heater increases the
temperature of the interaction surface between impinging droplets and an aircraft surface. One scien-
tific question that has not been studied in great detail is whether the temperatures of the droplet and
the surface or the temperature difference between the two dominate the anti-/de-icing performance.
Herein, this scientific question is experimentally studied based on the mobility of a water droplet
over a superhydrophobic coating. The mobility is characterized by the sliding angle between the
droplet and the coating surface. It was found that the temperature difference between the droplet
and the coating surface has a higher impact on the sliding angle than their individual temperatures.
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1. Introduction

Aircraft icing is a hazardous event for many aircrafts, because it impacts aerodynamic
performance leading to potentially fatal accidents [1–5]. An evaporative system for anti-
/de-icing has conventionally been used to prevent aircraft icing. However, energy efficiency
using bleed air has been an issue, as these systems are energetically and economically ex-
pensive [6–9]. A hybrid anti-/de-icing system combining a superhydrophobic coating with
an electrothermal heater has recently been proposed to reduce energy consumption [10–13].
Ice accretion over the leading edge of a wing is melted by the heater. The melted water
droplets can be easily removed from the superhydrophobic coating surface by gravity
or an aerodynamic force, because the droplet’s mobility over the surface is enhanced by
the hydrophobicity of the coating [14–22]. To enable a hybrid anti-/de-icing system, the
superhydrophobic coating surface must promote this ease of droplet removal for different
temperature conditions.

A droplet’s mobility over a superhydrophobic coating is evaluated by measuring the
sliding angle of the water droplet placed on the coating surface [23–26]. Here, the scientific
question arises whether the temperatures of the droplet and the surface or the temperature
difference between the two dominates the droplet’s mobility. The temperatures of the
droplet and the superhydrophobic coating surface have impacts on the surface tension
and viscosity of the droplet, as well as the wetting mode of the superhydrophobic coating
surface, which all influence the sliding angle [27–30]. However, the fundamental behavior
of the sliding angle, where the temperature of the droplet is different from that of the
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superhydrophobic coating surface, has not been well studied for icing conditions where
subfreezing temperatures are given.

The present study experimentally investigates the effects of both the temperatures of
the droplet and the surface and the temperature difference between the two on a droplet’s
mobility. Sliding angle measurements between the droplet and the coating surface were
performed to characterize the mobility of the superhydrophobic coating surface based
on a dynamic evaluation method [31]. The temperature difference between the droplets
and the superhydrophobic coating surface was given to identify the influence of the
temperature and the temperature difference on the sliding angle. Droplet and surface
temperatures ranging from −5 ◦C to 25 ◦C were studied to mimic conditions where
anti-/de-icing is performed using a heated superhydrophobic coating surface under icing
conditions. The ambient temperature was fixed at −10 ◦C. The combination of temperatures
simulated the possible combinations of heated melted/cooled water and heated/cooled
superhydrophobic coating surfaces under icing conditions.

2. Method

The dynamic evaluation method describes how quickly a droplet moves over a coating
surface. The method determines the minimum tilt angle required to move the droplet.
The amount of energy required to move the droplet is measured by applying a force. The
force is applied to the droplet by tilting the coating surface as shown in Figure 1. The
component of gravity parallel to the coating surface drives the droplet. The angle, when
gravity overcomes the adhesion force, is obtained by the following Equation [24,31]:

mg sin β = γLW(cos θR − cos θA), (1)

where m is the mass of the droplet, g is gravity, β is the sliding angle, γL is the surface
tension of water, and W is the contact length of the droplet; θA and θR are advancing and
receding angles, respectively. A lower β indicates a better anti-/de-icing performance, as it
means a lower force is necessary to remove the droplet [31].
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Figure 1. Schematic description of a water droplet on a tilted coating surface.

3. Experimental Setup

Figure 2 shows the schematic of the sliding angle measurement setup. The mea-
surements of the sliding angles were performed using a computer-controlled contact
angle meter (KYOWA, DM-701, Saitama, Japan) in a temperature-controlled chamber with
750 mm in width, 460 mm in height, and 440 mm in depth (Espec, WU-200, Osaka, Japan).
A superhydrophobic coating plate was installed at the stage of the sliding angle meter with
a temperature-controlled heater mat. A superhydrophobic coating, HIREC 450 (NTT A.T.
Corp., Tokyo, Japan) for anti-/de-icing, was applied to an aluminum plate of A5052 by
spraying. Ten microliters of water droplets were dispensed on the temperature-controlled
superhydrophobic coating plate using a temperature-controlled syringe. The temperature
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of the water droplet, Td, was measured using a thermocouple embedded at the syringe
tip. The temperature of the superhydrophobic coating surface, Tc, was defined using a
thermocouple embedded between the coated plate and the heater mat.
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Figure 2. Schematic description of the sliding angle measurement setup. Thermocouple-1 measures
the temperature of the water droplet, Td. Themocouple-2 measures the temperature that defines the
temperature of the superhydrophobic coating surface, Tc.

The temperatures of the droplet and the superhydrophobic coating surface during the
experiments were −5 ◦C, 5 ◦C, and 25 ◦C. The temperature difference, ∆T, between the
water droplet, Td, and the superhydrophobic coating surface, Tc, varied between −30 ◦C
and 30 ◦C to study conditions where anti-/de-icing was performed using a superhydropho-
bic coating surface with a heater under icing conditions. The ambient temperature of the
chamber, Ta, was fixed at −10 ◦C ± 0.3 ◦C to simulate icing conditions where supercooled
droplet impingement occurs. The temperatures conditions during the experiments are
summarized in Table 1.

Table 1. Temperatures of the water droplet and the superhydrophobic coating surface and the
temperature difference between the two.

Temperature Difference, ∆T = Td − Tc (◦C)
Temperature of Water Droplet, Td (◦C)

−5 5 25

Temperature of the superhydrophobic
coating surface, Tc (◦C)

−5 0 10 30
5 −10 0 20

25 −30 −20 0

The sliding angles were determined using image acquisition software and a high-
speed camera. The superhydrophobic coating plate was angled to induce the roll-off
of the droplet, after the droplet was dispensed. The images of the droplet were taken
while the plate was rotated, until the droplet began to roll on the plate. The sliding angle
measurements were taken, when droplets moved for 0.5 mm. The sliding angles were
measured using Famas analysis software. The frame rate for the camera was 500 frames
per second. The measurements for the contact length and the sliding angle were performed
5 times to reduce uncertainty.

4. Results

Figure 3 shows the sliding angles for different temperatures, where the tempera-
ture of the droplet, Td, was equal to that of the superhydrophobic coating surface, Tc.
The sliding angles were 8◦, 7◦, and 8◦ for the temperatures of −5 ◦C, 5 ◦C, and 25 ◦C,
respectively. The sliding angles were almost constant and were less than 10◦ for each
temperature. A sliding angle of less than 10◦ demonstrates the comparative mobility of
the present superhydrophobic coating compared with those reported in similar studies
using superhydrophobic coatings [31,32]. It was found that temperature variation did
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not affect the sliding angle when the temperature of the droplet was equal to that of the
superhydrophobic coating surface.
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Figure 3. Sliding angle as a function of temperature where there is no temperature difference
between the water droplet and the superhydrophobic coating surface. Error bars represent the
standard deviations of repeated experiments.

Figure 4 shows the sliding angles for various temperature differences, ∆T, between
the temperature of the droplet, Td, and temperature of the superhydrophobic coating
surface, Tc. As shown, sliding angles were almost constant and less than 10◦ for ∆T ≤ 0. As
previously mentioned, the sliding angle of less than 10◦ means the comparative mobility of
the superhydrophobic coating, regardless of the temperature difference. However, sliding
angles significantly increased, as ∆T increased for ∆T > 0. Sliding angles were 17◦, 41◦,
and 49◦ for ∆T = 10 ◦C, 20 ◦C, and 30 ◦C, respectively. The increase in sliding angle
indicated the increasing adhesion force between the droplet and the superhydrophobic
coating surface. The superhydrophobic coating surface showed reduced water repellency
and became more adhesive with respect to water. It was found that temperature differences
did impact the sliding angle, when the temperature of the droplet, Td, was higher than that
of the superhydrophobic coating surface, Tc.
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5. Discussion

The increasing sliding angle can be caused by the condensation of water vapor due
to the temperature difference between the droplet and the superhydrophobic coating
surface. The water vapor from the droplet surface condenses on the coating surface. If the
roughness of the coating surface is partially/fully filled by the cluster of the condensed
water vapor, the mobility of the superhydrophobic coating is degraded, which causes an
increase in sliding angle due to the change from the Cassie-Baxter wetting mode to the
Wenzel wetting mode [29,30,33–36]. As long as the temperature of the droplet is higher
than that of the superhydrophobic coating surface, i.e., ∆T > 0, the water vapor from the
droplet can condense on the coating surface. In addition, a greater temperature difference
drives the water vaporization and condensation, enhancing the change of wetting mode
from the Cassie-Baxter model to the fully Wenzel model. In fact, only for ∆T > 0, where the
temperature of the droplet was higher than that of the superhydrophobic coating surface,
was a significant increase in sliding angle observed, as shown in Figure 4. The significant
increase in the sliding angles compared with the cases for ∆T ≤ 0 implied the change of
wetting mode from the Cassie-Baxter mode with lower adhesion to the Wenzel mode with
higher adhesion [25]. Furthermore, a greater temperature difference resulted in a higher
sliding angle, as shown in Figure 4.

The evaporation rate of the droplet, dm/dt, depends on the temperature difference
and is described as follows, if convective and conductive heat transfer between the droplet
and the air is neglected [37]:

dm
dt

= 4πrDVρa
Psat,d − Psat,a

Pa

MV
Ma

, (2)

where r is the droplet radius, DV is the diffusion coefficient of the water vapor in the air,
ρa is the air density, Pa is the air pressure, Psat,d and Psat,a are the saturated vapor pressure
at the temperature of the droplet surface and the air around the droplet, respectively, and
MV and Ma are the molecular weights of the water vapor and the air, respectively. The
saturated vapor pressure is a function of temperature, so it can be expected that a greater
temperature difference leads to water vaporization, increasing the moisture over the colder
superhydrophobic coating surface.

The condensation rate of the water vapor was also considered. The rate of condensa-
tion growth, dr/dt, can be approximated as follows [38–40]:

dr
dt

≈ hi

(
Tsat − Tc

ρL H f

)
, (3)

where hi is the interfacial heat transfer coefficient [38], Tsat is the saturated air temperature,
i.e., the temperature of the saturated vapor within roughness, Hf is the latent heat of va-
porization, and ρL is the water density. Here, the saturated air temperature was defined as
Tsat = (Td − Tc)/2, so the rate of condensation growth depended on the temperature differ-
ence. Equation (3) indicates that a larger temperature difference enhances the condensation
over the colder superhydrophobic coating surface.

The sliding angle of superhydrophobic coatings is influenced by the temperatures
of droplets and superhydrophobic coating surfaces [31,32]. However, the temperature
difference between the droplet and superhydrophobic coating surface is also a considerable
parameter to evaluate the sliding angle of the superhydrophobic coating when ∆T of > 0 is
given as a potential condition. In fact, the change in the temperatures of the droplet and the
superhydrophobic coating surface did not show a significant impact on the sliding angles
measured, as shown in Figure 3, where there was no temperature difference between the
droplet and the superhydrophobic coating surface. In contrast, an increasing temperature
difference significantly impacted the sliding angles for ∆T > 0, where droplet cooling
occurred, as shown in Figure 4.
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6. Conclusions

The influences of the temperatures of a water droplet and a superhydrophobic coating
surface and the temperature difference between the two on a sliding angle were investigated
to identify whether the temperatures or the temperature difference dominate the droplet’s
mobility. The temperature difference was given by setting the temperatures of a droplet
and a superhydrophobic coating surface to −5 ◦C, 5 ◦C, and 25 ◦C. It was concluded that
the temperature difference has a more critical impact on the droplet’s mobility than the
temperatures themselves. If the droplet temperature was equal to the superhydrophobic
coating surface temperature, i.e., ∆T = 0, a change in the temperatures did not significantly
impact the sliding angle. Sliding angles remained nearly constant and were less than
10◦ for ∆T = 0. If the droplet temperature was lower than the superhydrophobic coating
surface temperature, i.e., ∆T < 0, the sliding angle also remained less than 10◦, regardless
of the size of the temperature difference. However, if the temperature of the droplet
was higher than that of the superhydrophobic coating surface, i.e., ∆T > 0, temperature
differences ∆T of 10 ◦C, 20 ◦C, and 30 ◦C had impacts on the sliding angle with observed
sliding angles of 17◦, 41◦, and 49◦, respectively. The temperature difference had a higher
impact than the temperatures of the droplet and the coating surface. For successful aircraft
icing prevention, the temperature difference should be as low as possible during droplets’
travel. A significant temperature difference can fail to remove melted droplets from a
superhydrophobic coating surface, causing an ice accretion. In other words, excessively
heated melted droplets adhere to a colder superhydrophobic coating surface during the
droplets’ travel, causing secondary icing. An equipped heater must properly warm the
superhydrophobic coating surface to keep temperature difference low, until the droplets
are removed from the surface.
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