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Abstract: In this paper we address the prediction of aircraft boarding using a machine learning
approach. Reliable process predictions of aircraft turnaround are an important element to further
increase the punctuality of airline operations. In this context, aircraft turnaround is mainly controlled
by operational experts, but the critical aircraft boarding is driven by the passengers’ experience and
willingness or ability to follow the proposed procedures. Thus, we used a developed complexity
metric to evaluate the actual boarding progress and a machine learning approach to predict the final
boarding time during running operations. A validated passenger boarding model is used to provide
reliable aircraft status data, since no operational data are available today. These data are aggregated
to a time-based complexity value and used as input for our recurrent neural network approach for
predicting the boarding progress. In particular we use a Long Short-Term Memory model to learn the
dynamical passenger behavior over time with regards to the given complexity metric.
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1. Introduction

From an air transportation system point of view, a flight could be seen as a gate-to-gate or an
air-to-air process. Whereas the gate-to-gate is more focused on the aircraft trajectory flown, the air-to-air
process concentrates more on airport ground operations. Typical standard deviations for airborne
flights are 30 s at 20 min before arrival [1], but could increase to 15 min when the aircraft is still on the
ground [2]. The average time variability (measured as standard deviation) in the flight phase (5.3 min)
is lower than the variability of both departure (16.6 min) and arrival (18.6 min) [3]. If the aircraft is
departing from one airport, changes with regards to arrival time at the next are comparatively small [4].
Current research in the field of flight operations addresses economic, operational and ecological
efficiency [5–11]. To evaluate these operational deviations in the economic context, reference values
are provided for the cost of delay to European airlines [12].

Aircraft turnaround on the ground consists of the major ground handling operations at the stand:
Deboarding, catering, cleaning, fueling and boarding as well as the parallel processes of unloading
and loading [13]. All these handling processes follow clearly defined procedures and are mainly
controlled by ground handling, airport or airline staff [14,15]. But in particular, aircraft boarding is
driven by passengers’ experience and willingness or ability to follow the proposed procedures and
is disturbed by individual events, such as late arrivals, no-shows, specific (high) numbers of hand
luggage items, or priority passengers (privileged boarding). To provide reliable values for the target
off-block time, which is used as a planning time stamp for the subsequently following departure
procedures, all critical turnaround processes are subject to prediction. In this context, complex,
stochastic, and passenger-controlled boarding makes it difficult to reliably predict turnaround times,
even if boarding is already in progress.
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1.1. Status Quo

Our research is connected to three different topics: Aircraft turnaround, passenger behavior,
and machine learning. Comprehensive overviews are provided for aircraft turnaround [16],
for boarding [17], and for the corresponding economic impact [12,18,19]. Relevant studies include,
but are not limited to, the following current examples.

Aircraft turnaround, as part of the aircraft trajectory over the day of operations, has to be
part of the optimization strategies for minimizing flight delays [20] and ensuring flight connections
considering operational uncertainties [21,22]. In this context, turnaround absorbs inbound delay [15]
and could enhance slot adherence at airports [23] or mitigate problems of push-back scheduling [24].
A microscopic turnaround model provides an open and closed-loop process control for higher
automation levels in turnaround management [25]. The inter-aircraft propagated delay is focused on
in Reference [26], since individual delays could result in parallel demand of turnaround resources
(personnel, space, and equipment). Furthermore, delayed use of infrastructure may cause excessive
demand in later time frames, and both turnaround stability and resource efficiency will provide
significant benefits for airline and airport operations [15,27]. The compatibility of airline operations,
existing ground handling procedures and airport infrastructure requirements were analyzed in the
context of alternative energy concepts [28]. With a focus on efficient aircraft boarding, Milne and
Kelly [29] develop a method that assigns passengers to seats so that their luggage is distributed evenly
throughout the cabin, assuming a less time-consuming process for finding available storage in the
overhead compartment. Qiang et al. [30] propose a boarding strategy that allows passengers with a
large amount of hand luggage to board first. Milne and Salari [31] assign passengers to seats according
to the number of hand luggage items and propose that passengers with few pieces should be seated
close to the entry. Zeineddine [32] emphasizes the importance of groups when traveling by aircraft
and proposes a method whereby all group members should board together, assuming a minimum of
individual interferences in the group.

Fuchte [33] addresses aircraft design and, in particular, the impact of aircraft cabin modifications
with regard to boarding efficiency. Schmidt et al. [34,35] evaluate novel aircraft layout configurations
and seating concepts for single- and twin-aisle aircraft with 180–300 seats. The innovative
approach to dynamically changing the cabin infrastructure through a Side-Slip Seat is evaluated [36].
Gwynne et al. [37] perform a series of small-scale laboratory tests to help quantify individual passenger
boarding and deplaning movement considering seat pitch, hand luggage items, and instructions for
passengers. Schultz [38] provides a set of operational data including classification of boarding times,
passenger arrival times, time to store hand luggage, and passenger interactions in the aircraft cabin as
a fundamental basis for boarding model calibration.

If the research is aimed at finding an optimal solution for the boarding sequence,
evolutionary/genetic algorithms are used to solve the complex problem (e.g., [36,39–41]). In this
context, neural network models have gained increasing popularity in many fields and modes
of transportation research due to their parameter-free and data-driven nature. Reitmann and
Nachtigall [42] focus on a performance analysis of the complex air traffic management system.
Maa et al. [43] apply a Long Short-Term Neural Network to capture nonlinear traffic dynamic and
to overcome issues of back-propagated error. Deep learning techniques are also used to predict
traffic flows, addressing the sharp nonlinearities caused by transitions between free flow, breakdown,
recovery and congestion [44,45]. Zhou et al. [46] proposes a Recurrent Neural Network based
microscopic car following model that is able to accurately capture and predict traffic oscillation,
where Zhong et al. [47] aims at an online prediction model of non-nominal traffic conditions.

1.2. Scope and Structure of the Document

This paper provides an approach, which enables the prediction of the aircraft boarding progress
during running operations (real-time). We expect that this prediction will significantly benefit future
aircraft turnaround operations (e.g., precise scheduling due to the reduction of uncertainties). Since no
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operational data are available, we use a calibrated stochastic boarding model, which covers individual
passenger behaviors and operational constraints [48,49] to provide real-time status information about
the boarding progress [50]. This information is the input for a Long Short-Term Memory (LSTM [51])
model, which is trained with boarding simulation data (time series) and enables a prediction of the
final boarding time.

In Section 2, the basic concept of the stochastic boarding model and the simulation environment
are briefly introduced. To allow for a reliable prediction of the boarding progress, passenger boarding
is described by a developed complexity metric. In Section 3, general principles of the machine learning
approach are discussed followed by a test set up to demonstrate the prediction capabilities of our
machine learning approach. Finally, the paper closes with a summary and outlook.

2. Aircraft Boarding Model

For the application of machine learning approaches, an input dataset is needed which provides
a time-based, comprehensive description of the current aircraft boarding progress. Since these
data are not available from real airline operations, a validated stochastic boarding model is used.
This model covers the dynamic behavior of passengers as well as operational constraints of airline
and airports [48,52,53]. Furthermore, the model input parameters (passenger characteristics) are
calibrated with data from field measurements and the simulation results (boarding times) are validated
against real boarding events [38]. This model provides both detailed and aggregated information
about the boarding progress. To preprocess these data as input for the machine learning approach,
a complexity metric is introduced which covers relevant evaluation parameters: Seat load progress,
passenger interactions, and the chronological order of passenger arrival. Since the stochastic boarding
model and the complexity metric are already described in detail [50], only a brief introduction is
provided. Finally, the boarding model provides appropriate datasets for both learning and testing of
the machine learning approach.

In the context of aircraft boarding, passenger movement is assumed to be a stochastic,
forward-directed, one-dimensional and discrete (time and space) process. Therefore, the aircraft
cabin layout is transferred into a regular grid with aircraft entries, aisle(s) and passenger seats (Airbus
A320 as in Reference [13] with 29 rows and 174 seats). The regular grid consists of equal cells with
an edge length of 0.4 m, whereas a cell can either be free or occupied by exactly one passenger.
The boarding process is built on a simple set of three rules for passenger movements, where passengers
enter at assigned aircraft door, move forward along the aisle from cell to cell until reaching the assigned
seat row, and store hand luggage and take the seat.

The passenger movement only depends on the state of the next cell (free or occupied). The hand
luggage storage and seat taking are stochastic processes and depend on individual number of hand
luggage items and seat constellations in the seat row, respectively. An operational scenario is mainly
defined by: Underlying seat layout, number of passengers to board, arrival rate of the passengers at
aircraft door, number of used aircraft doors, specific boarding strategy, and conformance of passengers
in following boarding strategy. In this context, the conformance rate describes several operational
deviations from the intended boarding strategy caused by boarding services provided by airlines
(e.g., priority boarding, 1st class seats) or late arrival of passengers.

To model different boarding strategies, the grid-based approach enables both individual
assessment of seats and classification/aggregation according to the intended boarding strategy of
airlines. Commonly used boarding strategies are defined by a specific sequence of passengers (and
their seats) that is mainly driven by a combination of the block (based on seat rows) and outside-in
procedures (based on seat positions: Window seats are boarded first, followed by middle and aisle
seats). In the simulation environment, the boarding process is implemented as follows. Depending on
the seat load, a specific number of randomly chosen seats are used for boarding. For each seat,
a passenger (agent) is created. The agent has individual parameters, such as number of hand luggage
items, maximum walking speed in the aisle, seat position, number of hand luggage items (time to store
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the hand luggage [38]) and arrival time at the assigned aircraft door. Furthermore, several process
characteristics could be recorded during simulation runs, such as waiting times, number of interactions,
and current cabin status. To create the time needed to store the hand luggage, a triangular distribution
provides a stochastic time value depending on the number of items (see References [48,49]). The agents
are sorted with regard to the current boarding strategy (depending on their seats). From this sequence,
a given percentage of agents are taken out of sequence (conformance rate) and inserted into a position
which contradicts the current strategy (e.g., inserted into a different boarding block). According to the
arrival time distribution and the boarding sequence, each agent receives a timestamp, where the agent
enters the simulation and appears at the aircraft door queue.

When the simulation starts, the first agent of this queue enters the aircraft by moving from the
queue to the entry cell of the aisle grid (aircraft door), if this cell is free. In each simulation step,
all agents located in the row are moved to the next cell, if possible (free cell and not arrived at the seat
row), using a shuffled sequential update procedure (emulate parallel update behavior [52,53]). If the
agent arrives at their seat row, they wait at this position for as long as it takes to store the hand luggage.
Depending on the seat row condition (e.g., assigned window seat but blocked aisle or middle seat or
both are blocked), an additional waiting time is stochastically generated to perform the seat shuffle
before the passenger is seated. Each boarding scenario is simulated 100,000 times to achieve reliable
calculation results in order to determine the average boarding time.

Complexity Metric

Passenger interactions during boarding are affecting the boarding time and are mandatory
to consider in a prediction model. Thus, the complexity metric consists of the already realized
boarding progress and three major indicators: Seat position in seat row, seat row position in cabin,
and boarding sequence.

The interactions caused in the seat row (already used seats) are quantified by positions of the
specific seats (window, middle, aisle) and corresponding operational seat conditions Cseat: Not
used/not booked (Cseat = 0), free (Cseat = 1), and occupied (Cseat = 2). Since the A320 reference is a
single-aisle aircraft with three seats located on the left and the right side respectively, these three seats
are aggregated to a seat row condition Crow, left|right (Crow). A trinary aggregation of seat conditions per
row, according to (1), results in 27 distinct values for Crow. In (1), c represents the number of different
seat conditions; in the current case c = 3.

Crow, left|right = c0 Caisle + c1 Cmiddle + c2 Cwindow (1)

As an example, if all seats in a row are occupied Crow is 26 (= 30 × 2 + 31 × 2 + 32 × 2). Each Crow

condition results in a specific number of interactions between passengers and depends on the seat
position of the arriving passenger. If, however, the aisle seat is occupied, the next arriving passenger
demands a seat shuffle with a minimum of four movements (cf. Reference [48,54]): The passenger in
the aisle has to step out, the arriving passenger steps into the row (two steps) and the first passenger
steps back into the row. Thus, the interference potential Pr, left|right (Pr) of a specific Crow condition is
defined as the expected value of passenger movements (interactions) derived from all probable future
seat row conditions (equally distributed).

Figure 1 exhibits the transition between different seat row conditions and the corresponding
development of the interference potential Pr (green circles). Here, Pr develops over time and
decreases continuously if the seat row is filled up window seat first, followed by middle and aisle seat
(Pr, step 0 = 8.3, Pr, step 1 = 3.5, Pr, step 2 = 1). This development results in only three passenger movements,
since each passenger can directly step into the row without any interactions. If the boarding sequence
starts with the aisle seat and ends with the middle seat, nine passenger movements are necessary,
and Pr develops Pr, step 0 = 10.5, Pr, step 1 = 9.0, and Pr, step 2 = 9.
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Figure 1. Seat row progress (aisle seat right, window seat left) indicating movements/interactions
expected (green circle) and realized (blue circle).

If other passengers are hindered in reaching their corresponding seat row and queue in the aisle,
the negative effect of high Pr values increases and results in both additional waiting times and longer
boarding time. This effect depends on the number of passengers who have to pass this row or wait
in the queue to reach the seats located in front of this row. In a first approximation, only passing
passengers with higher seat row numbers will be considered, by counting all seats which are currently
free in the concerned row and the rows behind (number is stored as pb,r and modeled as exponential
function with A as scaling factor). In (2), Pr is weighted by indirect interferences and summed up
over all seat rows (m) to an aircraft-wide interference potential P. Furthermore, the difference between
the minimum and maximum of P is considered as ∆P in the complexity metric as a measurement of
convergence (Pr is the expected value in (2)).

P =
m

∑
r=1

Pr, left|righte
A pb,r (2)

The passenger arrival queue will also be taken into consideration (passengers who have already
passed the boarding counter but have not been seated in the aircraft). Beginning with the first passenger
i in the queue (with n members), each subsequently following passenger j is marked as negatively
influenced (d = 1) if they want to reach a seat row with a higher seat row number than the passenger in
front of him (3). An exponential function considers both weighted distance of passengers in the queue
and expected seat row interference potential Pri for passenger i. While iterating over all passengers
in the queue, the current passenger i will be virtually seated, which results in a continuous update
of future seat row states for subsequently following passengers. Thus, a lower value of function k (3)
indicates a lower level of influence between the passengers in the queue.

k(t) =
n
∑

i=1

n
∑
j=i

di,jeB(i−j)Pr i, left|right

di,j =

{
1, seat rowpax i ≤ seat rowpax j
0, seat rowpax i > seat rowpax j

(3)

Finally, the complexity metric consists of four different indicators to evaluate the boarding
progress. These indicators address the major, time-dependent drivers of boarding: Progress of seat
load f sl (percentage of seated passengers), interference potential P (blocked seat rows), convergence of
interference potential ∆P, and passenger sequence k (consider passengers boarded, but not seated).
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Figure 2 exhibits the complexity metric using a fast and slow boarding scenario. In the following,
the seat load is defined as 1 − f sl to ensure a consistent behavior of all indicators, which end with a
value of zero when the boarding is finished.
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3. Machine Learning

To overcome resulting complexities and dynamic effects of passenger boarding, time predictions
can be applied using advanced statistical procedures, such as neural networks. This section provides
an overview concerning data transformation techniques to convert boarding time series to applicable
datasets for machine learning (cf. Reference [55]), followed by a brief description of neural network
structures and introduction of Long Short-Term Memory (LSTM) model.

3.1. Data Transformation

Similar to the majority of machine learning approaches, neural networks use supervised learning
methods, and compare the predicted output against a reference value. For a given set of input variables
{x(t)} and output variables {y(t)} an algorithm learns a functional dependency between input and
output. The goal is to efficiently approximate the real (unknown) functional correlation and to predict
output variables y ∈ {y(t)} by just having input variables x ∈ {x(t)}. In the context of passenger boarding,
a sequence of observations is given as a dataset of time series demonstrating the boarding progress.
Time series are differentiated into univariate (single variable) and multivariate (datasets) series. In the
context of this paper, the multivariate time series consists of a complexity metric that consists of P
and 1 − f sl. The boarding simulation provides time values for every single indicator of the metric,
which could be used as multi-layer input considering current and past values. Since classical statistical
methods do not perform well for this given problem, the application of complex and intelligent
machine learning approaches is favored. As an example, the boarding dataset could be transformed to
a supervised learning problem using P and 1 − f sl with a window size of one, as a multi-to-one time
series (three input features and one output value, see Table 1, cf. Graves et al. [56]).

In order to follow up a multi-step prediction, the prediction datasets of the network are adjusted
online (during active phase of application). Thus, we ensure that long-term predictions are made over
different steps of time and train the network so that it is able to handle time-carried calculation errors.
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Table 1. Multi-to-one time series using P (interference potential) and 1 − f sl (seat load).

Time Input A Input B Input C Output

t XA XB XC Y

0 - - P(0) 1 − f sl (1)
1 P(0) 1 − f sl (1) P(1) 1 − f sl (2)
2 P(1) 1 − f sl (2) P(2) 1 − f sl (3)
3 P(2) 1 − f sl (3) P(3) prediction

3.2. Neural Network Models

A standard recurrent neural network (RNN) computes the hidden vector sequence h = (h(1), . . . ,
h(T)) and output vector sequence y = (y(1), . . . , y(T)) for a given input sequence x = (x(1), . . . , x(T))
as shown in (4) and (5). The looped structure of RNN allows information to be passed from one
step to the next. The term W denotes a weight matrix to the corresponding connections (e.g., Why is
the hidden-output weight matrix), which basically comprise the parametrization sensibilities of the
network. The b terms denote bias vectors as an extraction of the threshold function (e.g., by as the
output hidden vector) and H is the hidden layer function. Usually H is an element-wise application of
the logistic sigmoid function.

h(t) = H(Why x(t) + Whh h(t − 1) + bh) (4)

y(t) = Why h(t) + by (5)

Unlike classical feedforward neural networks, RNN models perform well in detecting and
processing long-term correlations of inputs and outputs. Figure 3 depicts the effect of input vectors
x(0) and x(1) to the hidden output h(t + 1). Such interdependencies, delayed over certain time
steps, are essential part of a multivariate data analysis, as the dynamic of the system needs to be
described through the influence of indicators to each other. LSTM networks address the problem of
vanishing gradients of RNN by splitting in four inner gates and building so-called memory cells to
store information in a long-range context. They also have a chain-like structure, but the module A (see
Figure 3) has a different composition to explicitly address the long-term dependency problem.
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Instead of having a single neural network layer, the inner workings of LSTM modules are divided
into four gates. The LSTM structure is implemented through the following Equations (6)–(9). Here,
σ and tanh represent the specific, element-wise applied activation functions of the LSTM, and i, f,
o, c denote the inner-cell gates, namely the input gate, forget gate, output gate, and cell activation
vectors respectively.

h i(t) = σ (Wxi x(t) + Whi h(t − 1) + Wci c(t − 1) + bi) (6)

f (t) = σ (Wx f x(t) + Wh f h(t − 1) + Wc f c(t − 1) + bf) (7)

c(t) = f (t) × c(t − 1) + i(t) × tanh(Wxc x(t) + Whc h(t − 1) + bc (8)

o(t) = σ (Wxo x(t) + Who h(t − 1) + Wco c(t) + bo) (9)
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Gate c needs to be equal to the hidden vector h. As LSTM models are RNN based models,
the overall composition is similar with regards to transforming an input set to an output set through
a module A. In LSTM models A consists of a cell memory (information storage) with four gates:
Computing input, updating cell, forget about certain information and setting output (cf. Reference [57]).
To train RNN structures, a backpropagation through time algorithm is applied (cf. Reference [58]).
It is used for calculating the gradients of the error with respect to weight matrices {W}. For a given
batch size, which sets the amount of data after a gradient, an update is performed and the neuronal
network can adjust its parametrization to retrieve given target values. With the capability to “store”
knowledge, LSTMs overcome the RNN deficiency in handling vanishing gradients (a backpropagation
of tanh values near 0 or 1 over time might lead to a blowing-up or disappearing). RNN-based models
are characterized by the number of hidden layers (nhiddenlayer), the number of samples propagated
through the network for each gradient update (batch-size), the number of trained epochs (nepoch) and
the learning rate (η).

4. Simulation Framework and Application

The input data for the LSTM model is provided by the stochastic boarding model that covers
several boarding strategies (cf. Reference [59]). We implemented the given RNN structures in Python
3.6 using the open-source deep learning library Keras 2.1.3 (frontend) with the open-source framework
TensorFlow 1.5.0 (backend) and Scipy 1.0.0 (routines for numerical integration and optimization).
Training and testing were performed on a GPU (NVIDIA Geforce 980 TI) with CUDA as the parallel
computing platform and the application programming interface.

4.1. Simulation Framework

The simulation framework consists of fundamental components: Layers (LSTM, concatenate,
input, dense, dropout), optimizers, and metric/loss functions. The structure of the implemented LSTM
depends on the given scenario. For a one-dimensional application, one input layer is added to the
model, followed by the LSTM recurrent layer, dense layer, and dropout layer. Figure 4 depicts the
network structure for both cases: One-to-one (solid) and multi-to-multi regression (dotted). Each layer
consists of specific tasks in the framework. The LSTM (recurrent) layer represents the specific machine
learning model. The input layer is a Keras tensor object from the underlying backend (TensorFlow)
and contains certain attributes to build a Keras model (knowing only in-/outputs).
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The concatenate layer merges several inputs (list of tensors, with the same shape) and returns a
single tensor. The dense layer is a regular densely-connected neural network layer and implements the
fundamental output operation: Output = act(dot(input, kernel) + bias), where act is the element-wise
activation function, kernel is a weights matrix created by the layer, and bias is a vector created by the
layer. The dropout layer provides a regularization technique, which prevents complex co-adaptations
on training data in neural networks (overfitting), by dropping a number of samples in the network
(dropout rate). An optimizer is one of the two arguments required to finally compile the Keras model.
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Two optimizers are available: AdaGrad (adaptive gradient algorithm), modified stochastic gradient
descent approach with per-parameter learning rate [60], and Adam (Adaptive Moment Estimation),
a family of sub-gradient methods that dynamically incorporate knowledge of the geometry of the data
observed in earlier iterations [61]. The optimizers are parametrized with the learning rates η = 0.01
and η = 0.001 for AdaGrad and Adam respectively. The loss function (optimization score function) of
our model is the mean squared error (MSE).

4.2. Scenario Definition

In Table 2 an overview is given about the analyzed scenarios, focusing on the prediction of
boarding progress of random and individual boarding strategies [59,62]. In scenario A, the prediction of
random boarding is based on the learning of random boarding scenarios. In scenario B, the progress
of individual boarding is predicted on the basis of all available boarding data sets, which additionally
consists of block, back-to-front, outside-in, and reverse pyramid boarding strategies [59]. As input values P,
1 − f sl, or both are used to predict the output 1 − f sl. Both scenarios are computed for a given set of
start times: 300 s, 400 s, and 600 s after boarding starts. Supervised learning demands for a separation
of datasets into training, test and (obligatory) validation data. In our scenario analysis, we have 25,000
separate boarding results for random and individual boarding, and 100,000 boarding results from
other strategies. We use 1000 randomly chosen boarding events to train the LSTM and 100 randomly
chosen non-compiled /non-trained boarding events to evaluate the prediction.

Table 2. Scenario definition.

Scenario Boarding Strategy Learned Boarding Strategy
Predicted

Input from
Complexity Metric

Prediction Start
Time t (s)

A random random {P,
1 − f sl,

[P, 1 − f sl]}

{300,
400,
500}B all (random, block, back-to-front,

outside-in, reverse pyramid, individual) individual

4.3. Results

We trained the model within 18 different variants: Two main scenarios, each with three different
input sets split into three different starting points. Similar experiments demonstrate several clues
concerning useful combinations of certain optimizers and network structures depending on the amount
of input data [42]. As we have two one-dimensional input sets (P, 1 − f sl), a more complex structure is
needed, so we set nhiddenlayer to 120 for these variants (number of hidden LSTM layer next to input
and output layer). In the case of uni-variate prediction we set nhiddenlayer to 40. A higher number
of nhiddenlayer increases the ability of the network to understand complex data structures, but also
increases the complexity of learning. AdaGrad works quite well with a more complex network
structure, as its learning rate η is 10 times lower than η of Adam, which improves gradient-based
learning in multi-branched inlays.

For both cases, uni- and multi-variate, we trained the model 20 times, which results in 20,000
training cycles. The window size is set to 25 and 5 for uni-variate and multi-variate respectively.
The batch size (number of samples per gradient update) was set to 50 to balance computation
time and accuracy. The model worked with a dropout rate of 0.5% for one-dimensional, 2.0%
for multi-dimensional applications. Figure 5 exhibits results for slow and fast boarding progress.
Here, the prediction starts at 400 s. The comparison of simulated (surrogate for real data) and
predicted boarding progress demonstrates that the LSTM model is a promising candidate for boarding
time prediction.
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Figure 5. Prediction of seat load progress with LSTM model for two exemplary boarding events
(prediction is based on the progress reached after 400 s).

Table 3 provides an overview of the accuracy of each single model to the corresponding scenario
including the computation time. The accuracy is measured as the mean error value of 100 tested
scenarios after the training phase (1000 sample sets). In the table, cells are color coded, where red
stands for MSE (learning error) >65%, green if MSE <25%, and yellow is in between these values.
The major difference between scenario A and B is that in scenario A the LSTM is trained with
corresponding data sets (random boarding input to predict random boarding). Scenario B uses
all available boarding scenarios (random, block, back-to-front, outside-in, reverse pyramid, individual,
cf. Reference [59]) for training to predict the progress of individually optimized boarding events.
In doing so, the computational time t for training increases significantly (see Table 3). Due to the
higher bandwidth of operational progresses in scenario B, the LSTM model is able to identify more
interdependencies during the training process, which results in a more precise prediction.

Table 3. Results of computations of scenario A and scenario B.

Scenario Input (Uni-Variate) Input (Uni-Variate) Input (Multi-Variate)

A [1 − f sl] [P] [P, 1 − f sl]

300 s NaN t = 1h 28min NaN t = 1h 43min 289.8 s t = 3h 02min
400 s 536.1 s t = 0h 30min NaN t = 1h 01min 143.7 s t = 2h 38min
500 s 301.8 s t = 0h 32min NaN t = 0h 49min 122.3 s t = 2h 12min

B [1 − f sl] [P] [P, 1 − f sl]

300 s 603.1 s t = 1h 13min NaN t = 1h 19min 168,1 s t = 7h 38min
400 s 292.1 s t = 1h 12min 389.9 s t = 1h 10min 77.3 s t = 8h 01min
500 s 246.0 s t = 1h 08min 412.4 s t = 1h 11min 73.3 s t = 7h 54min

NaN = not a number, prediction fails.

As common statistical regression models would gradually suffer from calculation errors,
neural network models receive the knowledge to end at a value of 0 (end of boarding) in every
case of training. An insufficiently trained model might show bifurcations and chaotic behavior during
the boarding process (red colored cells or NaN results), but would tend to reach the value 0 at the
end. In our case, uni-variate inputs are not sufficient, and only multi-variate input results in reliable
output values. Figure 6 shows the boarding progress (above) and time differences (below) for scenario
A at specific progress steps using 400 s as start time for prediction. The box-plots of time differences
refer to values illustrated in Table 3, using an interquartile ratio of 0.7. The red colored boxes include
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the last computed steps of the simulations (99% progress). The time variations at random boarding
are significantly higher than that for the individual boarding, which results in higher inner progress
differences as well. Both predictions show a positive and nearly symmetric offset over time.
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5. Summary and Outlook

With this paper we provide the first approach to predicting the aircraft boarding progress, which is
expected to significantly benefit aircraft turnaround operations in the future (e.g., precise scheduling
by reduction of operational uncertainties). Since no operational data are available today from inside
the aircraft cabin, we used a calibrated stochastic boarding model to provide reliable data for passenger
movements. The data sets provide detailed status information about the current progress of aircraft
boarding. This status contains seat load (percentage of seated passengers), interference potential
(complexity measure considering already used seats), and the quality of the boarding sequence
(chronological order of passenger arrival). These data are the input for a Long Short-Term Memory
model, which is trained with time series data from the boarding simulation and enables a prediction of
the final boarding time.

We show that the proposed complexity metric (multi-variate input) is a necessary element to
predict the aircraft boarding progress, since uni-variate input results in non-converging behavior.
Whilst the progress of the seat load was insufficient to reliably predict the boarding (high deviations),
together with the complexity metric, the deviations are reduced by up to 75%. A closer look at
differences between boarding progress and prediction shows an inherent positive offset. If this offset
could be classified as constant, the prediction showed only a difference of ±20 s between prediction
and underlying boarding simulation. Therefore, we see our LSTM approach as a promising candidate
for extended investigations. In the next step, we want to extend our LSTM approach to improve the
prediction process (e.g., robustness) and show the economic benefit for airport and airline operators.
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