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Abstract: Multi-Unmanned Aerial Vehicle (UAV) Doppler-based target tracking has not been
widely investigated, specifically when using modern nonlinear information filters. A high-degree
Gauss–Hermite information filter, as well as a seventh-degree cubature information filter (CIF), is
developed to improve the fifth-degree and third-degree CIFs proposed in the most recent related
literature. These algorithms are applied to maneuvering target tracking based on Radar Doppler
range/range rate signals. To achieve this purpose, different measurement models such as range-only,
range rate, and bearing-only tracking are used in the simulations. In this paper, the mobile sensor
target tracking problem is addressed and solved by a higher-degree class of quadrature information
filters (HQIFs). A centralized fusion architecture based on distributed information filtering is
proposed, and yielded excellent results. Three high dynamic UAVs are simulated with synchronized
Doppler measurement broadcasted in parallel channels to the control center for global information
fusion. Interesting results are obtained, with the superiority of certain classes of higher-degree
quadrature information filters.

Keywords: target tracking; Kalman filtering; multi-sensor fusion; information fusion; high-degree
cubature; Gauss–Hermite quadrature; Doppler shift; multi-UAV

1. Introduction

Previous works have selected the Gauss–Hermite Kalman filter (GHKF) and its information
version (GHIF) as the more accurate nonlinear filter for different multi-sensor fusion and target
tracking problems, but did not propose any alternative to its high computational complexity and its
limited implementation in practice. A special case, when sensors are non-stationary, has not been
well investigated, which is assumed in this paper with high-speed dynamic unmanned aerial vehicles
(UAVs). It is well-known that GHKFs are impracticable for medium- and high-dimensional systems; the
curse of the dimensionality problem existing in the tensor product-based Gauss–Hermite information
filter can be elegantly alleviated using the novel seventh-degree cubature information filter derived
by authors in [1,2]. In parallel to estimation accuracy and the alleviated computation complexity, the
7th-degree cubature information filter (CIF) has also been tested and analyzed against small and high
non-Gaussian measurement noise statistics. In the frame of information space, a modification of the
Kalman filter is processed, where the state estimates and their corresponding covariance are replaced
by the information matrices and corresponding vectors, respectively, in the information space [3].
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The nonlinear filtering problem statement remains the same, but it becomes more attractive in a
centralized fusion based on distributed information processing, and is given by the following equations:{

xk = f (xk−1) + vk−1,

zk,j = hj(xk) + nk,j.
(1)

In this paper, a 7th-degree and multiple 5th-degree cubature and quadrature information filters
are derived and applied to multi-sensor information fusion multi-UAV target tracking. The 5th-degree
Gauss–Hermite information filter has clearly demonstrated its superiority to the 5th-degree and
3rd-degree cubature information filters. The seventh-degree cubature information filter (7th degree-CIF)
has been demonstrated to be a stronger algorithm with higher precision than previous lower-degree
versions such as the fifth- and third-degree cubature Kalman filter (CKF). Nevertheless, it has yielded
slightly lower performances compared to the 5th-degree Gauss–Hermite information filter [4,5].

The sensor considered is a pulse-Doppler Radar which produces a measurement vector containing
the range, azimuth, elevation, and Doppler; see Figure 1. The Doppler measurement is defined as the
target speed in the sensor direction. Doppler radars can measure the component of the velocity of
targets toward or away from the radar. Therefore, the Doppler is not expressed as a frequency in Hz,
but as a speed in m/s. In this paper, tracking in Cartesian coordinates is considered, for which the
state vector contains at least the position and speed in the x, y, and turn rate [6,7].

3km

15km

3-4km

Figure 1. The unmanned aerial vehicle (UAV) Radar has a wide area of 360 deg Field of View (FOV),
Radar antenna sweeps out an annular of 3–15 km. Doppler Radar is designed for the automatic
detection and tracking of moving ground and marine vehicles as well as low-altitude (maximum
altitude: 3–4 km) slow-flying aircraft such as general aviation aircrafts, and helicopters out to a range
of 15 km.

Remark 1: The UAV size and class used in our simulation are medium altitude, long-endurance UAS
platforms—still smaller than a light aircraft. They usually have a wingspan of about 5–10 m (16–33 feet)
and can carry payloads of 100 to 200 kg. It is a very well-adapted size and class for our application
when carrying a payload between 50 and 80 kg (Doppler Radar block) [8–11].

2. Multiple Sensors Modeling

2.1. Doppler Measurement Model

Observation: From the delay and bearing, a direct polar transformation can recover the
2D position. However, the velocity vector is only projected along the radial axis through the
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Doppler effect (range-rate). It means that multiple measurements and position data storage are
needed to unambiguously recover velocity. Before the performance can be analyzed, a performance
parameter needs to be defined. For most surveillance Radars, position accuracy is the most important
performance parameter.

However, for a target tracking to be efficient for the multi-UAV system, a minimum degree of
accuracy in the state estimate is necessary. Therefore, purely analyzing position accuracy is insufficient
for this paper. Instead of estimating the accuracy only in range, other measurements such as bearing,
elevation, and Doppler need to be taken into account. Below is the measurement signal component
from Doppler Radar onboard each UAV:

sk = [xk yk zk vxk vyk vzk ]
T

zk = h(xk) =


√
(xk − xj)2 + (yk − yj)2

tan−1(yk − yj)/(xk − xj)
(xk−xj)(vxk−vxj )+(yk−yj)(vyk−vyj )√

(xk−xj)2+(yk−yj)2

 .
(2)

where
√
(xk − xj)2 + (yk − yj)2 is the range from a reference sensor (UAV) to the target,

tan−1(yk − yj)/(xk − xj) the bearing, and
(xk−xj)(vxk−vxj )+(yk−yj)(vyk−vyj )√

(xk−xj)2+(yk−yj)2 the range rate. By using

Taylor series expansion, the linearized measurement matrix is derived from h(x). The Jacobian
matrix Hk and its second Hessian matrix of the measurement function h are then obtained, which are
required for the implementation of the extended Kalman filter (EKF), second-order EKF, and their
respective information space forms.

H =


∂R
∂x

∂R
∂y

∂R
∂Vx

∂R
∂Vy

∂B
∂x

∂B
∂y

∂B
∂Vx

∂B
∂Vy

∂D
∂x

∂D
∂y

∂D
∂Vx

∂D
∂Vy

 . (3)

To investigate the impact of Doppler accuracy on the system performance, the accuracy is
increased and decreased, and the system performance is compared to the performance measured in
standard conditions defined in the simulation section. In this paper, Doppler range, range rate, and
bearing signal are assumed to be observable and used as the measurement sequentially during all
simulations. Comparative results are then illustrated and discussed in the last section [12].

2.2. Nonlinear Filtering Problem Statement

Different versions of information filters were developed and designed based on EKF, unscented
KF (UKF), and generally called sigma points KFs including EKF, 2nd-order EKF, UKF, central difference
KF (CDKF), divided difference KF (DDF), and particle filters as well, such as in the literature [13].
The extended information filter (EIF), its iterative form, a 2nd-order extended information form with
its iterative forms were derived, and the cubature information filter was used in [14] to solve the
pedestrian integrated navigation problem in a foot-mounted sensor fusion problem. The unscented
information filter (UIF) was used for target tracking and derived on the basis of the UKF derived
in [15]. As a reply, the third-degree cubature information filter (CIF) was proposed with a square root
version by [16].

∫
Rn

g(x)N(x; 0, I)dx ≈
Np

∑
i=1

ωig(ξi), (4)

where ξi and ωi are defined as the quadrature point and the corresponding weight, respectively.
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In [16], a new version of a CIF is proposed for pedestrian navigation problems and its superiority
is demonstrated compared to UKF/UIF and EKF/EIF previously explored and investigated in the
literature and by the authors.

2.3. Multi-Sensor Information Fusion

In this paper, sensors are Doppler Radars onboard UAVs, and different information of bearing,
range, and range rate is delivered and broadcasted to the control center for global information filtering
implementation. Different algorithms in the literature reflect optimal and suboptimal fusion methods,
such as in [17,18].

For this goal, multiple quadratures in the literature were introduced and used as a new
Gaussian approximation information filter derivation basis, such as the unscented transform and the
Gauss–Hermite quadrature (GHQ) rule, and recently a cubature rule-based Kalman filter of degree 3
with the last derivate high-degree cubature Kalman filter proposed in [19] to approximate the Gaussian
weighted integrals in the filtering algorithm, see (4). All new filters solve the Gaussian integral given
in (4) using a numerical approximation with two fundamental parameters called points and weights,
respectively denoted as ξi and ωi [20–22].

Later in the simulation, we analyse a collaborative target tracking based on a multi-sensor fusion
problem statement; sensors are assumed onboard three UAVs in order to track the target manoeuvres.
In Figure 2, one can observe the scenario used in the simulation. Multi-UAV navigation, collaboration,
and path planning have recently been the subject of investigation; readers can refer to [23–25] for a
review of trajectory planning and multi-agent algorithms.

Φ1k 

UAV1

UAV2

UAV3

Target 

Trajectory

Figure 2. Multi-UAVs-based target tracking problem configuration at time tk. In this paper, three (03)
UAVs are assumed to navigate independently following different circular and elliptical trajectories
around the manoeuvring target with high-speed dynamic between 140 and 180 m/s.

Remark 2: Guidance is another challenging problem with the trajectory optimization of multi-UAVs
which has not been presented in this work; for more details, see [26,27]. The main problem in our
paper is related to information fusion for multi-UAVs target tracking and nonlinear filtering.
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2.4. Multiple Quadrature Information Filters

In this paper, instead of developing a Bayesian estimator, four (04) new information filters are
proposed, including the major contribution which consists of the derivation of a 7th-degree cubature
information filter in addition to Gauss–Hermite information filter of degree 3 and degree 5, and are
implemented and discussed in simulations:

• A Gauss–Hermite and 3rd-degree-based KF
• A Gauss–Hermite 5th-degree-based KF
• A varying 5th-degree cubature rules KF—Version 1
• A varying 5th-degree cubature rules KF—Version 2
• A varying 5th-degree cubature rules KF—Version 2
• A kind of 7th-degree cubature rules KF— 7th SSRCKF (7th spherical simplex radial cubature

Kalman filter)

For nonlinear filtering and smoothing problems, the algorithms mentioned and listed above are
proposed as a superior alternative to CKF and UKF such as in [28]. Even with the innumerous
simulation results in different publications that have been carried out with confirmation of the
theoretical superiority of high-degree cubature filters, no global criterion exists on how to select
the best nonlinear degree cubature Kalman filter. To the best of our knowledge, only their direct
application to nonlinear estimation problems has been investigated and proposed. In this paper, we
present a generalized quadrature filter algorithm with multiple quadrature point’s generation functions
to solve the problem of maneuvering target tracking under time-varying multi-sensor information
fusion trajectories (see Figure 3).

Signal 

Processing

Local Info. 

Filter

Fusion 

Center

Signal 

Processing

Local Info. 

Filter

Signal 

Processing

Local Info. 

Filter

Zk,1

Zk,2

Zk,3

ik,1 Si,1

ik,2 Si,2

ik,3 Si,3

Global 

Estimate

Ŷk|k, Sy,k|k

. .

Figure 3. During a search and rescue (SAR) mission, multiple UAVs track a target with
centralized distributed measurement information broadcasted to the control center (CC) for information
estimate implementation. In this configuration, communication is allowed between each UAV and
the CC.

The use of mobile and controllable sensing platforms is a relatively new area of research, but
it has attracted considerable attention in the generic sensor network literature [29,30]. This type of
problem is sometimes referred to as sensor management. The majority of work in sensor management
for target tracking assumes one of four practical observation models: range-only, bearing-only,
range/bearing, and more recently, range/range-rate with or without bearing, such as proposed
in this paper. These observation models are common due to the prevalent use of directional laser and
Radar sensors. However, we suppose in this paper that UAVs have heavy fixed wings with high-speed
engines, as mentioned in Remark 1 of Section 1.
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2.4.1. Gaussian Nonlinear Filters

Based on the different derivation of multiple Gaussian point filters, following the same idea of
the authors in [31], one can derive a general form for various quadrature point Kalman filters into a
unified algorithm, with the only difference being in how points and weights given in Equation (4) are
calculated [31]. Based on Equation (4) notations, ξi and ωi are respectively defined as the quadrature
points and corresponding weights. One can use different quadrature, cubature rules, and sigma-points
transformation to generate points and weights to be used in the Gaussian filtering algorithm given
below. Each algorithm presents some advantages and some limitations. Most of them are discussed in
this paper and compared in future sections and in simulations.

2.4.2. Gauss Multiple Quadrature Kalman Filters

It is specified that the following approximated numerical integration methods of the quadrature
integral given in Equation (4) are efficient when the process and measurement noises are Gaussian and
defined by zero white mean Gaussian noise and covariance Qk and Rk, respectively.

a Initialization:

Assume at time k that the posterior density function is known. Cholesky factorization can be
given as follows:

Pk−1/k−1 =
√

Pk−1/k−1(
√

Pk−1/k−1)
T . (5)

b Time update:

The quadrature points {Xl,k−1/k−1}m
l=1 are given in Equation (6). The matrix square root is

the lower triangular Cholesky factor provided in Equation (7). The estimate of the predicted
state mean and the estimate of the predicted error covariance are given in Equations (8)
and (9), respectively.

Xl,k−1/k−1 =
√

Pk−1/k−1ξl + x̂k−1/k−1 (6)

χ∗l,k/k−1 = f (Xl,k−1/k−1, uk−1, k− 1) (7)

x̂k/k−1 = ∑m
l=1 ωlχ

∗
l,k/k−1 (8)

P−xk
= ∑m

l=1 ωlχ
∗
l,k/k−1χT

l,k/k−1 − x̂k/k−1 x̂T
k/k−1 + Qk−1 (9)

c Measurement update step:

The Cholesky factorization Pk/k−1, the quadrature points Xl,k/k−1, the predicted measurement
Yl,k/k−1, the average prediction ŷ−k/k−1, the innovation covariance matrix Sk/k−1, the
cross-covariance matrix Pxy,k/k−1, the quadrature Kalman gain Wk, the state x̂k, and the error
covariance Pk/k are updated as follows:

Pk/k−1 =
√

Pk/k−1(
√

Pk/k−1)
T , (10)

Xl,k/k−1 =
√

Pk/k−1ξl + x̂k/k−1, (11)

Yl,k/k−1 = h(Xl,k/k−1), (12)

ŷ−k/k−1 =
m

∑
l=1

ωlYl,k/k−1, (13)

Sk/k−1 =
m

∑
l=1

ωlYl,k/k−1YT
l,k/k−1 − ŷk/k−1ŷT

k/k−1 + Rk, (14)

Pxy,k/k−1 =
m

∑
l=1

ωlXl,k/k−1YT
l,k/k−1 − x̂k/k−1ŷT

k/k−1, (15)
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Wk = Pxy,k/k−1S−1
k/k−1, (16)

x̂k = x̂k/k−1 + Wk(yk − ŷk/k−1), (17)

Pk/k = Pk/k−1 −WkSk/k−1WT
k . (18)

Equations (5)–(19) summarize the general Gaussian quadrature Kalman filter proposed in this
paper. A description of time update and measurement update steps at each time step are presented.
It is a kind of generalized Gaussian Kalman filter form with multiple quadrature points and associated
weight calculation variants. In the next section, one can transform the above equations into the
information space framework.

3. Gaussian Points Information Filters Derivation

In the related literature, different versions of information filters were developed, and the only
difference with the high-degree information filter proposed in this paper is how to select or how
to calculate the quadrature weights and points to approximate a Gaussian integral defined by (4)
in Section 2. In this paper, a 7th-degree spherical radial rule-based cubature Kalman filter has been
derived as well as a 5th-degree GHIF, on the basis of Mysovskikh formulae of degree seven [32,33],
such as developed in a stochastic form previously in the literature. The version we proposed still has a
deterministic sampling points algorithm, but provides much better accuracy when compared with
previous fifth-degree cubature Kalman filters.

3.1. Sensor Fusion and Selected Approach

In the sensor fusion literature, there are a number of sensor fusion methods and algorithms based
on Kalman and/or information framework, both with their own advantages and drawbacks with
centralized and decentralized approaches with their convergence and divergence conditions [34].
In this paper, we specifically consider a distributed configuration with feedback (see Figure 3). In this
configuration, when applied to target tracking based on multiple known ground sensors locations
(UAV locations), the global estimate is broadcast so that all sensors utilize the global estimate for
the next update step in the information filter algorithm. In this paper, moving and maneuvering
UAV sensors are assumed to fly at a high speed. It is proposed to implement an information filter
instead of the Kalman filter version of the 7th SSRCKF because all sensors’ information, regardless of
the number, are simply updated after addition with the same process to compute their covariance,
and thus are less computationally consuming, which makes our approach more feasible in real-time
operations [34]. Below are equations of information vector and information matrices calculation in the
information framework:

a Prediction step:
ŷk/k−1 = P−1

k/k−1 x̂k/k−1, (19)

Yk/k−1 = P−1
k/k−1, (20)

x̂k/k−1 =
Np

∑
i=1

ωi f (ξi), (21)

Yk/k−1 = P−1
k/k−1 =

[
∑ ωi ( f (ξi,k)− x̂k/k−1) ( f (ξi,k)− x̂k/k−1)

T + Qk−1

]−1
, (22)

where ξi,k are the transformed points obtained from the covariance decomposition; i.e.,

ξi,k = Cholesky(Pk/k−1)ςi + x̂k/k−1. (23)
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b Update step:

For multiple-sensor information fusion, the state and the information matrix can be updated by
Equations (24) and (25):

ŷk/k = ŷk/k−1 +
Nsens

∑
m=1

ik,m, (24)

Yk/k = Yk/k−1 +
Nsens

∑
m=1

Ik,m, (25)

where Nsens is the number of sensors, ik,m and Ik,m are the information state contribution and
the information matrix contribution of the mth sensor, respectively. In the EIF framework [5,16],
they are defined as:

ik,m = HT
k,mR−1

k,m[(zk,m − hm(x̂k/k−1)) + Hk,m x̂k/k−1], (26)

Ik,m = HT
k,mR−1

k,m Hk,m, (27)

where hm and Hk,m are the mth measurement function and the associated Jacobian matrix at
time k, respectively; Rk,m is the covariance of the measurement noise corresponding to the mth
measurement equation.

Remark 3: As described in Equations (26) and (27), it can be seen that the local information
contributions of ik,m and Ik,m are only computed at the mth sensor , and the total information
contribution including the information state and the information matrix is the simple sum of the
local contributions (vectors sum). Thus, one can expect and demonstrate that the information
filter is computationally more efficient and well-adapted for multiple-sensor information fusion in a
decentralized design than using or deriving the high-degree cubature filter in the Kalman framework.

An important issue in the information we propose is that compared to the extended information
filter, the corresponding linearized measurement Jacobian matrix Hk,m needs to be replaced by the
various 5th- and 7th-degree quadrature approximations. However, for the mth sensor, the following
equation can be obtained by the linear error propagation:

Pk,k−1,xym ≈ Pk/k−1HT
k,m. (28)

This is derived using the following steps:

ik,m = HT
k,mR−1

k,m [(yk,m − ŷk,m) + Hk,m x̂k/k−1] , (29)

ik,m = (Pk/k−1)
−1(Pk/k−1)HT

k,mR−1
k,m

[
(yk,m − ŷk,m) + Hk,j(Pk/k−1)

T(Pk/k−1)
−T x̂k/k−1

]
≈ (Pk/k−1)

−1Pk/k−1,xym R−1
k,m

[
(yk,m − ŷk,m) + (Pk/k−1,xym)

T(Pk/k−1)
−T x̂k/k−1

]
,

(30)

Ik,m = HT
k,mR−1

k,mHk,m

= (Pk/k−1)
−1(Pk/k−1)HT

k,mR−1
k,mHk,m(Pk/k−1)

T(Pk/k−1)
−T (31)

≈ (Pk/k−1)
−1Pk/k−1,xym R−1

k,m(Pk/k−1,xym)
T(Pk/k−1)

−T , (32)
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ŷk,m =
Np

∑
i=1

Wihm(ξ̃i,k), (33)

Pk/k−1,xym =
Np

∑
i=1

Wi
(
h(ξ̃i,k)− x̂k/k−1

) (
h(ξ̃i,k)− ŷk,m

)T , (34)

where ξ̃i,k are the transformed points obtained by the given transformation:

ξ̃i,k = Cholesky(Pk/k−1)ςi + x̂k/k−1. (35)

As explained before, and as one can observe, the equation of the information filters remains the
analog of the ones presented and proposed for previous derivations of unscented information filters,
cubature information filters, and Gauss–Hermite information filter; the main difference (as mentioned
in previous sections) is how to calculate quadrature points and their corresponding weights used to
approximate the Gaussian integral given in Equation (4). The problem stated and solved in this paper
is related to multi-agent cooperative target tracking as described in [35], but the information filter
is proposed instead of other techniques proposed previously in order to allow the number of UAVs
to extend without limitation and without alleviating the computational complexity. Thus, different
quadrature rules and methods could be applied and transformed into the information framework.
Other numerical rules could be investigated by interested readers, as given in [36].

3.2. High-Degree Cubature Information Filters

The cubature rule is a numerical rule used to approximate the integral given in Equation (4).
Different cubature rules exist and are available in the books of Sobolev, Strood, and Mysovskikh. In the
following sections, the description of the most efficient and optimal rules are described.

Algorithm I: 4 ≤ n, n2 + 3n + 3 points

Here, we describe formulae due to Mysovskikh for integration of the integral in Equation (1).
As derived and described in [36], Mysovskikh derives a cubature formula for the surface of the sphere,
Un ≡ {x ∈ Rn : x21 + x22 + · · ·+ x2n = 1}, based on the transformation group of the regular simplex,
with vertices:

a(r)i ≡


−
√

n+1
n(n−i+2)(n−i+1) , i < r√

(n+1)(n−r+1)
d(n−r+2) , i = r

0, i > r

, (36)

a(r) = (a(r)1 , a(r)2 , a(r)3 , . . . , a(r)n ), r = 1, 2, 3, . . . , n + 1. The set of midpoints of the vertices projected onto
the surfaces of the sphere Un is obtained by the given form:

{b(j)}≡
{√

n
2(n− 1)

(a(k) + a(l)) : k ≤ l, l=1, 2, · · · , n+1
}

. (37)

Based on the selection of the cubature points as {a(j)} and {b(j)} and central symmetry as a
requirement of the cubature formula, Mysovskikh calculated and described how a 5th-degree formula
requiring n2 + 3n + 2 points may be constructed of the form

∫
Un

f (x)dx ≈ I[ f ] = A
n+1

∑
j=1

[ f (a(j)) + f (−a(j))] + B
n(n+1)/2

∑
j=1

[ f (b(j)) + f (−b(j))], (38)

then, using Mysovskikh’s degree-5 formula given in [36,37] for integration over the spherical surface,
one can obtain:
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I[ f ] =
2πn/2

n + 2
f (0) +

n2(7− n)πn/2

2(n + 1)2(n + 2)2

n+1

∑
j=1

[
f
(√

n/2 + 1× a(j)
)
+ f

(
−
√

n/2 + 1× a(j)
)]

+

2(n− 1)πn/2

(n + 1)2(n + 2)2

n(n+1)/2

∑
j=1

[
f
(√

n/2 + 1× b(j)
)
+ f

(
−
√

n/2 + 1× b(j)
)]

.

(39)

This cubature formula was implemented for different state nonlinear model estimation, and results
were compared with other 5th-degree cubature rules with Gauss–Hermite as the optimal reference.

Algorithm II: 2n2 + 1 points

As developed and derived in [36,37], without further development and demonstration and just
by reference to the authors for deeper theoretical aspects, the second algorithm proposed for nonlinear
filtering problems as an improvement of the 3rd-degree cubature Kalman filter derived and developed
for filtering and smoothing problems is given below (this formula is shown as reported in [37]):

I[ f ] =
2πn/2

n + 2
f (0) +

(4− n)πn/2

2(n + 2)2

n

∑
j=1

f (
√

n/2 + 1, 0,· · ·, 0)

+
πn/2

(n + 2)2

n(n−1)/2

∑
j=1

f (
√

n/4 + 1/2,
√

n/4 + 1/2, 0,· · ·, 0).

(40)

It was demonstrated in [37] that Algorithm II and Algorithm I allow the achievement of exactly the
same result when applied to a radically symmetrical surface.

Algorithm III: 2n2 + 1 points

Another class of cubature rules with the same number of cubature points based on the work of
Sobolev on invariant theory has emerged a class of formulae given in the following and described
previously in [37]:

I[ f ]= n2−7n+18
18 πn/2 f (0)+ (4−n)πn/2

18 ∑n
j=1 f (

√
3/2, 0,· · ·, 0)+ πn/2

36 ∑
n(n−1)/2
j=1 f (

√
3/2,
√

3/2, 0,· · ·, 0). (41)

IMPORTANT NOTE: For better understanding of the difference between Algorithm II and III in
which cubature points lie on the surface of a sphere with fixed radius (independent of the problem
dimension n), it is mentioned that those of Algorithm II lie on a surface that grows with n (as do
those of Algorithm I). This means that we have another good criterion connected with efficiency:
The efficiency and optimality of the cubature rule depend on the state dimension.

Algorithm IV: 2 ≤ n ≤ 7, n2 + n + 2 points

This is a formula valid for 2 ≤ n ≤ 7 given by Stroud and reported by authors in [37] (not
implemented in this paper).

For the interest of readers and specialized researchers in nonlinear filtering and the derivation of
new cubature-based Kalman filtering algorithms, the following values are given on the basis of the
form given as reported in [37]. Table 1 reflects the computational time complexity of the proposed
filters and cubature rules.
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Table 1. Comparative quadrature points for different rules used in this paper. GHKF: Gauss–Hermite
Kalman filter and CKFs: Cubature Kalman filters (3rd-degree, multiple versions of 5rd-degree,
Version 1—V1, Version 2—V2, Version 3—V3, Version 4—V4 and 7rd-degree).

Quadrature Rule Quadrature Points Number

3-point GHKF 3n

5-point GHKF 5n

3rd-degree CKF 2n

5th-degree CKF-V1 n2 + 3n + 3

5th-degree CKF-V2 2n2 + 1

5th-degree CKF-V3 2n2 + 1

5th-degree CKF-V4 n2 + n + 2

7th-degree CKF 2(n + 1)(n2 + 8n + 6)/3

4. Seventh-Fifth Degree Spherical-Radial Rule: Genz–Stroud–Mysovskikh (1981)

In this work, the seventh spherical rule described in [37,38] is considered as the basis of the novel
seventh-degree information filter, following the definition of the efficient fifth-degree Mysovskikh
cubature rule given in the previous section. The points uk are projections of the centroids of unit vertex
regular n-simplex faces onto Un. One efficient seventh spherical degree rule given by [37] can be
rewritten as below, as in [37]:

S7(s) =
|Un|

36n(n + 1)3(n + 2)(n + 4)

(
n3(9n2 − 793n + 1800)

n+1

∑
j=1

(
s(−vj) + s(vj)

)
+

144(n+1)3(4− n)
n(n+1)/2

∑
k=1

(s(−yk)+s(yk))+486(n− 2)3
(n−1)n(n+1)/6

∑
k=1

(s(−uk) + s(uk))

+ (10n− 6)3
n(n+1)

∑
k=1

(s(−wk) + s(wk))

)
.

(42)

The points uk are projections of the centroids of unit vertex regular n-simplex faces onto Un. The set of
{uk} is {

(vi + vj + vk)/
√

3(n− 2)/n : i < j < k
}

. (43)

The set {wk} is given by {
(vi + 3vj)/

√
(10n− 6)/n : i 6= j

}
. (44)

The rule S7(s) uses (n + 1)(n2 + 8n + 6)/3 values.
In [37,38], methods of stochastic rules for the unbounded radial interval and the spherical surface

have been combined to give stochastic rules for the original integration region. The general form
for a stochastic spherical-radial (SR) rule with a degree l rule for the spherical surface integral and a
degree m rule for the radial integral is given in [38]. This method is not applied in this paper, and we
have selected the most efficient SR rule of degree seven with one point less that of the stochastic SR
rule proposed by the authors in [38]. In the following section, details about how to implement the
seventh-degree spherical radial rule in the Gaussian filtering framework are presented.

These proposed formulas were implemented and applied to multiple UAV-based target tracking
problems and numerical simulations showing equivalent performances to the third 3rd-degree cubature
rules and 5th cubature first formula proposed and derived from the cubature rules developed until
the superior degrees seven, nine, etc. Other references in the literature can be found in [38,39].
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In Table 2, one can observe the advantage of implementing a 7th-degree CKF instead of third and fifth
degree GHKF.

Table 2. Execution time per iteration for different quadrature rules used in this paper.

Quadrature Rule Quadrature Points Number Execution Time (ms)

3-point GHKF 243 16.1

5-point GHKF 3125 206.0

3rd-degree CKF 10 0.8

5th-degree CKF-V1 43 2.2

5th-degree CKF-V2 51 1.8

5th-degree CKF-V3 51 1.6

5th-degree CKF-V4 32 1.4

7th-degree CKF 284 9.2

Finally, when replacing the numerical integral given in Equation (44) in the general Gaussian
point-based filter algorithm given in Equations (2) and (42), one obtains the new seventh-degree
spherical simplex radial cubature Kalman filter (7th SSRCKF) [38]. When comparing the lower bound
of the seventh-degree cubature rule with the one which is proposed and other seventh-degree forms
proposed in the literature, the 7th SSRCKF is more efficient according to the number of points, with
only 2(n3 + 9n2 + 14n + 6)/3 cubature points. In Figure 4, it is easy to observe the difference between
GHKF and multiple high-degree CKFs. So, the proposed rule approaches the lower bound given
by (n3 + 3n2 + 8n)/3. The proposed solution for the derivation of the new information filter of
degree seven is more efficient than the existing similar degree rules in the literature (see Figure 4).
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Figure 4. Target tracking estimation using 3rd degree CIF, 5th degree CIF-V1-V2-V3 and 7th-degree
Cubature Information filters (CIFs) compared to 3rd-degree Gauss–Hermite information filter. UAV1,
UAV2 and UAV3 are delivering Doppler measurement information to the control center for global
information fusion.

Figure 4. Target tracking estimation using 3rd degree CIF, 5th degree CIF-V1-V2-V3 and 7th-degree
Cubature Information filters (CIFs) compared to 3rd-degree Gauss–Hermite information filter. UAV1,
UAV2 and UAV3 are delivering Doppler measurement information to the control center for global
information fusion.
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5. Simulation

The simulation is based on 100 Monte-Carlo runs for all scenarios including range/range rate and
bearing-only tracking models. The metric used to compare the performance of the information filters
is the root mean square error (RMSE). The target dynamics is highly nonlinear due to the unknown
turn rate. It has been used as a benchmark to test the performance of different nonlinear filters [22–24].
The discrete-time dynamic equation of the target motion is given by:

xk =


1 sin(ωk−1∆t)

ωk−1
0 cos(ωk−1∆t)−1

ωk−1
0

0 cos(ωk−1∆t) 0 −sin(ωk−1∆t) 0

0 1−cos(ωk−1∆t)
cos(ωk−1∆t) 1 sin(ωk−1∆t)

ωk−1
0

0 sin(ωk−1∆t) 0 cos(ωk−1∆t) 0
0 0 0 0 1

 , Qk−1=



∆t3

3
∆t2

2 0 0 0
∆t2

3 ∆t 0 0 0
0 0 ∆t3

3
∆t2

2 0
0 0 ∆t2

2 ∆t 0
0 0 0 0 1.75× 10−4∆t

 (45)

where xk = [xk, ẋk, yk, ẏk, wk]
T , [xk, yk]

T , and [ẋk, ẏk]
T are the position and velocity at time k, respectively.

In this section, the performance of multiple quadrature-based information filters is demonstrated via a
benchmarking of target-tracking problem with time-varying Gaussian measurement noises, which
is to track a target executing a maneuvering turn in a two-dimensional space with unknown and
time-varying turn rate done in this paper. In this section, the new proposed seventh-degree spherical
simplex radial CIF is applied, three novel variant fifth-degree CIFs, higher-degree CIF, and high-degree
GHIFs are also considered for the tracking of multiple moving sensors. The dynamic equation of
this tracking problem is highly non-linear due to the unknown turn rate. In this simulation, we
have considered a problem with [range, range rate, bearing] information in order to demonstrate the
efficiency of the proposed approaches and methods in the information space.

Remark 4: We assume each UAV is equipped with highly accurate integrated navigation system INS
(Inertial Navigation System)/GPS (Global Positioning System) with ultra-tightly-coupled architecture,
very well known to be robust against jamming and denied GNSS (Global Navigation Satellite System)
environment; see [40,41]. Note that during simulations, positions of UAVs were assumed known with
errors within the range of 2.5–5 m.

5.1. Multi-UAVs Range-Rate-Only Target Tracking

We considered the problem of range rate tracking assuming that there were three (03) moving
sensors in known locations, fixed without uncertainties; other problem statements can be found,
for example, in [39,42]. In the first simulation, three sensors are used to measure the range rate
between the target and the sensors. The measurement sampling interval was ∆t = 0.1 s, then
switched to 0.5 s. The simulation results are based on 100 Monte Carlo runs. The initial estimate
x0 values with different uncertainty level values were introduced gradually. They are given as
follows: x0 = [1000 m, 300 m/s, 1000 m, 0, −3 deg/s]T and P0 being the initial covariance:
P0 = diag(100 m2, 10 m2/s2, 100 m2, 10 m2/s2, 100 m rad2/s2). The metrics used to compare the
performance of various filters was the root mean square error (RMSE). The Doppler measurement is
described in Equation (2).

Different covariance noise values were assigned to each component of the measurement vector.
Range, range rate, and bearing were simulated with appropriate values. Illustrations are given in
Figures 5 to 7. See Figure 6 for comparative results of the target trajectory estimation using different
nonlinear filters proposed in this paper.
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Figure 5. Range rate Doppler-based estimation: UAV1, UAV2, UAV3 trajectories are clearly described
and indicated around the target trajectory. In black, 7th-degree CIF and 5th-degree GHIF are close to
the true target trajectory, 5th-degree CIFs and 3rd-degree CIF-GHIF are superposed in pink color with
light deviation from the black trajectory estimate. Three possible fitting trajectories (spline, quadric,
cubic) are illustrated with discontinuous green, blue, and yellow colors.

Figure 6. Range rate Doppler-based estimation: Results of 7th-degree CIF, 5th-degree CIF, 5th-degree
GHIF, 3rd-degree GHIF compared to the true trajectory in green color.
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Figure 7. Root mean square error (RMSE) based on range rate Doppler: Results of 7th-degree CIF,
5th-degree CIF, 5th-degree GHIF, 3rd-degree GHIF compared to the true trajectory in green color.
The lower error bound was achieved by 7th-degree CIF and 5th-degree GHIF.

5.1.1. Extended Results for Range Rate Doppler Tracking

Through these simulations, one can construct different assumptions on what will be the trajectory
model of the target after time Ts (tracking simulation time). Trajectory fitting was applied to the
estimated trajectory in order to predict the next maneuver and build appropriate interactive multiple
models based on fitting trajectory generation: spline, cubic, quadric, etc. An interpretation of the
multiple hypothesis trajectories could be that the multi-UAV shall be assigned new tracking tasks on
the basis of trajectory model instead of velocity and turn rate model. See Figure 8 for a clear description
of the simulated scenario in this paper.

Figure 8. Zoom on range rate Doppler-based trajectory: Results of 7th-degree CIF, 5th-degree CIF,
5th-degree GHIF, 3rd-degree GHIF compared to the true trajectory in green color. The lower error
bound was achieved by 7th-degree CIF and 5th-degree GHIF.
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5.1.2. Range Rate Observation

From Figures 5 to 8, one can observe the superiority of the 5th-degree GHIF, 5th-degree and
7th-degree CIF compared to other high-degree cubature information filters. In general, range rate
maintained good estimation results when three UAVs were constantly moving around the target
trajectory. However, it must be specified that the multi-UAV location is known exactly. The simulation
conditions are as follows:

Integration time ∆t = 0.1; State dimension n = 5; Initial turn rate = −3/(180× π); Simulation
duration = 100; reptimes = 100; Monte Carlo samples N = 100; Process noise covariance’s values:
q1 = 0.1; q2 = 1.75 × 10−4.

5.2. Multi-UAVs Range-Only Target Tracking

In the case of Multi-UAVs range-only target tracking, from Figures 9 to 12, it is interesting to
observe and confirm the superiority of the 5th-degree GHIF, 5th-degree and 7th-degree CIF compared
to other high-degree cubature information filters. This can be explained by the degree of nonlinearity
in the measurement equation. Multi-UAVs range-only target tracking maintains a good estimation
accuracy. UAVs are flying in the same scenario, such as for range rate simulation. Initial conditions
and parameters values are exactly the same.

Figure 9. Range-only Doppler-based estimation: Results of 7th-degree–5th-degree/5th-degree–3rd-degree
GHIF trajectory.
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Figure 10. Zoom on range-only Doppler-based estimation: Results of 7th-degree CIF, 5th-degree CIF,
5th-degree GHIF, 3rd-degree GHIF compared to the true trajectory in discontinuous black color.

Figure 11. RMSE of range-only Doppler-based estimation: Results of 7th-degree CIF, 5th-degree CIF,
5th-degree GHIF, 3rd-degree GHIF.
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Figure 12. Larger view of range-only Doppler-based estimation: Results of 7th-degree CIF,
5th-degree CIF, 5th-degree GHIF, 3rd-degree GHIF compared to multiple reference trajectories (spline,
quadratic, cubic).

5.3. Discussion

During these simulations, different measurements from each UAV were used to compute the local
innovation matrix and broadcasted to the control center for global computing information. In our
scenarios, we had three (03) UAVs in operation of Search and Rescue and tracking a target in a
configuration where there was no leader. We supposed that positions and local speeds of UAVs were
known, which were accurate enough to achieve better performances during the tracking mission.
One can observe, however, that from range rate to range-only tracking and compared with previous
bearing simulation results, the accuracy and performances of the information filters proposed and
derived for this problem are different, and show interesting results. For instance, in this paper there is
no attention given to leader–follower formation criteria or a rendezvous point path planning for the
multi-UAVs using Dubins method and other approaches [43].

We repeated exactly the same simulation conditions for different scenarios using range rate,
range-only, and bearing-only tracking for coherent benchmarking between different filtering methods
and new high-degree derivation. It is clear after analyzing the results in Figures 5 to 12 that higher
disturbances and errors affect the target trajectory estimation performances for all categories of filters
in the case of range-only tracking; on the contrary, in the range rate measurement availability, higher
accuracy, and lower error were achieved and maintained, especially for the seventh-degree CIF
and the fifth-degree GHIF. Future work will consider multiple Doppler measurements affected by
non-Gaussian noises modeled as in [44] with divergence avoidance algorithms development such as
in [45].

6. Conclusions

In this paper, a new class of fifth- and novel seventh spherical radial-degree CIFs are proposed
for multiple sensors’ information fusion based on Mysovskikh’s efficient 7th-degree spherical rule.
An accurate and efficient Gauss–Hermite quadrature information filter has been applied as a lower
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bound for performance evaluation of the proposed methods. The influence of observation condition
and the availability of different measurements have been demonstrated and carried out. In this
paper, a centralized but distributed information filtering-based method improved the performances
of the multi-sensor target tracking algorithm when derived in the information space. This new
robust and efficient information filter has greatly improved the performances in different scenarios
and configurations, with range-only, range rate, and bearing-only tracking conditions. Besides the
theoretical formulation and the proposal of the recently-developed high-degree information filters,
new results have been illustrated and discussed considering this problem of multi-UAV target tracking
using different Doppler measurements.

All of the algorithms we implemented on an Intel CoreTM i3-2120, 3.30 GHZ CPU with
4.00 Gb RAM. Table 2 shows the number of points and computational time of CKF, 5th CKF-V1,
5th CKF-V2, 5th CKF-V3, and 7th CKF for each run. The points of the 5th-degree-CKF-V1 as well as
the 5th-degree-CKF-V2 and 5th-degree-CKF-V3 differed only by few points. As shown in Table 2, the
computational time of the algorithms is approximately proportional to the number of points. One can
observe that the computational cost of the multiple fifth-degree CKFs (V1, V2, and V3) is slightly
different from each other due to the different 5th-degree cubature rules. Due to the computation
complexity of information, the 7th SSRCKF algorithm is larger than fifth-degree CKF (V1, V2 and V3),
but can be implemented onboard UAVs with fast CPU boards. It is also important to mention that
the advantages of the use of the high-degree cubature filters are that the points and weights of the
numerical integration are calculated offline.

An attractive problem of rendezvous point selectivity during Search and Rescue (SAR) missions
and leader–follower algorithm development for this specific matter should be in the scope of interest
and certainly considered as a challenging problem statement. For future works and presently under
development, a stochastic form of the seventh-degree cubature Kalman filter will be applied to denser
moving sensor networks with large uncertainties not only at the initialization step but also in the
Doppler measurement covariance and sensor location information. Experimental work is already in
an advanced stage based on the work of our co-worker [46] for field tests onboard UAVs.

Finally, optimal dynamical sensors placement based on Fisher information matrix based on novel
interpolation seventh-degree cubature rules described by Misovskikh in [47] is being developed and
implemented and will be proposed in future work as a superior alternative based on deterministic and
stochastic sampling methods. In the future, we plan to implement our algorithms and install Doppler
radars prototypes onboard a real fixed wing UAVs during remote sensing missions in the arctic for
validation purposes.
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