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Abstract: In order to solve the problem of how to efficiently control a large-scale swarm Unmanned
Aerial Vehicle (UAV) system, which performs complex tasks with limited manpower in a non-ideal
environment, this paper proposes a parallel UAV swarm control method. The key technology of
parallel control is to establish a one-to-one artificial UAV system corresponding to the aerial swarm
UAV on the ground. This paper focuses on the computational experiments algorithm for artificial
UAV system establishment, including data processing, model identification, model verification
and state prediction. Furthermore, this paper performs a comprehensive flight mission with four
common modes (climbing, level flighting, turning and descending) for verification. The results of the
identification experiment present a good consistency between the outputs of the refined dynamics
model and the real flight data. The prediction experiment results show that the prediction method in
this paper can basically guarantee that the prediction states error is kept within 10% about 16 s.

Keywords: parallel system; Unmanned Aerial Vehicle (UAV); system identification; state prediction

1. Introduction

Unmanned Aerial Vehicle (UAV) swarm has become a frontier hot spot in the field of
UAV research. A common swarm control method is that the operator issues top-level tasks
to the swarm and supervises the execution of the UAV’s tasks in real-time. This control
method has higher requirements for the operator, not only requires the operator to monitor
the status of the swarm at all times, but also requires the operator to have good accident
response and handling capabilities. However, this will put a greater burden on operators.
As the scale of the swarm expands and swarm tasks become more complex and diversified,
it will undoubtedly require huge labor costs to complete swarm tasks. Moreover, this
method is more dependent on the timeliness and reliability of link transmission. When
link interruption or packet loss occurs, it is difficult to ensure the effectiveness of control.

This paper draws on the theory of parallel systems and proposes a parallel control
method, which provides a new way to solve the problem of swarm control. Feiyue Wang
proposed a parallel intelligent computing and control theory that integrates Artificial
Systems, Computational Experiments and Parallel Execution [1] to cut down system
complexity and diversity, ease the control and improve experiment repeatability in real
natural social systems. The core idea of this theoretical system is to build a data-driven
artificial system for carrying out computing experiments under a complex and changeable
system environment [2], so as to normalize the interaction between the actual system
and the artificial system. Thus, a quantitative, implementable and real-time computing
experiments can be realized for the complex actual situation, and the bottleneck of the
complex system can be effectively solved.

In recent years, parallel theory and methods have been successfully applied to traffic
management [3–5], unmanned vehicle control [6–8], social computing [9–14], intelligent
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learning [15–17] and other fields [18–20]. Based on the parallel theory, Jin studied the par-
allel control method of traffic signals and proposed an end-to-end recommendation system
for urban traffic controls and management [3]. Li proposed a parallel testing method to test
and verify the understanding of complex traffic scenarios and driving decision-making ca-
pabilities of unmanned vehicles. This work has important enlightening significance for the
construction and testing of other artificial intelligence systems. Moreover, it has been pub-
lished by Science Robotics as a “Focus Article” of artificial intelligence research [6]. Wang
applied the parallel theory to the field of social computing, studied social computing and
parallel intelligence and constructed an artificial community for studying cyber interactive
behavior of message publishing [9,10]. Wang and Zhang integrated dynamic programming
and analytical intelligence and proposed the principle of parallel dynamic programming
to improve the planning efficiency of deep reinforcement learning [17]. Wang and Yang
proposed parallel networks to provide new solutions for improving the allocation, man-
agement and utilization of network resources [18]. Wang and Guo extended the parallel
theory into the computer vision field and proposed the concept and basic framework of
Parallel Vision [19]. Moreover, Kang studied the parallel management method of plant,
which optimizes profitability, productivity and sustainability [20].

The basic framework of a parallel UAV system is established as shown in Figure 1.
There is a one-to-one artificial UAV system corresponding to the aerial swarm UAV on the
ground, while each artificial UAV system contains a baseline dynamics model of UAV and
a controller model consistent with the airborne. The artificial UAV running on the time axis
is several control cycles ahead of the real system. On the one hand, an iterative-optimized
artificial system is developed by making continuous real-time corrections based on the
real system operating status data returned by the data link to approach the actual system.
Furthermore, the future trend and possible accidents of the actual system can be predicted
by combining with the environmental data. The traditional control mode, in which the
operator directly assigns tasks to the UAV swarm, is transformed into the parallel control
mode, in which tasks are both assigned to the actual system and the parallel system at the
same time. The parallel UAV system optimizes top-level tasks in real-time according to
the predicted system status and uploads the optimized tasks to the ground control station.
This can reduce the burden on the operator while ensuring the effectiveness of UAV control
over the swarm, and improve the control capability of the UAV swarm.
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Figure 1. Basic framework of a parallel Unmanned Aerial Vehicle (UAV) system.

The method in this paper uses a parallel UAV system as an auxiliary decision-making
layer and decouples the control problem of UAV swarms, a complex time-varying system,
with the support of huge computing resources on the ground. Moreover, the continuously
revised parallel UAV model also guarantees the effectiveness of the control. The swarm
control method proposed in this article is expected to greatly reduce the time, manpower
and material costs, and find a new solution to the large-scale UAV swarm control problem.
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2. Problem Statement

In order to realize the parallel control of the UAV swarm through a parallel UAV
system, it is necessary to study the modeling method, state prediction method and real-time
task replanning method, which can meet the requirements of parallel control accuracy. This
paper mainly studies the modeling method and state prediction method of parallel UAV.

The key to realizing a parallel UAV system is to obtain a real-time and accurate parallel
UAV model. The traditional accurate modeling method needs a wind tunnel experiment,
which is expensive and complex. Therefore, a more practical, real-time and available
modeling method with accuracy that satisfies parallel prediction and parallel control is
needed. The system identification has the characteristics of simplicity, efficiency and low
cost, so this paper uses the system identification method to model the parallel UAV.

System identification has three elements: identification data, model structure and
identification criterion. The identification criterion is determined by the identification
method. The identification data can be obtained by collecting flight data from the actual
UAV system.

Hence, the identification data collected from the actual UAV system can be defined as

X = {xi,m = (xi,1, xi,2, . . . , xi,M), i ∈ {1, 2, . . . , N}} (1)

where xi,m denotes the multivariable observations at a particular time step, xi,1, xi,2, . . . , xi,M
is the value of the variable at time step i, and M is the number of UAVs in the UAV swarm.

Then, the structure of the identification model needs to be determined. Common
model structures are the state space model, the differential equation model and the transfer
function model. The UAV system is a typical multiple-input multiple-output (MIMO)
system, and the state-space model can well reflect the actual physical characteristics of the
MIMO system. Therefore, the identification model can be defined as{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) + n(k)

(2)

Among them, x is the state vector of the system, y is the output vector of the system, u
is the input vector of the system, n is the noise vector, and ABCD is the coefficient matrix
of the system.

In order to improve the identification effect, the lateral and longitudinal identification
models of UAV are established in this paper.

In the longitudinal drone model, there are
x(k) =

[
Vx(k) Vz(k) Q(k) θ(k)

]T

u(k) =
[

δelev(k) δthr(k)
]T

D = 0
(3)

where Vx is the speed along the x-axis in the airframe coordinate system, Vz is the speed
along the z-axis in the airframe coordinate system, Q is the pitch angular velocity, θ is the
pitch angle, δelev is the elevator deflection angle, and δthr is the throttle control amount.

In the lateral drone model, there are
x(k) =

[
φ(k) ψ(k) P(k) R(k) Vy(k)

]T

u(k) =
[

δail(k) δrud(k)
]T

D = 0
(4)

where φ is the roll angle, ψ is the yaw angle, P is the roll angular velocity, R is the yaw
angular velocity, Vy is the speed along the y-axis in the airframe coordinate system, δail is
the aileron deflection angle, and δrud is the rudder deflection angle.
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3. Approach
3.1. Model Identification

The subspace identification method is often used to identify the dynamic model of
aircraft and can obtain a relatively good MIMO model without the initial model of the
system. However, on the one hand, due to the lack of optimal process, the model identified
by the subspace identification method is often sub-optimal. In order to obtain the optimal
solution, the results need to be further optimized. On the other hand, when identifying high-
order MIMO system models, the optimization-based identification algorithm is sensitive to
the initial conditions, and generally, it is necessary to use the approximate optimal model
as the initial conditions. Thus, in order to obtain better identification results, this paper
proposes a two-step data-driven identification method: firstly, given the absence of the
initial model of the system, the UAV dynamic model can be obtained directly from the
identification data through the subspace identification method. Then, on the basis of the
identification results in the first step, the prediction error identification method based on
the optimization algorithm is used to further optimize the results for optimal solution.

Firstly, the subspace identification algorithm is used for identification. The subspace
identification method integrates system theory, linear algebra and statistics, and can directly
estimate the state-space model of the MIMO system from input–output data [21–23]. The
basic idea is to obtain the model parameters from the row subspace and column subspace
of the input–output Hankel matrix projection.

Suppose the discrete state space equation of the system is Equation (2).
Assuming that the noise n is not related to the inputs u and the above system is

controllable and observable,
Make:

Yq(k) = [y(k), y(k + 1), . . . , y(k + q− 1)] (5)

Uq(k) and Nq(k) are defined in the same way as Yq(k).
Then:

Yq(k) = Oqx(k) + ΓqUq(k) + Nq(k) (6)

where:
Oq is the extended observability matrix of the system:

Oq = (C CA . . . CAq−1)
T

(7)

Γq is the lower triangular Toeplitz matrix:

Γq =


D 0 · · · 0

CB D · · · 0
...

...
. . .

...
CAq−2B CAq−3B · · · D

 (8)

Then make:
Y =

[
Yq(1) Yq(2) · · ·Yq(N)

]
X =

[
x(1) x(2) · · · x(N)

]
U =

[
Uq(1) Uq(2) · · · Uq(N)

]
N =

[
Nq(1) Nq(2) · · · Nq(N)

] (9)

One can then get:
Y = OqX + ΓqU + N (10)

Then, the orthogonal basis of U can be defined as:

Π⊥UH = I −UH(UUH)
−1

U (11)
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Multiply both sides of Equation (10) by Π⊥UH to get:

YΠ⊥UH = OqXΠ⊥UH + NΠ⊥UH (12)

Singular value decomposition of YΠ⊥UH :

(
Re
(

YΠ⊥UH

)
Im
(

YΠ⊥UH

))
=
(

Us U0
)( Σs 0

0 Σ0

)(
VT

s
VT

0

)
(13)

where Us is the singular value vector, Σs is the corresponding singular value.
The column space of YΠ⊥UH and Oq is the same [23]. Thus, YΠ⊥UH and Oq have the

same singular value. Therefore, the estimate of Oq can be calculated by

Ôq = UsΣs
1/2 (14)

Then, combining Equations (7) and (14) can directly obtain the estimated value Â, Ĉ
of A, C.

According to the following formula, the estimated value B̂, D̂ of B, D can be obtained
by solving the least square problem:

arg min
B,D∈R

N

∑
k=1
‖y(t)− Ĉ(qI − Â)

−1Bu(t)− Du(t)− Ĉ(qI − Â)
−1x0δ(t)‖

2
(15)

where I is the Identity matrix, x0 is the initial state, and δ(t) is unit pulse input at time 0.
Then, the identification result of the subspace identification algorithm will be obtained,

which will be used as the initial model of the prediction error method.
Define error vector:

ε = Y− Ŷ (16)

Among them, Y is the actual measured value, and Ŷ is the model’s estimated value.
The objective function is defined as

J = εTε (17)

In order to obtain the best fitting model with the experimental data, the objective
function J should be minimized. The estimation parameters can be obtained by the Newton–
Raphson method [24] and the identification model can be obtained.

3.2. Data Processing
3.2.1. Data Preprocessing

Since the actual data communication process may cause data packet loss and com-
munication delay, in order to make the collected data reflect the flight status of the UAV
as truly as possible, the collected flight data must be preprocessed (including time-stamp
calibration and interpolation correction).

The data collected from the actual system contain time information. Therefore, taking
the pitch angle data θ as an example, it can be defined as:

xi,θ = [dataθ(i), timeθ(i)], (i = 0, 1, 2, · · · , N) (18)

where dataθ(i) is the specific value of pitch angle and timeθ(i) is the data collection time.
Firstly, time calibration is performed on these data. Then, the Lagrange interpolation

method is used to complete the data lost during transmission.
For example:



Aerospace 2021, 8, 99 6 of 13

For the known n + 1 sampling points (a0, b0) . . . (an+1, bn+1), the Lagrange interpola-
tion formula is:

L(a) =
n
∑

i=0
bili(a)

li(a) =
n
∏

j=0,j 6=i

a−aj
ai−aj

, (i = 0, 1, 2, · · · , n)
(19)

Part of the data lost during the transmission process can be supplemented by For-
mula (20), so as to solve the problem of data packet loss and time delay during the data
transmission process.

3.2.2. Sliding Time Window Method

A critical problem that usually exists in online identification is “data saturation”, which
indicates that the ever-growing data collected during experiments may be overwhelmed
by old data [25]. This may cause the parameter estimates to fail to track changes in time-
varying parameters, resulting in a gradual loss of correction ability of the algorithm. This
is because, if the identification algorithm gives the same reliability to both new and old
data, then the amount of information obtained from the new data decreases accordingly.

To solve this, the sliding time window [26] method is developed. The sliding time
window method only identifies the latest N data each time, and all the previous data are
abandoned, as shown in Figure 2.

For example, when T = i, the identification data are:

DATA(i) = {data(i− N + 1), data(i− N + 2), · · · , data(i− 1), data(i)} (20)

Then, when T = i + 1, a new data point data(i + 1) is added and an old data data(i−
N + 1) point is eliminated:

DATA(i + 1) = {data(i− N + 2), data(i− N + 3), · · · , data(i), data(i + 1)} (21)

In this way, it is maintained that only the latest N data are taken for calculation
each time, thereby ensuring that the information provided by the new data will not be
overwhelmed by the old data, so the algorithm can always correct the model.
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3.3. Model Verification

To guarantee that the artificial UAV system is always up to date corresponding to the
physical UAV system, it is necessary to perform model verification on the identification
results. The validation of the identification model was performed by comparing the model
response with the real flight data.

In previous literature, various model quality metrics have been put forward to evaluate
the quality of the identified model. The normalized root mean square error (NRMSE) is
often used to measure the deviation between the estimated value and the actual value.
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Thus, this paper uses NRMSE as the fit metric of the model response and the flight data to
judge the quality of the identification model. The calculation formula of NRMSE fitness
value is:

f it = (1− ‖y− ŷ‖
‖y− y‖ )× 100% (22)

where y is the actual flight data, ŷ is the model estimation data, and y is the mean value of
y. f it varies between −∞ (bad fit) and 100 (perfect fit). When the f it is greater than 0, the
model fits the data better than the sample mean of the output, so the identification result
is acceptable.

3.4. State Prediction

The UAV system is a typical causal system, whose outputs are only related to the
current states and inputs. When the system is at the moment k, ignoring the output noise,
its state outputs can be defined as:{

y(k) = Cx(k) + Du(k)
x(k + 1) = Ax(k) + Bu(k)

(23)

Then, the predicted output is:

ŷ(k + n) = Cx̂(k + n) + Dû(k + n) (24)

where:
x̂(k + n) = Ax̂(k + n− 1) + Bû(k + n− 1)
x̂(k + n− 1) = Ax̂(k + n− 2) + Bû(k + n− 2)
...
x̂(k + 1) = Ax(k) + Bu(k)

(25)

which is:

x̂(k + n) = Anx(k) + An−1Bu(k) + An−2Bû(k + 1) + · · ·+ ABû(k + n− 2) + Bû(k + n− 1) (26)

where x̂(•) is the prediction value of states, û(•) is the prediction value of inputs. x(k) and
u(k) are the actual system states and inputs at moment k.

Then, to obtain the predicted outputs value, the predicted inputs value needs to be
obtained. For the UAV system in this article, the inputs are the control amount of the
rudder surface and the throttle, which are calculated by the flight controller according to
the status and route of the UAV. Therefore, by simply sending the state prediction value
x̂(k + n− 1) to the controller, the inputs û(k + n) are obtained.

This article uses two identical flight controllers as the flight controllers for the actual
UAV system and the artificial UAV system, which loads them with the same mission route.
The state prediction process is shown in Figure 3:
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First, by using the system inputs u(k) and the states x(k), the predicted states
x̂(k + 1) and the predicted outputs ŷ(k) are calculated according to Formula (24). Then, the
predicted states x̂(k + 1) of the UAV system are sent to the flight controller, and the control
information returned by the flight controller is used as the predicted inputs û(k + 1). The
process above is cyclic; thus, the predicted states of the system can be obtained by repeating
the process.

3.5. Method Overview

The method overview of this article is as follows: through Computational Experiment,
after processing the flight states data of the actual UAV system, the model identification
method is used to identify the system model, and the result is used as the model of
the artificial system after the model is verified to be qualified, and the modeling of the
artificial UAV system is realized. Finally, the predicted states of the actual UAV system
can be obtained through the state prediction method of the artificial UAV system, as
Figure 4 shows.
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Algorithm 1 outlines the Computational Experiments Algorithm of this article. Flight
data are obtained by real-time sampling. Data_preprocess() and Time_window_sliding()
are used to process flight data. Firststep_Identify() and Refine_Identify() are used to
identify the system model. Moreover, Model_verify() is used to perform model verification
on the identification results. State_prediction() is used to predict the states of UAV system.
In order to improve the accuracy of system identification, it is necessary to preprocess the
flight data. To solve the data saturation problem, the sliding time window method is used
to process flight data. Then, a two-step data-driven identification method is applied to
identify model parameters. Finally, model verification is performed and the threshold v is
set. The data fitting value is calculated. If Fit_value is greater than v, the qualified model
is used for state prediction. Otherwise, model identification is performed again.
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Algorithm 1 Computational Experiments Algorithm

Input:
-Flight_data: the real-time flight states
-Model_input: the control signal
Output:
-Qualified_model: the qualified identification model
-Predicted_data: the predicted states
Workflow(Repeat):
1: Preprocessed_data = Data_preprocess (Flight_data);
2: Identify_data = Time_window_ sliding (Preprocessed_data);
3: Firststep_model = Firststep_Identify (Identify_data);
4: Refined_model = Refine_Identify (Identify_data, Firststep _model);
5: Fit_value = Model_verify (Refined_model, Flight_data);
6: if Fit_value < v

7: goto 3
8: else
9: Qualified_model = Refined_model;
10: end if
11: Predicted_state = State_prediction(Qualified_model, Model_input);
12: return Qualified_model and Predicted_state

4. Results and Discussion
4.1. Experimental Setup

To verify the feasibility and effectiveness of our proposed method, we build a UAV
hardware-in-the-loop (HITL) real-time simulation system [27] and conduct the flight simu-
lation experiments based on this system.

As shown in Figure 5, the established HITL simulation system is composed of an
X-Plane flight simulation software, a qgroundcontrol (QGC) ground control station, and
two pixhawks flight controllers. X-plane is a professional flight simulation software with
highly realistic airplane models. Pixhawk is a common UAV flight controller, widely
used in flight control of fixed-wing UAV and rotary-wing UAV. QGC is a UAV ground
control station software. The UAV HITL real-time simulation system based on X-Plane,
pixhawk and QGC works well on simulating a real UAV flight and is free of environmental
conditions when conducting flight test and data collection.
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There are many modes in UAV mission flight. In this paper, the four most common
modes (including climbing, descending, turning and level flighting) are selected for experi-
ments. Therefore, this paper designs a mission flight route that includes all four modes (as
shown in Figure 6).
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4.2. Model Identification Experiment

In this paper, a subspace identification method and a two-step data-driven identifica-
tion method are used to identify the dynamic model of UAV in flight. Take the UAV speed
as an example: Figure 7 shows the comparison between the actual data and the model
estimation of the two identification results. The yellow line refers to the actual flight data
corresponding to state, the red line indicates the estimated value of the Firststep_model,
and the blue line shows the estimated value of the Qualified_model. It can be seen intu-
itively that the model estimation of the Qualified_model is closer to the real data than the
estimation of the Firststep_model. This shows that the identification model obtained by
the two-step data-driven identification method can reflect the physical characteristics of
the actual model better than the identification model obtained by the subspace method.
This proves the effectiveness of the two-step data-driven identification method.
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A quantitative analysis of the two identification results is given below: 100 identifica-
tion experiments were carried out in four flight modes, and the results were statistically
analyzed. Figure 8 shows the box diagram of both the NRMSE fitness value of each state
of subspace identification method and the two-step data-driven identification method
proposed in this paper. Among them, the red diamond refers to the result of the two-step
data-driven identification method, and the blue diamond is the result of the subspace iden-
tification method. It can be seen that the fit value of the two-step data-driven identification
method is significantly greater than the fit value of the subspace identification method,
indicating that the two-step data-driven identification method can better identify the actual
model than the subspace identification method.
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4.3. State Prediction Experiment

According to the state prediction method proposed in this paper, the identification
model based on the two-step data-driven identification method is used to predict the flight
states of the UAV.

Figure 9a shows the comparison of mission route, actual trajectory and predicted
trajectory for 60 s from a certain moment. The blue line is the given mission route, the
red line is the actual flight trajectory and the yellow line is the predicted flight trajectory.
Figure 9b shows the relative error between the predicted value and the actual value of
the spatial location. Then, this paper conducted 20 prediction experiments and counted
the times when the relative error was less than 10%. Figure 9c shows the boxplot of the
time when the relative error is less than 10% in 20 prediction experiments. When the
relative error is less than 10%, it can be seen that the time fluctuates around 20 s. Taking the
lower quartile of the above statistical results of 16.5 s as the prediction confidence value,
this paper considers that the parallel system and state prediction method proposed can
basically guarantee that the prediction states error is kept within 10% for about 16 s. If
there is a communication interruption, the predicted state of the parallel UAV system can
be maintained at about 10% within the first 16 s of the communication interruption. Then,
according to the parallel control method, the parallel UAV system can use these predicted
states to find out unexpected situations that may occur, and promptly generate dangerous
disposal plans, which improves the efficiency of emergency handling of dangerous events
and thus improves the effectiveness of cluster control.
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5. Conclusions and Future Work

In order to solve the problem of how to improve the effectiveness of UAV swarm
control in non-ideal environments, this paper proposes a parallel swarm control method
and studies the model identification and state prediction methods. The experimental
results of model estimation and state prediction show that the model outputs obtained
by the identification method have a good consistency with the actual flight data, and the
state prediction error can be kept below 10% about 16 s, indicating that the effectiveness of
swarm control can be guaranteed within 16 s of communication interruption.

In the future, the real-time task replanning method will be further studied based on
the parallel artificial UAV system. Combined with the existing research results, the parallel
UAV system is improved to provide a new solution for UAV swarm control.
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