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Abstract: We propose an approach for the design of the subsonic part of plane and axisymmetric
Laval nozzles for real gases. The proposed approach is based on the hodograph method and allows
one to solve the inverse design problem directly. Real gas effects are taken into consideration using
the chemical equilibrium model. We present nozzle contours computed with the proposed method
for a stoichiometric methane-air mixture. Results confirm that real gas effects have a strong influence
on the nozzle shape. The described method can be used in the design of nozzles for rocket engines
and for high-enthalpy wind tunnels.

Keywords: Laval nozzle; hodograph method; real gas; chemical equilibrium; inverse problem;
potential flow

1. Introduction

Supersonic nozzles are used in jet engines and in high-enthalpy wind tunnels for acceleration of a
hot gas mixture in order to generate uniform supersonic flow. In the case of a rocket engine, the overall
efficiency of the engine largely depends on the quality of the flow produced by the nozzle. In the case
of a wind tunnel, flow uniformity directly influences the accuracy of experimental measurements. That
is why in both cases there is a need for an accurate and robust method for the design of the nozzle.

Typically, it is desired to obtain a uniform supersonic flow with prescribed velocity and pressure
values at the output cross-section of the nozzle. Sometimes, additional requirements should be
satisfied, such as the absence of flow separations and shocks, limitations on the length of the nozzle,
etc. Therefore, the design of a nozzle naturally leads to an inverse problem: to find the unknown
nozzle shape knowing the flow parameters in some regions. It is worth mentioning that since transonic
flow is very subtle and is prone to instability, such an inverse problem should be solved with very
high accuracy.

If there is no separation in the boundary layer on the nozzle wall, then viscous effects
have a negligible effect and the inviscid compressible gas model (Euler equations) can be used.
In the supersonic region, the governing equations are of the hyperbolic type, and consequently,
the inverse problem for plane and axisymmetric nozzles can be solved relatively easily by means of
characteristic-based methods [1,2]. The main difficulty is the solution of the inverse problem in the
subsonic region where the governing equations are elliptic.

Apparently, the first approach for this problem was based on the solution of the Cauchy problem
for an elliptic second-order equation for the stream function [3]. Initial data (velocity distribution)
were set on the axis of symmetry (or plane of symmetry), and then, a marching method in the
orthogonal direction was applied. Such a Cauchy problem for an elliptic equation is the well-known
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Hadamard’s example of an ill-posed problem. Thereby, in order to obtain a generalized solution, some
regularizations were applied, which led to an unavoidable error in the solution. Besides, it has been
noted that nozzles computed using this approach are very long.

Modern methods for the design of a Laval nozzle are mostly based on the solution of the direct
problem, like the majority of methods for aerodynamic optimization. The direct problem is to find
a flow in a nozzle with a given shape and given inflow conditions. In contrast with the inverse
problem, the direct problem is well posed and in most cases can be solved numerically. Usually in
such optimization methods, the nozzle shape is parameterized using any convenient form (splines,
Bezier curves), and the problem is formulated as a functional minimization problem for some objective
function, for instance the norm of the deviation of output flow parameters from the desired ones [1,4,5].

One of the main advantages of such methods is their versatility: one can use any appropriate
optimization procedure equipped with any black-box solver for the direct problem. Nevertheless,
in many cases, the direct problem should be solved many times (from hundreds to thousands),
which leads to large computational effort. Apart from that, at intermediate steps of the optimization
procedure, the solution of the direct problem may produce complicated flow structures containing,
for instance, flow separations and instabilities. In such cases, numerical methods for the direct
problem can still produce large errors. That is why there is a need for methods that directly solve the
inverse problem.

In the present study, we extend the approach for aerodynamic optimization, described in [6],
which is applicable to inviscid plane and axisymmetric potential compressible flows of a perfect gas
with constant adiabatic index. This approach utilizes a transformation from the spatial (x, y) plane
to the hodograph plane. After such a transformation, velocity components become independent
variables, while space coordinates become unknowns. This technique was successfully applied to
a variety of problems including the design of spike nozzle [2], a nozzle guide vane [7] and Laval
nozzles for experimental facilities [6] in “TsNIIMash” (Central Research Institute of Machine Building).
Experimental measurements in these supersonic wind tunnels show that deviations from required the
Mach number at the outlet of nozzles do not exceed 1% and confirm the robustness of the method.
The problem statement in the hodograph plane provides the monotonicity of the velocity magnitude
along the nozzle wall. In accordance with boundary layer theory, this property guarantees the
separation of the free wall [8,9], which in turn justifies the applicability of the inviscid model. Another
advantage of this method is that it provides the opportunity to design nozzles with a plane sonic
surface. This allows one to design subsonic and supersonic parts of the nozzle separately.

The jet in rocket nozzles consists of a hot multicomponent mixture, and the typical temperature
in the subsonic part of a nozzle is about 3000–4000 K. The same is appliable for high-enthalpy wind
tunnels. Under such conditions, the perfect gas model is not valid, and real gas properties should
be taken into account. In this paper, the described approach is extended to real gases. The extension
is based on the fact that assuming chemical equilibrium or frozen reactions of the multicomponent
mixture has a two-parameter equation of state [10]. Using this property, we obtain the general form of
the equation for the stream function in the hodograph plane. To demonstrate the applicability of the
extended approach, we use the two-parameter equation of state arising from the chemical equilibrium
of the stoichiometric methane-air mixture.

The outline of the paper is the following: In Section 2, the main assumptions and governing
equations are briefly described. Section 3 is devoted to the formulation or the inverse design problem
in the hodograph plane. Section 4 contains short description of the chemical equilibrium model.
Computational results and discussion are presented in Section 5.

2. Potential 2D Flows of Real Gases

We consider plane or axisymmetric steady potential flow of an inviscid compressible gas obeying
an arbitrary two-parameter equation of state. We will use the following notation throughout this paper:
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• (x, y), physical coordinates,
• ρ, density,
• p, pressure,
• u, v, the x and y components of velocity,
• V =

√
u2 + v2, velocity magnitude,

• β, the angle between the velocity vector and x-axis
• M = V/a, the Mach number, a being the speed of sound,
• e, internal energy,
• i = e + p/ρ, enthalpy,
• I = i + V2/2 = i|V=0, full enthalpy,
• S, entropy,
• ψ, φ, stream function and potential, defined by ∇ψ = ρyN [−v, u]T , ∇φ = [u, v]T .

It was proven in [11] that flow potentiality implies that the entropy and stagnation enthalpy are
constant, just like in the case of ideal gas with a constant adiabatic index:

I = i + V2/2 = const = I0 (1)

S = const = S0 (2)

Using these first integrals, the system of Euler equations can be reduced to the system of
two equations: (

yNρ(V)u
)

x
+
(

yNρ(V)v
)

y
= 0 (3)

vx − uy = 0 (4)

The first equation is the continuity equation, and the second equation reflects the fact that the
flow is irrotational.

Due to the existence of the first integrals, the density, Mach number and other parameters of
potential flow are functions of the velocity magnitude only:

ρ(i, S) = ρ(I0 −V2/2, S0) = ρ(V) (5)

I0 and S0 are uniquely determined from the inlet conditions.
Equations (3) and (4) can be rewritten using natural coordinates φ and ψ for unknowns V and β [6]:

ρ(V)yN βψ +
1−M2(V)

V
Vφ = −N

sin β

Vy
(6)

βφ −
ρ(V)yN

V
Vψ = 0 (7)

The hodograph transformation is a mapping from (φ, ψ) or (x, y) to (V, β). Properties of this
transformation had been established in [6]. The change of variables can be performed easily with the
help of expressions like:

βφ =
∂(β, φ)

∂(φ, ψ)
=

∂(β, ψ)

∂(β, V)

∂(β, V)

∂(φ, ψ)
= ψV

∂(β, V)

∂(φ, ψ)
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Similarly, all derivatives in the equations can be expressed via derivatives with respect to β, V and
the Jacobian of hodograph mapping J = ∂(β, V)/∂(φ, ψ). This leads to the following equation:

ρV
[

V
ρ

ψV

]
V
+ (1−M2)ψββ = −ρV2N(Dβ sin β + 2D cos β) (8)

Here:

D =
∂(x, y)
∂(V, β)

= xVyβ − xβyV = −
(1−M2)/Vψ2

β + ψ2
VV

(ρVyN)2 + sin βρVNψβ
(9)

Coordinates x, y are connected with ψ through the relations:

xV =
1

ρyNV2 (−(1−M2) cos βψβ −V sin βψV − N sin β cos βρV2D)

xβ =
1

ρyNV2 (V
2 cos βψV −V sin βψβ)

yV =
1

ρyNV2

(
V cos βψV − (1−M2) sin βψβ − N sin2 βρV2D

)
yβ =

1
ρyNV2

(
V cos βψβ + V2 sin βψV

)
(10)

3. Inverse Problem Formulation in the Hodograph Plane

Since isolines of the ψ function correspond to stream lines, we can formulate the inverse nozzle
design problem as a well-posed boundary problem for second-order Equation (8) in the hodograph
plane [6].

In this paper, we utilize one of many possible formulations of the inverse problem (which is
depicted schematically in Figure 1 due to its simplicity. We consider an infinitely long nozzle; uniform
flow with velocity V0, which is parallel to the x axis, comes from infinity and approaches sonic velocity
on line D1D2.

Figure 1. Hodograph transformation for the flow in the nozzle.

As mentioned, such a scheme allows one to design subsonic and supersonic parts of the nozzle
separately, which is very convenient.

We require that along the curvilinear part O1B of the nozzle wall, the velocity magnitude is
constant and equal to V0. Consequently, O1 and O2 are mapped to the point O in the hodograph plane,
and O1B is mapped to the vertical line segment.

Furthermore, we require that along the rectilinear part BC, the velocity magnitude is
monotonically increased from V0 to critical value Vcr such that M(Vcr) = 1. Since β = const along BC,
it is mapped to the horizontal line segment. Finally, we assume that along the CD2 part, the velocity
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magnitude equals Vcr, so it is mapped to the vertical line segment. Both ends of the straight sonic line
are mapped to the point D.

As mentioned, the OBCD part corresponds to one stream line and the OD part to another, which
leads to a straightforward statement of the boundary conditions.

The described flow scheme results in a very simple boundary problem for elliptic Equation (8)
with degeneration on the CD boundary, which can be solved easily using, for instance, the five-point
finite difference scheme on a uniform Cartesian grid. It should be noted that discontinuity in the
boundary conditions does not complicate the numerical procedure, since corner points are not used in
the difference scheme.

4. Chemical Equilibrium Model

At high temperatures, chemical reactions significantly change the chemical composition of the
gas mixture and, consequently, all the thermodynamic properties. That is why reactions should be
taken into account when designing a high-enthalpy nozzle.

In general case of chemical nonequilibrium additional equations for the concentrations of each
component should be solved, which are coupled with the equations of motion:

d~C
dt

= ~F(~C, T, p)

Fixing p and T locally and linearizing the right-hand side at the equilibrium concentrations ~Ceq,
for which ~F(~Ceq, T, p) = 0, we come to the following system:

d(~C− ~Ceq)

dt
=

∂~F
∂~C

(~Ceq, T, p)(~C− ~Ceq)

which has the solution:

(~C− ~Ceq)(t) = exp

(
t

∂~F
∂~C

(~Ceq, T, p)

)
(~C− ~Ceq)(0)

From this expression, it is clear that the relaxation time, e.g., the characteristic time for a mixture
to reach the equilibrium, is determined by the smallest in absolute value eigenvalue of the Jacobian
matrix: τchem ≈ 1/|λ|min. In the particular case of a simple reaction, this estimate is reduced to
τchem ≈ 1/kr(T, p), where kr is the reaction rate constant. In the general case, τchem depends both on
the reaction rate constants of all individual backward and forward reactions and the concentrations of
each component.

If this time is very small compared to characteristic time τV associated with gas motion, we can
assume that at each point, the mixture is in local chemical equilibrium. Another extreme case of frozen
reaction corresponds to large values of the ratio τchem/τV . The advantage of both models is that the
mixture can be described by the two-parameter equation of state, which is easily incorporated in the
framework of Section 2.

Here, we give a simple estimate for τchem based on the relaxation times of individual
reactions. To demonstrate the applicability of the described hodograph-based method, we consider
a stoichiometric methane-air mixture with 16 components: O, N, C, H, O2, N2, CO2, CO, NO, H2,
OH, H2O, HO2, H2O2, NO2, N2O. Equilibrium concentrations for T = 2000 K and 4000 K and p = 1
atmosphere are depicted in Figure 2. The relaxation times of dissociation-recombination reactions,
which play the most important role in our case, lying below 10−5 s for the considered temperature
range [12]. There are a few slow reactions, for instance the nitrogen oxidation reaction. The relaxation
time of this reaction varies from one second at T = 2000 K to about 7× 10−7 s at 4000 K [12]. However,
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the molar fractions of both NO and NO2 are very small at low temperatures, and the effect of such
reactions on the thermodynamic properties of the mixture is negligible.

The characteristic time of macroscopic motion in the subsonic part of a nozzle τV > L/Vcr, where
L is the nozzle length and Vcr is the speed of sound at the sonic surface. For L = 1 m, Vcr = 1000 m/s,
we obtain the estimate τV = 10−3. Thus, in our case, τV/τchem > 102 � 1, and the chemical equilibrium
model can be considered. We should note that for more complex mixtures, one should use more careful
estimates based on the detailed kinetic scheme and reaction rate constants.

The requirement τV � τchem is often not met in the supersonic part of the nozzle, if the density is
small. Nevertheless, the standard approach is to use the equilibrium approximation in the subsonic
part and the frozen flow approximation in the supersonic part of the nozzle [10]. Since the frozen flow
is a two-parameter gas, the proposed hodograph-based method can be applied to the supersonic part
as well.

Figure 2. Molar fractions of the components for temperatures of 2000 K and 4000 K.

The calculation of the equilibrium composition in a gas is performed by means of a numerical
solution of the law of mass action. The chemical equilibrium conditions can be written in the form:

L

∏
j=1

x
νij
j = xiP−νi Kpi(T)

νi =
L

∑
j=1

νij − 1, i = L + 1, N

(11)

where xi is the molar concentration of the i-th component, Kpi the equilibrium constant of the i-th
component and νij the stoichiometric coefficient.

With equations for the molar and mass concentration of components, the law of mass action
can be formulated in the form of the material balance system of equations with respect to the molar
concentrations of the components consisting of L linearly independent equations. When the system
is solved, it is possible to determine N unknown molar concentrations xi. The system is solved by
Newton’s method. In this case, the accuracy of the solution depends on the accuracy of the equilibrium
constants, which can be expressed through the free Gibbs energy. For the Gibbs energy, we use
approximations from [13,14]. The approximations have the following form:

Fk(x) = αkln(x) +
6

∑
s=1

αksxs−3, x ≡ T · 10−4, k = 1, N,
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where T is the temperature. Therefore, the equilibrium constants can be expressed through the Gibbs
energy from the following equations:

RAlnKpi(T) =
L

∑
j=1

νijFj(T)− Fi(T)−
1
T

miqi(0), i = L + 1, N,

where RA is the gas constant and miqi(0) the tabular values of the molar heat of the reaction. From
the obtained molar concentrations of the components, the molecular weight of the mixture can be
calculated. The density of the mixture is calculated from the equation of state of an ideal gas, taking
into account the molecular weight of the mixture.

To calculate the molar enthalpy, the following formula is used:

mkhk(T)−mkhk(0) = T2 d
dT

Fk(T), k = 1, N,

where mkhk(0) is the tabular values of the molar enthalpy of formation of the k-th component.
The specific enthalpy of the mixture is found from the specific enthalpies of the components:

h =
N

∑
k=1

ckhk,

The dependence of molar mass on T for the equilibrium stoichiometric methane-air mixture at
p = 1 atm is shown in Figure 3. This dependence demonstrates that at high temperatures (>1800 K),
real gas effects should be taken into account.

Figure 3. Molar mass of the methane-air mixture.

The described procedure yields all thermodynamic parameters of the chemically-equilibrated
mixture as functions of p and T. However, the coefficients in Equation (8) depend on enthalpy and
entropy. That is why an intermediate procedure is necessary to connect these two parameterizations.

Let us assume that we want to compute some quantity at (I∗, S∗). At first, we find the equations
of entropy isolines S = const in the (p, T) plane:

TdS = dI − dp/ρ = 0⇒ Ipdp + ITdT − dp/ρ = 0⇒ dT/dp = (1/ρ− Ip)/IT (12)
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Initial condition T(p0) = T0 for this ODE, which follows from the inlet condition for the nozzle,
defines one curve T(p), corresponding to some implicit value of entropy S∗. After that, solving
the equation:

I(p, T(p)) = I∗ (13)

we obtain pair (p, T). It should be noted that Equation (12) is integrated only once for the given
problem, yet (13) is solved for each value of V in each mesh node.

5. Results and Discussion

The boundary problem for Equation (8) depicted in Figure 1 is solved using the standard second
order five-point finite-difference scheme on a Cartesian mesh. In the axisymmetric case, the nonlinear
right-hand side term in Equation (8) is updated iteratively.

The color map of the solution ψ(V, β) for T0 = 300 K, p0 = 1 atm, M0 = 0.05 is illustrated in
Figure 4. The x axis corresponds to velocity magnitude V and the y axis to velocity angle β. Nozzle
contours are computed from the solution by integrating Equation (10) along the right, upper and left
boundaries (where ψ = 1) with the second order explicit Runge–Kutta method. Serial computations
show that 200 nodes along each direction are sufficient to obtain the mesh independent solution.

Figure 4. Color map of the solution of the boundary value problem in the hodograph plane.

Computed contours for different values of inlet temperature and βmax for p = 10 atm are plotted
in Figure 5. We present contours only for the plane case as it is more convenient for comparison.

As expected, the nozzle shape strongly depends on T since the chemical composition significantly
changes along the nozzle. In the case of T = 500 K, there are no reactions, and the computed contour
coincides with that computed using the perfect gas model. It is worth noting that the proposed method
allows one to compute contours with any βmax including βmax > π/2.

The presented contours demonstrate that the longest part of the contour is that on which the
velocity magnitude is constant.

Two velocity profiles along the nozzle wall for T0 = 3500, p0 = 100 atm are depicted in Figure 6.
As has been already mentioned, on of the advantages of the proposed method is that it provides
monotone acceleration of the flow along the nozzle wall, which in turn guarantees the separation of
the free flow. It can be seen from Figure 6 that acceleration can be very fast if the straight part of the
nozzle contour is short. This drawback can be eliminated by using non-rectangular domains in the
hodograph plane. In this case, we can provide a strictly increasing velocity profile.
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Figure 5. Nozzle contours.

Figure 6. Velocity magnitude along the nozzle wall.

6. Conclusions

In this paper, a novel approach for the design of the subsonic part of the axisymmetric and the
plane Laval nozzle is presented. The approach is based on the hodograph method, developed earlier
for the potential flow of perfect gases, and the chemical equilibrium model. The extension to real gases
is straightforward since real gas properties, usually available in tabular form, are encapsulated in the
coefficients of equations on the stream function.

The applicability of the proposed approach is demonstrated by the computation of plane nozzle
contours for different values of inlet temperature and pressure.

In our future work, we will investigate the applicability of the proposed method using a
comparison of the flow obtained from the inverse problem with the solution of the direct problem
with computed contours. Such a comparison will allow us to estimate the influence of uncertainty in



Aerospace 2018, 5, 96 10 of 10

the input data on the flow in the nozzle. Furthermore, we will try to use polygonal domains in the
hodograph plane in order to provide a strict increase of the velocity along the nozzle wall.

Author Contributions: A.C. developed numerical methods for inverse problem and wrote the draft; M.P. developed
methods for chemical part; R.D. performed calculations and made comparisons; E.S. was responsible for
conceptualization.

Funding: This work was supported by the Ministry of Education and Science of the Russian Federation, unique
project identifier RFMEFI60417X0181 (State assignment no. N14.604.21.0181 dated by 26.09.2017).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kraiko, A.; P’yankov, K. Effective direct methods for aerodynamic shape optimization. Comput. Math.
Math. Phys. 2010, 50, 1546–1552, doi:10.1134/S0965542510090071. [CrossRef]

2. Shifrin, E.; Kim, C. Shaping a nozzle with a central body by the chaplygin method. Dokl. Phys. 2005,
50, 143–146, doi:10.1134/1.1897989. [CrossRef]

3. Pirumov, U.; Suvorova, V. Numerical solution of an inverse problem of nozzle theory for a two-phase
gas-particle mixture. Fluid Dyn. 1986, 21, 595–603, doi:10.1007/BF01057146. [CrossRef]

4. Heath, C.; Gray, J.; Park, M.; Nielsen, E.; Carlson, J.R. Aerodynamic shape optimization of a dual-stream
supersonic plug nozzle. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA,
5–9 January 2015, doi:10.2514/6.2015-1047. [CrossRef]

5. Allman, J.G.; Hoffman, J.D. Design of maximum thrust nozzle contours by direct optimization methods.
AIAA J. 1981, 19, 750–751. [CrossRef]

6. Shifrin, E.G.; Belotserkovskii, O.M. Transonic Vortical Gas Flows; Wiley: Hoboken, NJ, USA, 1996.
7. Shifrin, E.; Kamenetskii, D. Hodograph method for turbine nozzle guide vane profiling. In Proceedings of

the ECCOMAS Computational Fluid Dynamics Conference, Paris, France, 9–13 September 1996; pp. 623–628.
8. Anderson, J.D., Jr. Fundamentals of Aerodynamics; Tata McGraw-Hill Education: New York, NY, USA, 2010.
9. Oleinik, O.A. Mathematical problems of boundary layer theory. Russ. Math. Surv. 1968, 23, 1. [CrossRef]
10. Lunev, V. Real Gas Flows with High Velocities; CRC Press: Boca Raton, FL, USA, 2009.
11. Shifrin, E. Potential 2D flows of real gases. Invariant equations in natural coordinates. Hodograph

transformation. Int. J. Appl. Eng. Res. 2015, 10, 34190–34193.
12. Zel’Dovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Courier

Corporation: North Chelmsford, MA, USA, 2012.
13. Gurvich, L.V.; Veyts, I.V.; Medvedev, V.A.; Khachkuruzov, G.A.; Yungman, V.S.; Bergman, G.A.; Baybuz, V.F.;

Iorish, V.S.; Yurkov, G.N.; Gorbov, S.I.; et al. Thermodynamic Properties of Individual Substances; Hemisphere
Publishing Corp.: New York, NY, USA, 1989; Volume 1, Part 2, p. 340.

14. D’angola, A.; Colonna, G.; Gorse, C.; Capitelli, M. Thermodynamic and transport properties in equilibrium
air plasmas in a wide pressure and temperature range. Eur. Phys. J. D 2008, 46, 129–150. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1134/S0965542510090071
http://dx.doi.org/10.1134/S0965542510090071
https://doi.org/10.1134/1.1897989
http://dx.doi.org/10.1134/1.1897989
https://doi.org/10.1007/BF01057146
http://dx.doi.org/10.1007/BF01057146
https://doi.org/10.2514/6.2015-1047
http://dx.doi.org/10.2514/6.2015-1047
http://dx.doi.org/10.2514/3.50999
http://dx.doi.org/10.1070/RM1968v023n03ABEH003781
http://dx.doi.org/10.1140/epjd/e2007-00305-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Potential 2D Flows of Real Gases
	Inverse Problem Formulation in the Hodograph Plane
	Chemical Equilibrium Model
	Results and Discussion
	Conclusions
	References

