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Abstract: Underexpanded jets exhibit interactions between turbulent shear layers and shock-cell
trains that yield complex phenomena that are absent in the more commonly studied perfectly
expanded jets. We quantitatively analyze these mechanisms by considering the interplay between
hydrodynamic (turbulence) and acoustic modes, using a validated large-eddy simulation.
Using momentum potential theory (MPT) to achieve energy segregation, the following observations
are made. The sharp gradients in fluctuations introduced by the shock-cell structure are captured
mostly in the hydrodynamic mode, whose amplitude is an order of magnitude larger than the
acoustic mode. The acoustic mode has a relatively smoother distribution, exhibiting a compact
wavepacket form. Proper orthogonal decomposition (POD) identifies the third-to-sixth cells as the
most dynamic structures. The imprint of shock cells is discernible in the nearfield of the acoustic mode,
primarily along the sideline direction. Energy interactions that feed the acoustic mode remain compact
in nature, facilitating a simple propagation technique for farfield noise prediction. The farfield
sound spectra show peak directivity at 30◦ to the downstream axis. The POD modes of the acoustic
component also identify two main energetic components in the wavepacket: one representative of
the periodic internal structure and the other of intermittent downstream lobes. The latter component
occurs at exactly the same frequency as, and displays high correlation with, the farfield peak noise
spectra, making the acoustic mode a better predictor of the dynamics than velocity fluctuations.

Keywords: underexpanded jets; shock-cell dynamics; acoustic mode

1. Introduction

Supersonic jets occur in numerous industrial and military applications. Among many features
of interest in such jets are their mixing and acoustic properties. Any mismatch between the pressure
at the jet exit and the ambient, i.e., imperfect expansion, yields compression and expansion cells
in the jet plume, through which pressure equalization takes place. The focus of this paper is on
an underexpanded jet, where the exit pressure is higher than the ambient. The initial flow outside
the jet comprises an expansion, which is followed by alternating compression and expansion cells
(shock cells).

Imperfectly expanded jets are relatively common in propulsion applications. For example,
in modern commercial turbofan engines, underexpanded conditions exist in the fan stream at cruise
conditions [1], giving rise to shock cells in the jet plume. Experimental evidence [2] suggests that the
presence of shock-cells enhances the spreading rate in such jets. At higher pressure differentials between
the nozzle exit and the ambient [3], the oblique shocks constituting the shock-cells transform into a
normal shock or Mach disc [4], making the flow downstream of it subsonic [5]. Although challenging
in nature, extraction of plume characteristics of underexpanded jets have provided valuable insights
into the thermal radiation properties of hot jets encountered in propulsion systems [6], relation between
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pressure variations induced by the shock-cells [7] and acoustic fluctuations, and effects of discontinuities
on velocity distribution in the core region [8].

The interaction of the free-shear layer exiting the nozzle walls with the shock-cells has
significant acoustic ramifications. Imperfectly expanded jets display additional acoustic components
relative to subsonic and perfectly-expanded jets, which contain coherent and fine-scale noise
components [9,10]. Tam [11] and Tam [12] may be consulted for reviews of these various noise
mechanisms. Briefly, the turbulent mixing noise usually observed in subsonic jets is accompanied in
the imperfectly expanded case by two additional components—screech [13] and broadband shock
associated noise (BBSAN) [14,15]. These efforts have resulted in a general mechanistic understanding
of noise mechanisms in supersonic jets, and ongoing efforts continue to examine specific aspects of
increasingly complex configurations [16].

Advances in computational capabilities have provided significant insights into the turbulent
and acoustic characteristics of perfectly [17–19] and imperfectly [20] expanded jets. Bodony and
Lele [21] demonstrated the capability of large-eddy simulations (LES) to recreate farfield acoustic
properties of turbulent jets across various Mach regimes and temperature ratios. Simulations have
also provided insights into complex operating conditions like high density-ratios [22], presence of
control mechanisms [23], effects of non-trivial nozzle geometries [24] and associated instabilities [25]
of the shear layer. Such high-fidelity simulations greatly expand access to detailed spatio-temporal
fluctuations in the turbulent region and shock-cell dynamics, particularly, for imperfectly expanded
jets. Computational studies have made possible numerical models [26] of shock-associated
noise and identified new physics, such as shock cell leakage [27]. The current work seeks
to provide a fundamental understanding of the mechanisms that arise in underexpanded jets.
Specifically, we examine the interplay between turbulent and acoustic energies in an underexpanded
jet, using LES anchored in experimental data. The problem is introduced in Section 2, along with the
jet-configuration (Section 2.1), numerics (Section 2.2) and validation (Section 2.3).

The physics is then explored using an energy-based analysis, which relies on a carefully-chosen
framework to characterize fluctuations into physical modes representing various vortical and acoustic
mechanisms of interest. The framework adopted to distinguish these components is momentum
potential theory (MPT), as proposed by Doak [28] (Section 2.4). The theoretical and numerical
considerations underlying MPT are presented in Sections 2.4.1 and 2.4.2, respectively. The resulting
segregation of fluctuations into hydrodynamic (or vortical), acoustic and thermal (or entropic) provides
a framework to view the jet as a dynamical system. From this perspective, hydrodynamic inputs in
the form of Kelvin-Helmholtz instability waves in the initial shear-layer region, as well as small and
large coherent-eddies in the turbulent region, trigger an acoustic response. This is also consistent
with the proposition of Goldstein [29], that the first step towards acoustic source identification
is proper quantification of acoustic fluctuations. MPT also provides insights into such sources,
which constitute inter-modal energy transfers, and has previously been employed to understand
wavepacket radiation-characteristics in an idealized flow [30], as well as in a perfectly expanded jet [31].

For shock-cell-noise sources of interest in the present work, correlation studies of sound
directivity and apparent source locations [32,33] can be made more informative and revealing, if the
hydrodynamic and acoustic signals are demarcated [34]. Various filtering techniques have been used
to isolate acoustic fluctuations in the nearfield of jets, including Fourier- [35] and wavelet-based [36]
analyses. MPT essentially provides a considerably more generalized approach to implement such
a filtering technique to segregate hydrodynamic and acoustic fluctuations based on a theoretical
approach consistent with the physical nature of respective fluctuations. The results section (Section 3)
systematically develops this energy-based analysis of the underexpanded jet of interest, by introducing
the physical form of the filtered hydrodynamic and acoustic fluctuations. The effect of the shock
cell structures and associated strong gradients on acoustic and hydrodynamic modes are delineated.
Section 3.2 discusses the nearfield sound signature in terms of the acoustic mode, and documents its
superiority to the raw pressure fluctuation field.
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The time-accurate data from the LES allows a detailed analysis of the shock-dynamics in the
core. The streamwise location of the oscillating shock-cells can influence screech [37] and BBSAN [38].
Section 3.3 uses the MPT-defined acoustic mode, together with proper orthogonal decomposition
(POD) [39] to connect various sound mechanisms to the corresponding unsteadiness in shock-cells.

Simplified farfield-prediction-techniques for turbulent jets rely on acoustic analogies [40–42].
The acoustic mode greatly facilitates such predictions: source mechanisms which contribute to acoustic
energy are discussed in Section 3.4. The compactness of the radial support of acoustic sources leads to
significant advantages in near and far-field sound pressure level (SPL) predictions. POD is also used
to isolate specific modes of oscillations in the acoustic mode, which contribute to periodic as well as
intermittently-radiated components in the core.

2. Physical Problem and Methodology

This section details the flow parameters associated with the underexpanded-jet configuration
of interest, followed by numerical considerations. These latter include the Navier-Stokes LES solver
as well as the methodology employed to decompose the flow into its hydrodynamic, acoustic and
thermal components.

2.1. Flowfield Parameters

The underexpanded jet corresponds to the experimental results obtained at the Syracuse Anechoic
facility [43]. A convergent nozzle is used, with a stagnation pressure of P∗o = 295.2 kPa, to yield an
underexpanded condition at the exit, and consequent series of expansion and compression cells in the
potential core of the jet. Variables marked with a (∗) represent dimensional quantities. The ambient
conditions are as follows: temperature, T∗amb = 298 K, density, ρ∗amb = 1.3 kg/m3, and sonic velocity,
a∗amb = 346 m/s. The nozzle diameter is D∗j = 0.0508 m. These values are taken as the reference
parameters for non-dimensionalization, resulting in a fully expanded Mach number, Mj = 1.3
and a Reynolds number, Re = 1.2 × 106, at the jet exit. Non-dimensional time is represented as
t = t∗/T∗C, where, T∗C = D∗j /a∗amb. Non-dimensional frequency is represented in terms of Strouhal
number, St = f ∗D∗j /a∗amb, where f ∗ is the dimensional frequency in Hz. In the following description,

the time-averaged mean of a variable is represented with an over-bar ((·)), while the fluctuation
component is denoted with a prime ((·)′). The boundary layer exiting the nozzle is thin, and the jet
undergoes rapid transition into a fully turbulent state immediately downstream of the nozzle exit.
The resulting interaction of the shear layer and the shock cells, along with the associated acoustic
mechanisms are the focus of the subsequent sections.

2.2. Numerical Technique for the Navier-Stokes Solver

The current work employs an implicit large-eddy simulation (ILES) approach to calculate the
flowfield of the underexpanded jet. This approach has been extensively used and validated for several
controlled and uncontrolled configurations of subsonic and supersonic jets, and may be found in other
references [23,44–46]. A brief summary of the numerics is provided below for completeness.

The three-dimensional, unsteady, compressible Navier-Stokes equations are solved in curvilinear
coordinates in the strong conservation form. Using a coordinate transformation form the Cartesian
coordinate system (x, y, z, t) to the curvilinear coordinate system (ξ, η, ζ, τ) [47,48], the Navier-Stokes
equations can be represented as:

∂

∂τ

(
U
J

)
+

∂F̂
∂ξ

+
∂Ĝ
∂η

+
∂Ĥ
∂ζ

=
1

Re

(
∂F̂v

∂ξ
+

∂Ĝv

∂η
+

∂Ĥv

∂ζ

)
, (1)

where U = [ρ, ρu, ρv, ρw, ρE]T is the solution vector and J = ∂(ξ, η, ζ, τ)/∂(x, y, z, t) is the Jacobian
of the transformation. The details of the inviscid and viscous flux terms, (F̂, Ĝ, Ĥ, F̂v, Ĝv, Ĥv),
are provided in Rizzetta and Visbal [49]. The ideal gas law, p = ρT/γM2

j is also assumed to hold,
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where T is temperature, and γ is the ratio of specific heats. The dynamic viscosity, µ is specified using
Sutherland’s law as:

µ = T
3
2

S1 + 1
T + S1

. (2)

S1 = 110.33/T∗j , where T∗j is the static temperature at the jet exit. The Prandtl number, Pr = µcp/K
is assumed to be 0.72, where cp and K represent specific heat at constant pressure and thermal
conductivity of the fluid, respectively.

In the calculation of inviscid fluxes, the primitive variables are reconstructed on the cell-faces using a
third-order upwind-biased scheme [23]. The corresponding fluxes are obtained using the Roe scheme [50].
In order to provide effective damping of grid-scale oscillations, the van-Leer harmonic limiter [51] is used.
Viscous terms are discretized with second-order central difference. A relatively higher time-step-size is
achieved by implementing an implicit time-stepping algorithm, which makes use of the diagonalized [52]
form of the approximately factorized [53] second-order Beam-Warming method.

The computations are performed on a cylindrical grid, extending to 10 and 20 diameters in the
radial and axial directions, respectively. The discretization is performed using 801, 441 and 104 nodes
in the axial, radial and azimuthal directions, respectively. This mesh, along with the geometry of the
nozzle is shown in Figure 1.

Figure 1. Computational grid used for the LES. The nozzle is shown on the left using the gray surface.
The azimuthal (red), axial (blue) and radial (green) surfaces are also marked to display the grid lines.
Every tenth axial and radial point, and every other azimuthal point is marked on these surfaces.
The dotted arrow indicate the jet-flow direction.

Further details of this mesh and additional resolution studies may be found in Goparaju and
Gaitonde [54]. Stagnation conditions are provided at the nozzle inlet, and the remaining outer
boundaries are treated using non-reflective characteristic boundary conditions. The singularity at the
jet centerline can be effectively treated by assuming solution continuity [23]. The non-dimensional
time-step-size used to ensure time-step-size independent results is δt = 0.001. Results are presented
by analyzing data over 110 characteristic time units, which was collected after the simulation achieved
a statistically stationary state.
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2.3. Validation

Although a detailed validation study may be found in Goparaju and Gaitonde [54],
for completeness, we summarize some key results. As noted earlier, the underexpansion results
in a series of expansion and compression cells in the jet plume. These are reflected in the centerline
mean-streamwise velocity plotted in Figure 2a along with the corresponding experimental values.
The experimental measurements provide values within an uncertainty limit of 1.4% [55].

Figure 2. (a) Comparison of mean-streamwise velocity along the centerline of the jet; (b) Comparison
of shock cell structure on a vertical plane. Current computational results compared with corresponding
experimental values. The experimental values plotted in (a) has an uncertainty of 1.4% [55].
The horizontal dotted arrows indicate the flow direction in (b).

The agreement is clearly evident. Thus, the shock-cell strength and spacing are simulated in an
accurate manner. A more comprehensive comparison is shown in Figure 2b, where simulations are
plotted with PIV data. The spatial structure of the expansion and compression regions match each
other, indicating that the numerical and experimental results are equivalent. Additional aspects of the
validation may be found in Goparaju and Gaitonde [54].

2.4. Energy-Based Decomposition: Momentum Potential Theory

The analysis of underexpanded jets, relative to their perfectly expanded counterparts,
is challenging for several reasons. In addition to the complex evolution of a fully turbulent shear layer,
which by itself engenders various instabilities and acoustic emissions, the presence of viscous-inviscid
interaction in the potential core results in additional modes of sound generation, and affects the
formation and development of coherent structures. Prior efforts have provided significant insights
into the sound characteristics of such jets (e.g., Tam [12]) as well as shock cell dynamics [56].

In the current work, we aim to further understand the physics of underexpanded jets from the
perspective of energy transfer mechanisms. These mechanisms essentially convert various forms of
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fluctuation energy in the flow from one form to another, and thus provide a generalized framework
to explain the observed features from a fundamental level. In this context, a suitable classification of
fluctuation energy in a fluid medium is that based on Kovásznay’s approach [57]—i.e., hydrodynamic,
acoustic and thermal. We refer to these three components as fluid-thermodynamic (FT) modes.
They represent a very fundamental level of distinction in any fluid system, since they revert to
the fluctuations in vorticity, pressure and entropy, respectively, in linear scenarios with a uniform base
flow. In complex flows, such as underexpanded jets, the hydrodynamic mode naturally represents the
curvature effects in shock-cell dynamics [58] and shear-layer vorticity. The acoustic mode can be used
to track the origin and propagation of sound emissions. The thermal mode represents vorticity-entropy
coupling, and becomes significant in heated jets.

Thus, the approach used here is predicated on an explicit decomposition of the turbulent
fluctuations into the above three modes. Kovásznay’s approach is unsuited for this purpose, since it is
difficult to adapt to a mean flow that is spatially varying. A powerful alternative is Doak’s MPT [28],
which is employed here. The method provides a general technique to decompose a (carefully chosen,
see below) fluctuating variable into the three FT modes, at all locations of the jet, including the
nonlinear, turbulent region, as well as the relatively benign and linear (outer) nearfield/farfield.

MPT splits a judiciously chosen flow variable, the “momentum-density” or the mass-flux, ρu,
where ρ is the density and u is the velocity vector, into the three FT modes. It thus deviates from the
Kovásznay approach, which establishes each mode with a different primitive variable. This choice
circumvents the necessity of linearization, to define FT dynamics. The following discussion summarizes
the salient features of MPT and aspects of its numerical implementation. Further details may be found
in references [28,31,59,60].

2.4.1. Theoretical Considerations in MPT

MPT treats the momentum density vector, ρu, as the primary field to be decomposed into the three
FT components. The choice is motivated by the fact that the continuity equation is naturally linear in
this variable. A generalized definition of FT modes is then adopted as follows. The hydrodynamic
mode is the solenoidal component of ρu. This ensures that vortical fluctuations in the flow are
completely incorporated into the hydrodynamic component. The irrotational part of ρu is further
sub-divided into an isentropic and an isobaric component. The former is the acoustic mode, while the
latter is the thermal mode. This generalized definition of FT modes makes it possible to uniquely
define them in any continuum, time-stationary flow, even in the presence of discontinuities such as
shocks, as will be shown for the first time in this study.

The splitting of momentum density is achieved through a Helmholtz decomposition:

ρu = B + B′ −∇ψ′, (3)

∇ · B = 0, ∇ · B′ = 0.

here, B is the mean solenoidal part, B′ is the fluctuating solenoidal component and ψ′ is the fluctuating
scalar potential. For a statistically stationary flow, ψ = 0 is assumed [28]. Equation (3), when substituted
into the continuity equation, yields a Poisson equation for the scalar potential:

∇2ψ′ =
∂ρ′

∂t
. (4)

As discussed above, the acoustic (ψ′A) and thermal (ψ′T) components of the scalar potential are
associated with isentropic and isobaric density-fluctuations, respectively. Therefore, ψ′ = ψ′A + ψ′T .
The individual scalar fields are then governed by the following Poisson equations:

∇2ψ′A =
∂ρ

∂p

∣∣∣∣
S

∂p
∂t

=
1
c2

∂p′

∂t
, (5)
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∇2ψ′T =
∂ρ

∂S

∣∣∣∣
p

∂S′

∂t
. (6)

p is the thermodynamic pressure, c2 = (∂p/∂ρ)S is the squared value of the instantaneous local speed
of sound and S is the entropy defined as S = Sj + cp

[
ln(T/Tj)

]
− R

[
ln(pj/p)

]
, evaluated with respect

to the jet-exit conditions (subscript j).
MPT also provides a quantification of various modal energies and the corresponding source

mechanisms inducing those fluctuations. This is encapsulated in Doak’s formulation of a transport
equation for the fluctuating component of total enthalpy per unit mass [28], H = cpT + u · u/2.
This variable, denoted H′ is composed of turbulent energy in the core of the jet, and gradually
evolves into a purely acoustic form of energy in the near- and far-fields. The mean energy balance is
expressed as:

∇ ·
[

H′B′ + H′
(
−∇ψ′A

)
+ H′

(
−∇ψ′T

)]
= −

{
B′ · α′ +

[(
−∇ψ′A

)
· α′
]
+

[(
−∇ψ′T

)
· α′ − (ρT)′

∂S′

∂t

]}
. (7)

α′ is an “acceleration” vector defined as:

α′ = (ω× u)′ −
(

T∇S +
1

ρ Re
∇ · S

)′
. (8)

ω = ∇× u is the vorticity, ∇S is the entropy gradient and S is the viscous stress tensor. The left hand
side (LHS) of Equation (7) is the mean transport of H′ by the three FT modes. The right hand side
(RHS) of Equation (7) represents the source terms responsible for non-zero fluxes, again interpreted
as the action of the three FT modes. Specifically, these source terms are the result of the FT modes
interacting with an “acceleration” vector, α′, which is the combined effect of rotation, shear and entropy
generation in the fluid. The last term on the RHS is dissipative in nature, and is associated to rate of
change of entropy fluctuations.

The purpose of analyzing Equation (7) is to identify the most important source terms (RHS) of
TFE, because they are responsible for the net energy flux that emanates out of the turbulent core.
By interpreting the corresponding fields involved, specific physical mechanisms can be identified as
crucial to intermittent generation of acoustic energy flux from the jet. It also identifies those regions in
the jet, which contribute the most to these source mechanisms.

2.4.2. Numerical Implementation of MPT

The implementation of MPT-based analysis on the LES data involves two steps. The first is the
decomposition of ρu into its constituent FT modes, and the second step is calculating the TFE budget
in Equation (7). The decomposition step is performed as follows:

• The mean solenoidal field, B in Equation (3), is calculated as the average of instantaneous ρu from
the LES.

• The source term for the total scalar potential in Equation (4), ∂ρ′/∂t, is obtained from the LES
data, by obtaining the time-derivative of instantaneous density. This Poisson equation is then
solved to obtain the total scalar potential, ψ′.

• The source term for the acoustic scalar potential in Equation (5), (1/c2)(∂p′/∂t), is also calculated
from the LES data, by obtaining the time-derivative of instantaneous pressure. Solution of this
Poisson equation yields the acoustic scalar potential, ψ′A.

• The thermal scalar potential is obtained using the relation, ψ′T = ψ′ − ψ′A.
• Finally, the fluctuating solenoidal component is obtained as, B′ = ρu− B +∇ψ′.

The above calculations are performed for the full three-dimensional flowfield, using the
generalized curvilinear form of the Poisson equation. A second order discretization yields a banded,
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highly sparse matrix, which is inverted using the BiCGSTAB [61] algorithm, parallelized using MPI
framework. The boundary conditions are derived from the knowledge that at sufficient distance from
the jet, fluctuations there are essentially acoustic. Likewise, all thermal and hydrodynamic fluctuations
are damped out near the outer boundaries.

3. Results

To set the stage for discussion, we first provide in Figure 3 a general description of the
underexpanded core and nearfield of the jet on an azimuthal slice containing the vertical plane.

Figure 3. Instantaneous snapshot of the jet. The expansion and compression regions in the potential
core are highlighted using u · ∇p, in the region 0 ≤ r ≤ 0.5 and 0 ≤ x ≤ 8. 10 equally spaced contour
levels are used within the range 1 and −1. The shear layer is shown using magnitude of vorticity, using
11 contour levels between 1.5 and 5, with blue and red representing the minimum and maximum levels,
respectively. The acoustic emissions in the nearfield are visualized using divergence of velocity, using
10 contour levels between −0.01 and 0.01. The jet-flow direction is from left to right.

The outline of the nozzle is marked with the black line. The color contours of vorticity magnitude
highlight the developing shear layer, which, upon exiting the nozzle undergoes rapid destabilization
at around 1.5 diameters downstream of the nozzle exit. This results in the generation of large and
small vortical roll-up regions, which eventually break down into a turbulent region. The potential
core collapses at around 6 diameters downstream. The quantity, u · ∇p is employed in the core region
around the axis to visualize the shock-expansion structure. For this, a domain defined by 0 ≤ r ≤ 0.5
and 0 ≤ x ≤ 8 is chosen to plot its contours, since this region encompasses the strongest compression
and expansion cells. The mismatch of the nozzle exit pressure with the ambient results in the formation
of a train of compression and expansion cells within the potential core of the jet. Lighter regions denote
positive values of u · ∇p, i.e., the pressure increases along the direction of the velocity vector, thus
indicating compression zones. Correspondingly, the darker or negative regions represent expansion
zones, since here the flow experiences a negative (or favorable) pressure gradient along the flow
direction. Finally, acoustic emissions from the jet are highlighted in the nearfield using the dilatation of
the velocity vector. The dilatation can be viewed as a surrogate for acoustic pressure fluctuations [18].
Thus, in the nearfield, dilatation contours highlight regions of compression and expansion signifying
propagating acoustic waves, due to the irrotational nature of the associated perturbations. In addition
to coherent large-scale wavefronts emitted in the downstream direction, this underexpanded jet also
produces significant wavefronts in the upstream and sideline directions, consistent with previous
experiments [62] and computations [63]. Such a prominent upstream signature is usually absent in
perfectly expanded jets, where the noise directivity of interest is along shallow angles.
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3.1. Fluid-Thermodynamic Modal Features

We now present the characteristic features of the FT modes extracted from the underexpanded jet.
Of the three components, the thermal field is omitted here for brevity, since it turns out to be of minor
importance in this cold jet. For notational convenience, the cylindrical-coordinate vector components
of the fluctuating hydrodynamic and acoustic modes will be denoted (B′x, B′r, B′θ) and (A′x, A′r, A′θ),
respectively. Furthermore, since the axial component is found to be the dominant one in both the
hydrodynamic and acoustic fields, it is used for visualization.

Instantaneous snapshots of the hydrodynamic and acoustic modes are shown in Figure 4.

Figure 4. (a) Instantaneous snapshot of the axial component of the hydrodynamic (contours) and
acoustic (gray scale) modes; (b) Corresponding three-dimensional form of the acoustic wavepacket,
shown using iso-levels of A′x. The jet-flow direction in (b) is along the x-axis, as indicated by the
axis-marker. The vertical lines in (b) are marked on the z = 0 vertical plane and corresponds to
x = 2, 4, 6, 8 and x = 10 respectively, from left to right. The horizontal lines in (b) are marked on the
z = 0 vertical plane and corresponds to y = −4,−2, 0, 2 and y = 4 respectively, from bottom to top.

Figure 4a shows axial components of the hydrodynamic and acoustic modes on the vertical
azimuthal plane. The characteristic feature of the hydrodynamic mode (contours of Figure 4a) is
its close representation of shear-layer vorticity and coherent structures displayed earlier in Figure 3.
Localized zones of vortical instabilities appear at shock impingement locations along the edge of
the nascent shear layer: the effect of shock cells on the modal dynamics will be quantified shortly.
These shock-impingement locations act as sources of unsteadiness, perturbing the shear layer, unlike
subsonic or perfectly expanded jets, where Kelvin-Helmholtz instabilities and their amplification
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is the main mechanism of shear-layer destabilization. The acoustic mode (gray scale in Figure 4a)
displays a highly coherent wavepacket structure and is superficially similar to its corresponding form
in a perfectly expanded jet [31]. The dominant downstream-traveling noise events are associated
with the highly amplified lobes of this wavepacket. Thus, this analysis helps to establish a direct link
between intermittent sound events in the nearfield with the dynamics in the core. As the contour
legends of Figure 4a indicate, the acoustic response is at least an order of magnitude smaller than the
hydrodynamic mode, which emphasizes the fact that a small fraction of turbulent energy is channeled
into the highly destructive sound signature of the jet.

The origin of the acoustic wavepacket is closely linked to the irrotational fields developing
around the initial vortical instabilities in the shear layer. A three-dimensional representation of the
acoustic wavepacket is shown in Figure 4b using iso-levels of A′x. The wavepacket clearly has
coherence over a very large region relative to the hydrodynamic mode, and extends to around 7 jet
diameters downstream. Higher azimuthal modes are limited to the nozzle-exit region, where the shear
layer breaks down. The orderly core of the wavepacket between 2 ≤ x ≤ 6 displays axisymmetric
characteristics, with strong periodic fluctuations, which will be discussed in Section 3.4. Downstream of
this zone, the wavepacket is primarily intermittent, with only the strongly amplified lobes surviving.
Such intermittent events have been experimentally shown to contribute the most to the peak energy
of shallow-angle mixing-noise in jets [64,65]. At further downstream locations beyond x = 10,
the deceleration of the spreading shear layer reduces the mean Mach number (which is typically
below 0.5). In addition, the vorticity there is also minimal due to the milder gradients in the flow.
Together, these effects weaken the irrotational response in the fluid, as well as the acoustic wavepacket.

The fluctuations induced by shock and expansion cells are now analyzed in terms of their FT
components. For this purpose, the root-mean-squared (RMS) values of B′x and A′x are plotted along
the centerline of the jet in Figure 5.

Figure 5. RMS of the hydrodynamic and acoustic modes along the centerline of the jet.

No significant fluctuations are observed in the region upstream of x ∼ 1.5, because the shear
layer is thin and the two leading shock cells are relatively steady. The major fluctuations due to
shock unsteadiness are observed between x ∼ 1.5 and x ∼ 4.5, which induce the dominant peaks
in the hydrodynamic signal within this axial extent. The corresponding fluctuations in the acoustic
mode are relatively weak and the associated gradients are also significantly lower. The physical
discontinuities associated with the shock cells are thus mainly confined to the hydrodynamic mode,
and has minor impact on the acoustic mode. Beyond this axial range, the hydrodynamic mode
amplifies due to the growing coherent structures and higher turbulence intensity. It peaks around
x ∼ 7.5, consistent with the trends observed in the vicinity of potential-core collapse (see e.g.,
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Gaitonde and Samimy [23], Samimy et al. [66]). The much smaller acoustic mode exhibits peak
values in the region of strong mean flow gradients, and is primarily bound within the potential core,
consistent with the representation in Figure 4. Although not explicitly addressed here for brevity,
this extent is essentially determined by the instability characteristics of the corresponding base flow.

3.2. Relationship of Nearfield Pressure and the Acoustic Mode

The fluctuating pressure is often scrutinized to characterize the physics of jets. In this section,
we establish the relationship of the acoustic mode, with the pressure field, which is generally used as
the acoustic variable in such studies [26,67,68].

For this purpose, Figure 6 displays an instantaneous snapshot of pressure perturbations on
the vertical azimuthal slice in frame (a). The acoustic mode at the same instant is shown in
frames (b), (c) and (d), using its axial, radial and azimuthal components, respectively. Note that
the extracted acoustic mode, being a component of momentum density, is dimensionally different
from pressure and is a vector quantity. The link between these two variables can be understood
from Equation (5). A simple Fourier transform to wavenumber-frequency space shows that in
a simplified one-dimensional scenario with a constant speed of sound, the acoustic spectrum is
equivalent to the pressure spectrum scaled by the speed of sound. Such a simplification is not
feasible in the multi-dimensional scenario of interest, and all components of the gradient of the
acoustic-scalar-potential (ψ′A) must be considered, to account for various types of sound emission.

Figure 6. Instantaneous snapshots of (a) pressure perturbations; (b) axial; (c) radial and (d) azimuthal
components of the acoustic mode. The axial extent of the contours begin from the nozzle-exit station,
and the jet-flow direction is from left to right. Frames a, b, c and d share the same abscissa and ordinate.

Figure 6 facilitates an understanding of the correspondence between the acoustic scalar
potential and its gradient and the conventional pressure-based definition of the acoustic field.
The pressure field in Figure 6a is reflective of several physical mechanisms at play in the
turbulent jet. It includes signatures of initial shear-layer destabilization and roll-up, wavepackets
in the potential core, structures with deteriorating coherence downstream of the potential core,
large-scale lobes beyond 12 diameters (which are footprints of subsonically convecting hydrodynamic
structures), intermittent acoustic wave-fronts in the downstream direction, upstream-propagating
acoustic waves and finally, finer waves in the sideline direction. As discussed in prior works e.g.,
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Tam et al. [10], Howe and Ffowcs [69], Lo et al. [70], these are contributors to various sound
mechanisms in imperfectly expanded jets. The pressure signature of the jet is indicative of both
hydrodynamic and acoustic phenomena. The irrotational-isentropic mode in Figure 6b–d is filtered
of the hydrodynamic component, and is thus a clearer representation of the acoustically relevant
dynamics within the jet. The axial component of the acoustic mode in frame (b) captures the
wavepacket in the core of the jet, as well as the dominant downstream propagating intermittent
waves, which contribute to the peak of the mixing noise spectrum. Low coherence [71] at the end of
the potential core observed in pressure signals are removed from the acoustic field, which indicates
that those incoherent fluctuations are fundamentally hydrodynamic in nature. The larger, convecting
lobes in the downstream region are also absent in the acoustic mode. In addition to downstream sound
radiation, the axial component of the acoustic mode also captures the upstream-propagating waves,
which are typical in imperfectly expanded jets, and lead to feedback mechanisms resulting in screech
generation [13]. The radial component of the acoustic mode in frame (c) primarily contributes to the
sideline radiation, which includes fine-scale mixing noise [10] and broadband noise in imperfectly
expanded jets [72]. The azimuthal component in frame (d) has minor contribution outside the
shear layer, underlining the azimuthally coherent nature of acoustic radiation from circular jets.
The wavepacket form is characteristic of the axial component of the acoustic mode, which thus
naturally becomes the crucial field for acoustic predictive and modeling purposes. It is evident that,
the pressure contains both acoustic and hydrodynamic signatures, while taken together, the three
components of the irrotational-isentropic mode fully represent all the acoustic (but not hydrodynamic)
features of interest in the turbulent and nearfield regions.

A quantitative comparison of the above equivalence is now provided in Figure 7. For this, the
time accurate pressure and acoustic perturbations are recorded along a horizontal array at a radius,
r = 5 at various axial locations. The power spectral density (PSD) of both signals are then computed
and compared using combined PSD of axial and radial components of the acoustic mode. The location
of each point is marked in each frame of Figure 7. The first location, at x = −0.05, is upstream of the
nozzle-exit station and has contribution from the upstream propagating wavefronts, and displays a
relatively narrow peak around St ∼ 0.6. Further downstream, at x = 1.5 and x = 4.3, the nearfield
signature of the jet is dominated by fine-scale waves, seen in Figure 6. The spectrum progressively
attains a broadband nature, characteristic of omni-directional sideline radiation in jets. At locations
x = 7 and beyond, the nearfield spectrum begins to display a prominent peak at a low St, typically
0.1 < St < 0.4, where peak noise directivity is observed. This is attributed to the coherent wavefronts
emitted intermittently along the shallow angle direction. In this specific jet, peak sound directivity is
observed at St ∼ 0.3, which is identified as its column mode frequency. At all locations considered, the
combined PSD of the acoustic mode fully recreates the information in pressure, (which is naturally
filtered to contain mostly acoustic information at this radial location). Thus, further discussions
involving near- and far-field acoustic data will consider the FT-decomposed acoustic mode of the jet.
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Figure 7. Comparison of PSDs obtained from pressure fluctuations and the acoustic mode at various
locations in the computational nearfield, as indicated in each frame. Frames a-f share the same abscissa
and ordinate.

3.3. Shock-Cell Dynamics and Their Acoustic Imprint

A distinguishing feature of underexpanded jets is the presence of shock and expansion cells in the
core-flow region, and its associated sound signature.To characterize the nearfield acoustic properties,
including the effects of the shock cells, a spectral analysis of the acoustic mode is presented in Figure 8.

Specific acoustic signals are obtained at a radius, r = 2, along various axial locations. The PSD
of the signal as a function of St is plotted at the corresponding axial location, resulting in a contour
plot. The axial component of the acoustic mode, A′x at r = 2, subjected to this spectral analysis,
is shown in Figure 8a, where the PSD contours are plotted using the axial location of the probe along
the horizontal axis and frequency along the vertical axis. Figure 8b is the corresponding result for
the radial component of the acoustic mode, A′r. Figure 8c,d represent the same results for A′x and A′r,
respectively, but by retaining only the upstream propagating waves i.e., with negative phase velocities.

In Figure 8a, depending on the spectral and axial ranges, three separate zones are marked using
dotted curves, which represent various components of acoustic radiation from this jet. The most
prominent among these three is the one encompassed by the green oval in the range x ≥ 4 and
St ≤ 0.5. This is the mixing noise due to coherent structures, emitted as well-defined, shallow-angle
wavefronts in the downstream direction, and is observed in both perfectly and imperfectly expanded
jets. The other two components are features specific to imperfectly expanded jets, due to the interaction
of the shock-cells and the developing shear layer. The region marked with the red oval (x ≤ 3
and 0.5 ≤ St ≤ 0.7) represents a localized spectral support around a peak frequency, St ∼ 0.65.
The axial extent of this component indicates that it is limited to the upstream region of the nozzle.
This component is the one that mostly retains its spectral support in Figure 8c also, which implies
that it constitutes upstream traveling waves. Experimental results of similar jet-configurations [16,73]
identify narrowband component at St ∼ 0.67 as a screech tone, formed as a result of the feedback
mechanism between the vortex-shock-cell interaction and the resulting upstream propagating waves
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actuating instabilities at the nozzle exit. The third region, marked with the blue curve, 2 ≤ x ≤ 8
and 0.5 ≤ St ≤ 1.3, displays vertical patterns with intermittent horizontal peaks at St ∼ 0.6, 0.9
and St ∼ 1.2. Similar vertical stripes were also observed in the pressure signal obtained in the
core of a computed underexpanded jet in Arroyo et al. [68]. These patterns are associated with the
axial locations of peak compression in the oscillating shock train. Such wave-train oscillations also
impart a corresponding signature to the acoustic nearfield. Since these are primarily one-dimensional
oscillations in the streamwise direction, their signature is well-preserved in the streamwise acoustic
component, A′x, even in the nearfield.

Figure 8. Spectral variation of acoustic signature along the axial direction, at r = 2. The contours
represent PSD of (a) A′x; (b) A′r; (c) upstream propagating components in A′x and (d) upstream
propagating components in A′r.

The spectral analysis of the radial component of the acoustic mode, A′r in Figure 8b also identifies
three separate regions in the nearfield. The first two components, namely turbulent mixing noise
and screech, are relatively less prominent in this component, because these are mostly axial transport
mechanisms in the acoustic wave. On the other hand, the third component, marked with the green
curve, has a qualitatively different spatial support compared to the corresponding results of A′x.
It displays an elongated lobe-like structure, similar to the “banana-shaped” pattern discussed in
Arroyo et al. [68], Savarese et al. [74]. This is characteristic of broadband shock associated noise
(BBSAN), and its shape is associated to Doppler effect of shock cell noise [75]. The peak frequency
around which this component occurs can be seen to increase towards lower angles in the downstream
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direction. There is also a signature of the strongest tone of the third component (blue curve) of A′x,
at St ∼ 0.9 in A′r also. The low contour values in the upstream components of A′r in Figure 8d imply
that, the most energetic waves in BBSAN is predominantly downstream-propagating. It also highlights
the contribution of the upstream-propagating waves to the “banana-shaped” pattern associated
with BBSAN.

Additional insights into shock-cell dynamics are obtained by applying proper orthogonal
decomposition (POD) to the shock field, defined using u · ∇p. When applied to a spatio-temporal
dataset, f (x, t), POD realizes a separation of spatial and temporal dependencies, representing the data
in the form:

f (x, t) =
N

∑
i=1

ai(t)φi(x). (9)

N is the total number of snapshots, which determines the total number of POD modes, ai(t) is the
temporal variation of the ith POD mode, and φi(x) is its corresponding spatial support. In the method
of snapshots [76,77] adopted here, the temporal coefficients are obtained as the eigenvectors of the
spatial correlation matrix, R, which is defined as:

Rij =
1
N
〈f (x, ti), f (x, tj)〉. (10)

The inner product 〈f1(x), f2(x)〉 in the cylindrical coordinate system used here is defined as:

〈f1(x), f2(x)〉 =
∫∫

f1(x).f2(x)rdrdx. (11)

The spatial modes, φi(x), are the projection of the data snapshots onto the temporal coefficients:

φi(x) =
1

Nλi

N

∑
j=1

ai(tj)f (x, tj). (12)

λi is the eigenvalue corresponding to the ith eigenvector of the spatial correlation matrix, R, and is
indicative of the energy contained in the corresponding POD mode, φi(x). Thus, POD extracts a
mutually orthogonal basis for the data, which is optimal in terms of energy content.

The leading POD modes, Figure 9, with most of the energy naturally yield the peak fluctuations
in u · ∇p: these correspond to the locations of strongest oscillations in the compression and
expansion regions. Each frame of Figure 9 contains the spatial support of a given POD mode, and
the PSD of its time coefficient, a(t). Since POD modes may contain multiple frequencies, the PSD
provides additional clarity in terms of the spectral content in each POD mode. Due to the highly
oscillatory nature of the shock cells, the leading POD modes arise in pairs, which were identified
through similarities in their respective time-coefficient-spectra. Hence, the results presented here
include only one of each pair. Specifically, the first, third, fifth and seventh modes are shown in
Figure 9a–d, respectively. The most energetic oscillations are observed in the third-to-sixth shock cells,
with the corresponding modal shape in frame (a). Its PSD indicates a relatively broadband nature
between 0.4 ≤ St ≤ 1.2. The location of this axial region between 1.5 ≤ x ≤ 4 is directly beneath
the peaks observed in the shock-associated noise components in Figure 8a,b, which identifies this
shock-unsteadiness as a prime contributor to the nearfield acoustic signature in the sideline direction.
This is also consistent with the idea of Norum and Seiner [78], who associated BBSAN with the
relatively weaker, but more dynamic shock cells at downstream locations, i.e., those following the
initial relatively steady strong compression or expansion waves. The higher POD modes in Figure 9b,c
progressively show increased spectral support at a higher frequency of St ∼ 1.8, the signature of which
is also observed in the nearfield acoustic signals (Figure 8a,b). This higher-frequency component of
shock unsteadiness is primarily limited to the thin shear layer, unlike the lower broadband content,
which is observed throughout the radial extent of the potential core. The seventh POD mode in
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Figure 9d also identifies prominent fluctuations in the fourth, fifth and sixth shock cells, with peak
frequency around St ∼ 1.

Figure 9. POD modes of the field u · ∇p, along with the PSD of the corresponding modal
time-coefficient. The modes shown are: (a) mode 1; (b) mode 3; (c) mode 5 and (d) mode 7.
The horizontal dotted arrow in (a) marks the jet-flow direction. Frames a-d share the same abscissa
and ordinate.

3.4. Predictive Advantages of the Acoustic Mode

The explicit extraction and quantification of the hydrodynamic and acoustic fluctuations in the
jet has advantages not only in deriving a better understanding of the flow, but also in prediction
techniques. The acoustic mode can be viewed as a response of the compressible flow to hydrodynamic
instabilities developing in the shear layer. The MPT-based filtering accurately isolates that fraction of
energy which eventually becomes the radiated sound field. In addition to the acoustic mode actuated
in the initial developmental region of the shear layer, coherent and small-scale eddies often constitute
additional sources for the acoustic mode within the turbulent region of the jet. The acoustic mode
follows an evolution equation as described in Doak [28] with continuous inputs from the source
terms generated due to turbulence. This is also evident from Equation (7), where any non-zero source
term on the RHS will lead to a net production of FT fluxes from within a control volume in the fluid.
A natural application of the MPT-based energy analysis is to efficiently extract the acoustic energy in
the turbulent region to understand its sources and for sound prediction and modeling. For a perfectly
expanded jet, the utility of such an exercise may be found in Unnikrishnan and Gaitonde [31].
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We now explore the use of the decomposition to efficiently predict the qualitative and quantitative
features of the radiated energy, even under non-ideal operating conditions. The evolution equation for
the scalar potential defining the irrotational field, discussed in Doak [28], contains non-zero source
terms from hydrodynamic and entropic fluctuations. The effects of these sources are reflected in the
MPT-extracted acoustic mode from the LES, which includes all nonlinearities and non-homogeneous
source mechanisms associated with turbulence. For simplicity, the analysis below neglects the thermal
component of the energy, since it is essentially dormant for this field. It is also assumed that the
region outside this LES solution is an inviscid, irrotational and linear domain, which simplifies the
momentum equation (originally written in terms of FT modes) to:

∇p = ∇
(

∂ψ′A
∂t

)
. (13)

Taking the gradient of Equation (5) (which is essentially the continuity equation for the irrotational
field) and using the above relation, we obtain the equation:

∇2 (∇ψ′A
)
=

1
c2

∂2 (∇ψ′A
)

∂t2 . (14)

This is in effect the homogeneous wave propagator equation for the gradient of acoustic scalar
potential, which implies that each component of the acoustic vector field defined as (A′x, A′r, A′θ),
is propagated according to a simple wave equation, outside the acoustic source region. Although this
feature is also true for the pressure variable, the region of validity of these simplifying assumptions
is much further away from the core of the jet, due to the hydrodynamic effects captured by the
pressure fluctuations. The acoustic mode, due to its filtered properties, allows one to use a propagating
surface as close as 1.5 diameters from the jet axis, as will be shown shortly. In addition to this aspect,
the choice of the acoustic mode for prediction is also observed to provide relatively quickly-converging
statistics, which is useful in shortening the LES time-series used for prediction. This is because, the
hydrodynamic component engenders more turbulent behavior, resulting in a poorer reduced order
behavior, compared to the acoustic mode.

Before discussing the prediction results, we first analyze the dominant source mechanisms which
contribute to the net energy flux from the jet, as encapsulated in the TFE equation, Equation (7).
The results are shown in Figure 10. The underlying idea is to demarcate a suitable zone for the
homogeneous wave propagator as close as possible to the jet centerline, based on the distribution
of these source terms. For a succinct discussion, we choose to identify regions of prominent mean
source activity, attributed to the three FT modes. These include the terms, −B′ · α′, −

[(
−∇ψ′A

)
· α′
]
,

and −
[(
−∇ψ′T

)
· α′
]
, which are the mean TFE source terms due to the hydrodynamic, acoustic and

thermal fluctuations, respectively, in the jet. These are named HS, AS and TS, respectively and plotted
on an azimuthal slice in Figure 10a–c, respectively. Consistent with the observations in a perfectly
expanded supersonic jet [31], the hydrodynamic source (HS) is the primary production mechanism of
TFE. Large contributions are evident in the developing shear layer (1 ≤ x ≤ 7), with peak values in
the inner half of the shear layer. A narrow sink zone is also observed along the edge of the potential
core, where TFE is dissipated through entrainment mechanisms [31]. The acoustic source, AS, in
Figure 10b also has predominantly positive nature, implying TFE production, but is not a significant
contributor to the source mechanism, compared to the hydrodynamic mode. The thermal source (TS)
in Figure 10c displays sink characteristics in the inner half of the shear layer but acts as a weak source
of TFE in the outer region. A quantitative comparison of the three source mechanisms is also provided
in Figure 10d, by plotting these source terms extracted along a vertical line at x = 2 (as marked in
frames (a), (b) and (c)). As discussed above, the hydrodynamic source dominates over the other
terms, with peak amplitude in the vicinity of the lipline of the jet. This analysis thus establishes the
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compact radial support of the TFE source mechanisms, suggesting that the acoustic mode is primarily
propagated as a homogeneous wave beyond r ∼ 1.5.

Figure 10. Mean (a) hydrodynamic; (b) acoustic and (c) thermal sources of TFE; (d) Radial profile of
the three source terms along the dotted vertical line at x = 2, shown in (a). The horizontal dotted arrow
in (a) marks the mean-flow direction of the jet. Frames a, b, and c share the same abscissa and ordinate.

We now show the prediction capability of the acoustic mode based on information collected at
r = 1.5, which is much closer to the axis than that employed with typical Ffowcs Williams-Hawkings
approaches. The comparison of the LES solution with the wave propagator prediction is shown
in Figure 11 using an instantaneous snapshot of A′x, obtained from the respective calculations.
The result from LES is presented in Figure 11a. The contours of A′x are demarcated into two regions,
separated by a horizontal dotted line at r = 1.5. The contours below r = 1.5 have a prominent
wavepacket form, as discussed earlier in the context of Figure 4. It also shows intermittent amplified
lobes downstream at lower frequencies, which engenders the radiated large-scale acoustic waves.
The acoustic wavepacket in this region continuously receives inputs (sources) from the turbulent
fluctuations, and also undergoes non-linear interactions with itself (e.g., lobe merging and frequency
shifts), resulting in a relatively complex dynamics, which is discussed further below. Conversely,
outside this region, r ≥ 1.5, due to the absence of significant source terms, the evolution of the
acoustic wavepacket essentially reduces to a benign wave propagation problem. To obtain the acoustic
predictions, the homogeneous wave propagator equation, with ambient speed of sound, is forced with
time-accurate values of A′x at r = 1.5 in the region 0 ≤ x ≤ 15, and propagated to the farfield, to a
distance of 75 diameters. An excellent match is observed between the LES and wave propagator (WPr)
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results, with all the dominant intermittent wavefronts in the downstream direction being captured
accurately. The upstream components as well as the fine-scale waves in the sideline direction are also
well predicted.

Figure 11. (a) An instantaneous acoustic field, A′x, extracted from the LES; (b) The predicted A′x field at
the corresponding time-instant, using a homogeneous wave propagator. The wave propagator is forced
at r = 1.5 (marked using a horizontal dotted line). The color and gray-scale contours in (a) simply
demarcate the zone of prediction in the wave propagator solution for easy comparison. The jet-flow
direction is from left to right.

The above analysis justifies the use of the predicted acoustic mode to calculate farfield directivity
and sound pressure levels (SPL). The farfield SPL is obtained along an arc of 75 diameters on the vertical
azimuthal slice and plotted in polar coordinates (relative to the jet axis) for different St. The results,
provided in Figure 12, show that the spectral shape is generally in good agreement with the farfield
directivity shown for similar jets [16,73]. The peak SPL is observed at a shallow angle of 30◦, as expected,
and has a value of ∼88 dB. Differences from the experimental observation of approximately 4 dB are
attributable to the laminar jet exit conditions employed here. Compared to an initially-turbulent jet,
the breakdown of an initially-laminar shear layer results in larger coherent structures, and thus induces
stronger lobes in the acoustic wavepacket, contributing to shallow-angle noise.
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Figure 12. Farfield sound pressure levels along a polar arc at 75 diameters.

In order to succinctly represent the dominant dynamics of the acoustic wavepacket, we analyze
its temporal evolution on the vertical azimuthal plane using POD. The first six modes are plotted
in Figure 13.

Although not shown here, the frequency spectra of modes 1 and 2, modes 3 and 4 and modes 5
and 6 are similar, indicating that they are mode-pairs. The spectra of the acoustic POD modes exhibit a
relatively narrowband nature in their frequency content compared to those in the shock field (Figure 9).
This suggests a more orderly form of acoustic response, compared to the chaotic hydrodynamic
turbulent fluctuations. The first two POD modes of the acoustic wavepacket in Figure 13a,b have a
peak frequency of St ∼ 0.43, and constitute its main body. From a modeling perspective, this is the
basic or principal [79] frequency of the radiating wavepacket. It exists within the main body of the
potential core, and is highly periodic. Naturally, it also represents the most energetic component of
acoustic fluctuations and appears as the first two POD modes. The second pair in Figure 13c,d exhibits
an interesting scenario: its spectra have two peaks: a major peak at St ∼ 0.27 and a minor peak at
St ∼ 0.86. The former lower frequency corresponds to the larger lobes observed in the zone 3 ≤ x ≤ 5
and the latter, higher frequency is representative of the smaller lobes in the initial transition stage
of the shear layer, mostly dominated by Kelvin-Helmholtz waves. These two components are also
visible in the third pair of POD modes in Figure 13e,f, but here, the lower frequency lobes at St ∼ 0.27,
observed beyond x = 4, are relatively more prominent. These lobes are intermittently generated from
the periodic principal content of the wavepacket (Figure 13a,b) due to nonlinear interactions, such
as merging or coalescing, vortex pairing or intrusion events. The intermittent lobes amplified in the
course of these events directly contribute to the coherent sound waves emitted along shallow angles.
This can also be understood from the fact that the peak frequency of the downstream lobes of the
acoustic wavepacket matches the frequency of peak SPL along the 30◦ angle to the jet axis (which is
also St ∼ 0.27 as seen in Figure 12).
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Figure 13. POD modes of the acoustic field, A′x. The modes shown are: (a) mode 1; (b) mode 2;
(c) mode 3; (d) mode 4; (e) mode 5 and (f) mode 6. The horizontal dotted arrow in (a) marks the
jet-flow direction. Frames a-f share the same abscissa and ordinate.

The above analysis further aids in associating various energy mechanisms in the core that are
significant to the farfield sound of the jet. This is achieved by correlating the time-evolution of the POD
modes of a suitably chosen field with the farfield sound signature of the jet, e.g., Magstadt et al. [16].
Here we choose the POD modes of the acoustic wavepacket, since it incorporates all the information of
the radiated sound field. The time-coefficients of the first 12 POD modes of the acoustic wavepacket
are correlated with the farfield acoustic signature of the jet, at various polar angles. The maximum
cross-correlation coefficients are plotted in polar coordinates in Figure 14.



Aerospace 2018, 5, 49 22 of 26

Figure 14. Maximum cross-correlation values between the time coefficients of the first 12 POD modes
of the acoustic wavepacket, and the farfield acoustic signal rerecorded at various polar angles at a
distance of 75 jet diameters.

The radial coordinate represents the maximum-correlation value, and the angular coordinate is
the polar angle at a radius of 75 diameters, where the correlation is calculated. The legend “M#” is
the POD-mode-number used to calculate the correlation. It is evident that the first six POD modes
are highly correlated to farfield noise, with peak values generally above 0.3, for shallow angles
below 45◦. These values are significantly greater than those experimentally observed [16] at shallow
angles, when POD modes of velocity were used for the correlation. The MPT-extracted acoustic
mode thus improves the farfield acoustic correlations by filtering out the energetic, but non-radiated
hydrodynamic events in the velocity signal. Peak correlations are observed at shallow angles
for POD modes 3, 4 and 6. As explained above, these POD modes are representative of the
intermittent lobes at downstream locations of the acoustic wavepacket, that radiate as coherent
waves (Figure 13). As expected, the peak correlation reduces towards sideline direction, due to the
fine-scale, omni-directional nature of sound waves in that region [32]. Thus, the dynamics of a few
leading POD modes of the acoustic wavepacket can yield significant insights into the nature of peak
acoustic directivity of the jet, even in underexpanded conditions.

4. Conclusions

An underexpanded jet is considered with the aim of understanding the physical mechanisms
underlying turbulent shear-layer interactions with compression and expansion cells in the jet plume,
and its associated acoustic ramifications. An energy-based approach is employed to identify vortical
and acoustic fluctuations in the nonlinear and linear regions of the flowfield. The energy-based
approach follows the theoretical development of Doak’s momentum potential theory (MPT),
which splits momentum-density fluctuations in the underexpanded jet into its hydrodynamic, acoustic
and thermal components. These can be considered as the three fundamental types of fluid fluctuations,
in a Kovásznay-type framework.

The hydrodynamic mode is defined as the solenoidal part of momentum fluctuations, and the
acoustic mode is its irrotational and isentropic component. It is shown that this decomposition
can be successfully implemented even in the presence of physical discontinuities in the plume.



Aerospace 2018, 5, 49 23 of 26

While the hydrodynamic mode captures the shear-layer vortices and shock-fluctuations in the core,
the acoustic mode has a spatio-temporally coherent wavepacket form, and yields the acoustic signature
in the nearfield, usually characterized through pressure fluctuations. The acoustic mode also retains
the imprint of shock fluctuations in the form of vertical spectral strips, in the range, 2 ≤ x ≤ 8
and 0.5 ≤ St ≤ 1.3, and has energy peaks at St ∼ 0.6, 0.9 and St ∼ 1.2. The “banana-shaped”
lobe corresponding to broadband shock associated noise (BBSAN) discussed in literature is also
identified in the nearfield. A localized peak is observed at St ∼ 0.65, mainly constituted by
upstream propagating waves, which bears close similarity to the screech frequency identified in
the corresponding experimental configuration. These sound signatures are then assessed from the
perspective of shock-cell dynamics, by extracting the leading orthogonal modes of the shock field.
The third-to-sixth shock cells displaying the most energetic oscillations are found to directly contribute
to the shock associated acoustic signature.

The source terms that result in inter-modal energy transfers are evaluated. The inner half of
the shear layer is found to have the peak source terms that contribute to these transfer mechanisms.
Additionally, the compact radial support of the source terms provides an opportunity to use the
acoustic mode with a simple homogeneous wave propagation technique to predict farfield noise of the
jet. The recreated near- and far-field sound pressure levels show peak noise directivity at 30◦ from
the axis, at St ∼ 0.27. The POD analysis of the acoustic wavepacket used for propagation reveals
two prominent dynamics. The first is the highly periodic internal frequency of the wavepacket at
St ∼ 0.43, which defines its spatio-temporally modulated wave-train and envelope. The second
major component is comprised of the relatively intermittent lobes at a lower frequency of St ∼ 0.27,
which appear downstream of the potential core as a result of the nonlinear evolution of the internal
frequency. This component correlates well with the farfield sound signal of the jet, and has the same
frequency as the peak farfield sound spectra. Thus, the POD analysis of the acoustic mode identifies
the reduced-order-mode that is most efficient in defining the farfield sound spectra of the jet.
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